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Appendix D. Discussion

D.1. Preference Restrictions. The swaps index aims to evaluate the distance between

individual choices and the preference maximization model. Let us note at this point that

exactly the same logic can be applied to measure the distance between choices and stronger

notions of rationalizability. In this section, we show how this is done by measuring how far

an agent is from being an expected utility agent, but the same logic could be followed to

incorporate other types of properties, such as time stationarity, quantity monotonicity, etc.

Let X be a finite set of lotteries and denote by PEU ⊂ P the set of all linear orders over X

having an expected utility representation.1 We define the EU-swaps index by

IEU−S(f) = min
P∈PEU

∑
(A,a)

f(A, a)|{x ∈ A : xPa}|.

The EU-swaps index minimizes the number of swaps needed to accommodate all the obser-

vations considering only the set of expected utility preferences.2

Example 1. Consider X = {x, y, z, w} and let independence impose that x is above y if and

only if z is above w. Let f({x, y}, x) = 2
5

and f({x, y, w}, y) = f({z, w}, w) = 3
10

. The swaps

index computed in the space of all linear orders identifies the preference xPyPwPz with an

associated inconsistency of 3
10

. Since P 6∈ PEU , the EU-swaps index establishes a greater

inconsistency, 2
5
, with associated preference yPEUxPEUwPEUz. Notice that the comparison

between alternatives x and y is now influenced not only by the observations ({x, y}, x) and

({x, y, w}, y), but also, through independence, by ({z, w}, w).

Date: October, 2014.
1Notice that standard expected utility representations usually involve infinite domains and indifferences.
Here, by setting a finite domain of lotteries, we can assume that these preferences have no indifferences. We
study the infinite case and the presence of indifferences in the next sections.
2The axiomatic characterization of IEU−S follows the same structure as that of IS with minor modifications.
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D.2. Indifferences. So far we have considered linear orders and, hence, have ruled out

the possibility of indifferences. Clearly, allowing for unrestricted indifferences makes the

entire exercise vacuous, since data can always be rationalized by total indifference.3 We

can, however, introduce restricted indifference in a meaningful way. Let X be a finite set of

alternatives, described by vectors of quantities of goods or attributes and hence, is partially

ordered by a strictly monotone binary relation �.4 Under these conditions, the swaps index

allowing for indifferences again adopts the functional form of IS, but minimizing over the

set of weak orders that extend �, which we denote generically by �∗, with strict part �∗.
Namely,

II−S(f) = min
�∗

∑
(A,a)

f(A, a)|{x ∈ A : x �∗ a}|.

Example 2. Consider X = {(0, 3), (0, 6), (1, 3), (2, 0), (3, 2), (6, 1), (9, 0)} where x = (x1, x2)

describes the quantities of goods 1 and 2. Monotonicity forces (0, 6) and (1, 3) to be

preferred to (0, 3). It also makes (3, 2), (6, 1) and (9, 0) to be preferred to (2, 0). Other-

wise, indifferences are allowed. Consider the collection f({(0, 6), (1, 3), (2, 0)}, (2, 0)) = 1
2

=

f({(0, 3), (3, 2), (6, 1), (9, 0)}, (0, 3)). The individual is directly revealing that (0, 3) is weakly

preferred to (3, 2), (6, 1) and (9, 0). Monotonicity implies that any of the latter is strictly

better than (2, 0). But the individual is also directly revealing that (2, 0) is weakly preferred

to (0, 6) and (1, 3), which dominate the chosen option (0, 3) in terms of monotonicity. Hence,

the data cannot be rationalized by any monotonic weak order.

The revised version of the swaps index would work as follows. If (2, 0) is placed strictly

above (0, 3), then the mass of required swaps is equal to 3
2
, since monotonicity requires that

(3, 2), (6, 1) and (9, 0) must be placed strictly above (2, 0) and hence, strictly above (0, 3).

If on the contrary, (0, 3) is placed weakly above (2, 0), then the mass of required swaps is

1, since monotonicity implies that (0, 6) and (1, 3) must be placed strictly above (0, 3) and,

hence, strictly above (2, 0). Then, the optimal weak order ranks (0, 3) weakly above (2, 0).

D.3. Infinite Sets of Alternatives. Economic models sometimes involve infinite sets of

alternatives which are, typically, subsets of the Euclidean real space. We now show how the

swaps index can be extended to these settings. Consider the standard consumer setting,

where the set of all possible bundles is X = Rn
+, and preferences are continuous, strictly

monotonic and convex weak orders, that we denote by � (where the strict part is denoted

by �). Menus are defined by A = {x : px ≤ 1}, where p ∈ Rn
++ describes the price vector,

3Formally, we would say that f is rationalizable by the weak order � if for every (A, a) with f(A, a) > 0,
a � x for every x ∈ A. Again, small modifications of our axioms can be presented to characterize the index
that follows.
4That is, x ≥ x′ with x 6= x′ implies that x � x′.
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and the data comprise a finite number of observations with positive mass. We define the

consumer setting swaps index by

ICS−S(f) = inf
�

∑
(A,a)

f(A, a)µ({x ∈ A : x � a}),

where µ is the Lebesgue measure. That is, µ measures the volume of the upper contour set

of the chosen element a in menu A according to the preference �. Given the infinite number

of weak orders over which ICS−S, the infimum is used.

