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Abstract. We study the implications of commonly-used parametric assumptions on

the empirical content of ordered random utility models. After characterizing these

models in a continuous setting and in the absence of fundamental parametric re-

strictions, we show that assumptions on the type distribution alone are immaterial,

while assumptions on the map linking types to utilities are relevant only insofar as

this restricts the class of utilities at stake. Importantly, the joint presence of such

parametric assumptions, as per common practice, restricts further the empirical con-

tent of the model. We then provide a characterization of commonly-used parametric

ordered-logit models. We conclude the paper applying our results to economic set-

tings of relevance.
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1. Introduction

In many settings, alternatives have a natural order and choices are driven by an

ordered latent variable. This simple structure is a fundamental instrument for empir-

ical research, spanning diverse economic areas such as health, finance, labor, welfare,

management, insurance, political economy, networks and gender.1 The usual economic
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modeling in these cases is by way of Ordered Random Utility Models (ORUMs).2 These

models have two main components. To introduce them, let the latent variable be on

the reals and refer to each possible value of this variable as a type. The first component

of an ORUM is a type-utility map where higher types are associated with utilities that

produce higher choices. The second component is a type distribution that describes

the prevalence of each type.

The empirical application of ORUMs often relies on parametric assumptions. To

illustrate, regarding the first component, applications to political or insurance choices

are often built upon specific parametric models such as the ones in which type t has

Euclidean preference centered at t or CRRA coefficient equal to t, respectively.3 Re-

garding the second component, the most common parametric assumptions involve the

use of logistic or Gaussian distributions over the set of types, that lead to the so-called

ordered-logit or ordered-probit models, respectively. Therefore, it is critical to carefully

examine when and how parametric assumptions bear down on the space of datasets

that can be explained by ORUMs. This is the purpose of this paper.

We work in the context of cumulative choice data from an arbitrary collection of

continuous decision problems. We start with the fully non-parametric case in which

neither the type-utility map nor the type distribution is restricted. For this case,

we show that the property characterizing data can be conveniently derived from the

standard, deterministic, notion of rationalizability. In a nutshell, suppose that, for

each probability value p ∈ (0, 1), we construct the hypothetical deterministic choice

function cp selecting, in each decision problem, the alternative that attains first cumu-

lative choice above p.4 Theorem 1 shows that data is explained by an ORUM if and

only if every cp is rationalizable. We note, in passing, that this constitutes the first

characterization result of ORUMs in continuous settings.

Fundamentally for our purposes, the proof of Theorem 1 is instrumental to study

the effects of imposing parametric restrictions. Building upon it we show in Proposi-

tion 1 that, if the type-utility map remains unrestricted, parametric assumptions over

2For early modeling see Small (1987); see also Train (2009) and Greene and Hensher (2010). For

micro-foundations, see Apesteguia Ballester and Lu (2017), Filiz-Ozbay and Masatlioglu (2023), Petri

(2023) and Apesteguia and Ballester (2023).
3This type of parametric restrictions is often referred as semi non-parametric (see, e.g., Barseghyan,

Molinari and Thirkettle (2021)).
4This corresponds to the observed p-quantile alternative in each problem.
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the type distribution have no empirical content beyond the one described by Theo-

rem 1. To emphasize, in this case the analyst can be certain that fixing ex-ante her

preferred statistical distribution has no consequences; if the data can be rationalized

by an ORUM, then it can be rationalized by another ORUM using the assumed type

distribution, and the appropriate transformation of the type-utility map. Second, fix-

ing ex-ante a type-utility map that operates over a sub-class of utilities has obvious

implications, because this parametric assumption constrains the model to use only the

specific sub-class of utilities. However, modulo these utilities, the assumption comes

at no further cost. Again building on the proof of Theorem 1, we show in Proposition

2 that, if the type distribution remains unrestricted, fixing the type-utility map has no

further empirical content beyond the rationalizability property described in Theorem

1, restricted to the sub-class of utilities used by the given map. Third, we show that

fixing both the type-utility map and the type distribution comes at a cost. We argue

by way of example that parametric assumptions constrain the set of observed datasets

that can be rationalized, and they do so beyond the obvious restriction imposed by the

sub-class of utilities at stake.

To illustrate these results, consider the case in which an analyst is trying to explain

a collection of observed distributions of choices on a number of linear budget sets

involving lotteries.5 A natural starting point of this analysis is to consider the class of

expected utilities. Theorem 1 describes the empirical content of ORUMs based upon

an ordered family of expected utilities: each p-quantile must be rationalizable by an

expected utility. Let us now consider the empirical implications of different parametric

assumptions. First, we may consider specific type distributions, such as the logistic.

Proposition 1 establishes that, when considered in isolation, this parametric assumption

incurs no additional costs. Second, we may consider instead fixing a specific type-utility

map operating over a restricted sub-class of expected utilities, such as the one in which

type t is assigned the expected utility with CRRA coefficient equal to t. Naturally,

this may have empirical consequences, since there may be behavioral patterns that can

be accommodated by other expected utilities than CRRA. However, these are the only

empirical consequences. Proposition 2 establishes that the specific assignment of types

to CRRA expected utilities is without loss of generality. Finally, if the analyst has

parametrically shaped the model both by assuming the CRRA type-utility map and

the logistic type distribution, the empirical content is restricted. To see why, notice

5See, e.g., Choi et al. (2014), for an experimental design using such a setting.
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that the logistic distribution must now operate over the CRRA coefficient, imposing a

good deal of structure on admissible patterns of lottery choices.

It is then evident that understanding the empirical content of commonly-used para-

metric models requires of tailored analysis and results beyond the content of Theorem

1. Given the preponderance of parametric ordered-logit models in the empirical liter-

ature, in this paper we study them in detail.6 Suppose then that we fix a given, yet

generic, type-utility map, providing specific meaning to the latent variable, and restrict

attention to the logistic distribution. What are the exact properties of data generated

by such a model? In Theorem 2, we show that two simple properties, that we call

corner extremeness and cumulative logit additivity, characterize parametric ordered-

logit models. Corner extremeness imposes that a corner alternative receives non-null

choice probability if and only if this alternative is the maximizer for at least one of

the utilities at stake. Cumulative logit additivity uses the well-known cumulative logit

notion, i.e., the log-ratio of masses below and above a given alternative, and states

that equal sums of types must lead to equal sums of cumulative logits. Theorem 2

establishes the first characterization result in the literature of parametric ordered-logit

models, giving foundations to a popular tool in the empirical literature.

All our results are built to help with portability. Theorems 1 and 2 can be par-

ticularized to a variety of economic settings, thus providing foundations for specific

ORUMs and parametric ordered-logit models within these settings. We illustrate this

idea by developing three different applications involving political economy, consump-

tion/altruism, and risk choices. For each of them, Theorem 1 is particularized by

using the standard classes of utilities in each of these three settings, such as single-

peaked, strictly monotone and convex, and expected utilities, respectively. Meanwhile,

Theorem 2 is particularized by assuming that the parametric ordered-logit model op-

erates over the peak of Euclidean utilities, the coefficient of Cobb-Douglas utilities and

the coefficient of CRRA expected utilities, respectively, showing the specific empirical

content of corner extremeness and cumulative logit additivity in these cases.

We close this introduction with a brief comment on the links of this paper with other

strands of literature. First, the paper contributes to the study of choice-based founda-

tions of various stochastic choice models. The classic works are those of Luce (1959)

6The majority of works cited in footnote 1 adopt the ordered-logit format, which gives a good

sense of the popularity of the model.
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and Block and Marshak (1960).7 Second, it is also worth mentioning the connection

to recent papers seeking to bridge the gap between the choice-based foundations and

the econometric implementation of stochastic models, such as Kitamura and Stoye,

(2018), Dardanoni, Manzini, Mariotti, and Tyson (2020), Aguiar and Kashaev (2021),

Barseghyan, Molinari, and Thirkettle (2021), Apesteguia and Ballester (2021), and

Kovach and Tserenjigmid (2022).

2. Non-parametric ordered RUMs

We focus on a setting involving linear decision problems for three key reasons. First,

while ubiquitous in applications, the theoretical foundations of this general continuous

model remain underexplored. Second, the continuous structure facilitates the theoret-

ical treatment. Third, as demonstrated in Section 5, our results apply directly to a

variety of classic economic applications modeled through linear budget sets. Moreover,

our analysis readily extends to other settings involving non-linear or discrete menus.