Example 3. Consider the set X = R2
+ and the following two observations, (A1, a1) =

({(x, y) : x + 2y ≤ 1}, (1
4
, 3
8
)) and (A2, a2) = ({(x, y) : 2x + y ≤ 1}, ( 7

16
, 1
8
)). Let f be

the collection that assigns mass 1/2 to each of these two observations. Clearly, f cannot be

rationalized by any continuous, strictly monotonic and convex weak order. To see this, simply

note that in observation 1 the individual has revealed that a1 � a2. By strict monotonicity,

z1 = (1
4
, 1
2
) must be strictly preferred to a1 and hence to a2. However, the individual reveals

in menu 2 that a2 is weakly preferred to z1.

In order to describe ICS−S(f), let us divide the set of weak orders into those that place

a1 strictly above a2, those that place a2 strictly above a1 and those that make them indif-

ferent. Considering the first case, let S = {(x, y) : (x, y) ≥ a1} and T = {(1/4, y) : y ≥
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3/8} ∪ {(x, y) : 4x + 3y = 17/8, 1/4 ≤ x ≤ 7/16} ∪ {(x, 1/8) : x ≥ 7/16}. In order to

respect continuity, strict monotonicity and convexity, the smallest volume to be swapped in

observation 2 can be achieved by considering the indifference curve of a1 to be S and the

limit of the indifference curve of a2 to be T (see Figure 1a). Since these assumptions lead

to no swap in menu 1, they provide the infimum swap for the case in which a1 is strictly

above a2. The volume of the upper contour set would be exactly the area of the triangle

formed by bundles a1, a2 and z1, which is 3/256. A similar analysis for the case of a2 strictly

above a1 would require us to measure the area of the triangle formed by bundles a1, a2 and

z2 = (3/4, 1/8), which is 10/256 (see Figure 1b). Ranking a1 and a2 as indifferent would

require the sum of these two volumes. Hence, it is optimal to place a1 strictly above a2 and

ICS−S(f) = 1
2

3
256

.
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Appendix E. Application: Data

Table 2: Inconsistency values

Individual IS IHM IW Individual IS IHM IW

1 0.18 0.18 0.18 48 0.09 0.09 0.18

4 0.09 0.09 0.18 51 0.36 0.18 0.45

6 0.27 0.18 0.36 53 0.18 0.18 0.18

9 0.09 0.09 0.27 58 0.09 0.09 0.09

10 0.18 0.18 0.18 60 0.27 0.27 0.45

11 0.09 0.09 0.18 62 0.18 0.18 0.36

12 0.55 0.27 0.64 67 0.18 0.18 0.27

13 0.09 0.09 0.18 70 0.09 0.09 0.09

15 0.18 0.18 0.27 71 0.55 0.27 0.82

16 0.09 0.09 0.18 73 0.09 0.09 0.09

17 0.55 0.36 1 76 0.09 0.09 0.18

18 0.09 0.09 0.18 79 0.09 0.09 0.09

20 0.09 0.09 0.09 82 0.09 0.09 0.09

22 0.45 0.27 0.64 83 0.09 0.09 0.09

23 0.09 0.09 0.18 86 0.18 0.18 0.36

24 0.09 0.09 0.18 88 1.36 0.55 2.27

25 0.09 0.09 0.09 89 0.73 0.36 1.36

26 0.09 0.09 0.09 91 0.27 0.18 0.36

27 0.18 0.18 0.27 94 0.09 0.09 0.18

28 0.18 0.18 0.55 98 0.09 0.09 0.09

29 0.09 0.09 0.18 104 0.09 0.09 0.09

30 0.18 0.18 0.18 108 0.09 0.09 0.27

31 0.09 0.09 0.09 112 0.09 0.09 0.27

33 0.27 0.18 0.45 115 0.09 0.09 0.18

34 0.09 0.09 0.09 116 0.09 0.09 0.09

36 0.09 0.09 0.09 119 0.45 0.18 0.45

38 0.09 0.09 0.09 121 0.09 0.09 0.27

44 0.18 0.09 0.27 126 0.09 0.09 0.09

46 0.09 0.09 0.09 128 0.45 0.27 0.45

Summary For All Individuals

Group IS IHM IW

Avg. All 0.09 0.07 0.14

Avg. 7-years 0.13 0.11 0.21

Avg. 11-years 0.07 0.05 0.1

Avg. 21-years 0.08 0.05 0.13

NOTE. – Every subject that is not in the table is rationalizable. Participants

1 to 31 are 7−year old. Participants 32 to 73 are 11−year old. Participants 74

to 128 are 21−year old.