Let X ⊆ RK be a convex space of alternatives. There is a collection of decision

problems (or menus) {Aj}Jj=1, that are ordered line segments of X. Each menu is

composed by two corner alternatives and their convex combinations, i.e., Aj = {(1 −
a)xj + axj : xj, xj ∈ X and a ∈ [0, 1]}, from which one alternative must be chosen.

Thus, any alternative xj ∈ Aj is determined by its relative position in the line segment,

i.e. by the unique value a(xj) ∈ [0, 1] such that xj = (1− a(xj))xj + a(xj)xj.

Choice data F corresponds to the observed distribution of choices in each menu.

That is, F = {Fj}Jj=1 is a collection of cumulative distribution functions (CDFs), with

the value Fj(xj) ∈ [0, 1] representing the probability of observing the choice of any

alternative yj ∈ Aj such that a(yj) ≤ a(xj). As it is usual in most applications, we

assume that each of the CDFs is continuous and strictly increasing in Aj \ {xj, xj}.

We now discuss the rationalization of data. Let U be a generic collection of utility

functions on X, all of them having a unique maximizer in each menu. Denote by xUj

7Other recent contributions are Gul and Pesendorfer (2006), Manzini and Mariotti (2014), Caplin

and Dean (2015), Fudenberg, Iijima and Strzalecki (2015), Matejka and McKay (2015), Brady and

Rehbeck (2016), Cerreia-Vioglio, Dillenberger, Ortoleva, and Riella (2019), Frick, Iijima, and Strza-

lecki (2019), Natenzon (2019), Cattaneo, Ma, Masatlioglu and Suleymanov (2020), Alós-Ferrer, Fehr

and Netzer (2021), or He and Natenzon (2023).



6

the unique alternative that is maximal according to U ∈ U in menu Aj. There are two

components in ORUMs:

(1) Ordered-choice: consider an ordered set of latent types (or simply types, for

short) represented by R, and assign utilities to types in a way that higher types

select higher alternatives. Formally, there is a type-utility map γ : R→ U such

that, for every pair of types t ≤ t′, a(x
γ(t)
j ) ≤ a(x

γ(t′)
j ) holds for every menu Aj.

To emphasize, the maximal alternative in Aj according to the utility associated

to type t, namely γ(t), is lower than the corresponding one of type t′ in the

same menu. We also assume that, in every menu, every non-corner alternative

is maximal for some utility γ(t).

(2) Stochasticity: each type is assigned a probability describing its prevalence.

Formally, there is a type distribution g over the reals, that we assume has full

density.

We then say that F is rationalizable by an ORUM (from now on, ORUM-rationalizable),

with type-utility map γ and type distribution g, whenever for every menu Aj and alter-

native xj ∈ Aj, Fj(xj) =
∫
t:a(x

γ(t)
j )≤a(xj)

g(t)dt. That is, for every menu and alternative,

the observed cumulative choice mass and the mass of types that maximize below such

alternative coincide.

Deterministic rationalizability can be seen as the limit case of ORUM-rationalizability.

Consider the case in which a type-utility map is fixed and take a sequence of type dis-

tributions converging to a degenerate one. In the limit, all the mass concentrates on a

single utility and the standard notion of rationalizability is recovered. Formally, we say

that a deterministic choice function c : {1, . . . , J} → X, with c(Aj) ∈ Aj, is rationaliz-

able whenever there exists a utility function U ∈ U (or, equivalently, a unique relevant

type with mass one) such that, for every menu Aj, c(Aj) = xUj , i.e., the observed choice

and the alternative providing maximal utility coincide.

We now provide a characterization of ORUM-rationalizability that builds upon the

deterministic notion of rationalizability. Consider any value p ∈ (0, 1). For each menu

Aj, denote by cpj the first alternative in the menu attaining cumulative choice mass p,

i.e.,

cpj = {xj ∈ Aj : Fj(xj) ≥ p and a(yj) < a(xj)⇒ Fj(yj) < p}.
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Given our basic assumptions on Fj, alternative cpj is well-defined. Notice that cpj simply

describes the p-quantile obtained from the choice data in menu Aj. Denote by cp =

{cpj}Jj=1 the (quantile) choice function that is defined in such a way.

Theorem 1. F is ORUM-rationalizable if and only if cp is rationalizable for every p.

ORUM-rationalizability is equivalent to every quantile choice function being ratio-

nalizable in the standard, deterministic, sense. The intuition for the sufficiency part

is as follows. For every p ∈ (0, 1), the rationalizability of cp allows to identify a utility

function Up that rationalizes cp. Choices must be increasing across different levels of p

due to the quantile definition of cp. Then, data can be explained by uniformly random-

izing over these quantiles. Hence, in order to construct the type-utility map γ and the

type distribution g, we need to project the interval (0, 1) into the real line by means of

a bijection, and consider the corresponding induced distribution over the reals. We do

so by means of the standard logistic transformation.

It is important to stress that the notion of ORUM-rationalizability is unrestricted in

terms of which type-utility maps and type distributions can be used. Continuing with

the discussion in the previous paragraph, one could be using other projections from

(0, 1) into the real line together with the appropriate distributions to rationalize the

same choice dataset.

3. Implications of parametric restrictions in ordered RUMs

In the previous section, both the type-utility map and the type distribution were

unrestricted, a feature that we refer as non-parametric. Empirical work usually comes

with a variety of parametric restrictions, either by adopting specific type-utility maps,

or specific type distributions, or both. This may, e.g., facilitate the computational

estimation exercise or the interpretation of the results. In this section, we discuss the

potential implications of these parametric restrictions.

We first consider the case in which the type distribution is assumed to belong to a

specific family, as in the ordered-logit or ordered-probit models. In our next result, we

build upon the discussion of Theorem 1 and formally show that this is without loss of

generality. Indeed, a stronger result can be proved; if data is ORUM-rationalizable,

it is always possible to find an alternative rationalization in which any given type

distribution g∗ is used.
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Proposition 1. Let g∗ be any given type distribution. If F is ORUM-rationalizable,

then F is ORUM-rationalizable with type distribution g∗.

That is, parametric restrictions on the type distribution have no empirical content

per se. The reason for this is that an appropriate relabelling of the utilities allows to

freely modify the structure of the type distribution. The following example illustrates

this idea.

Example 1. LetX = R, J = 1 withA1 = [− log 2,+ log 2], F such that F1(− log 2) =
1
3
, F1(0) = 0.5 and limx→+ log 2 = 4

5
, and consider U to be the class of Euclidean utilities.8

Since there is just one menu of alternatives, data is trivially ORUM-rationalizable.

Now, we argue that forcing g∗ to adopt a specific structure, such as being logistic,

is not a relevant restriction. For instance, we can rationalize F by defining γ(t) =

−(x − f(t))2 with f(t) = t
2

whenever t ≥ 0 and f(t) = t whenever t < 0, allowing us

to use the logistic distribution with location and scale parameters equal to 0 and 1,

respectively. �

Second, we consider the case in which a specific type-utility map is fixed ex-ante.

This is common practice in empirical work, and is usually referred to as a semi non-

parametric restriction. As an example, consider the study of decisions under risk, and

let U be the class of all expected utilities. Suppose that the analyst is interested in re-

stricting further the set of admissible preferences using, e.g., the map γ∗ in which type

t corresponds to the CRRA expected utility with risk aversion coefficient equal to t. It

is clear this restricts the model’s flexibility, as CRRA utilities may not capture choice

patterns explained by other expected utilities. However, we show below that condi-

tional on this constrained set of allowed utilities, Proposition 1’s logic still applies. To

formalize this, we adapt the notion of rationalizability; when ORUM-rationalizability is

obtained using utilities from a sub-class U∗ ⊂ U , we speak of ORUM-rationalizability∗.

Proposition 2. Let γ∗ be any given type-utility map with image U∗. If F is ORUM-

rationalizable∗, then F is ORUM-rationalizable with type-utility map γ∗.

Proposition 2 establishes the exact bite of adopting a specific type-utility map in a

semi non-parametric exercise. Essentially, this restricts the analysis to a sub-class of

utilities, but has no further effect. Modulo the restricted set of admissible utilities, the

8For simplicity, we assume there is just one menu, and we describe F in a few points.
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specific assignment of types to utilities is without loss of generality because, again, we

can adapt to a specific labelling of these utilities by finding the exact type distribution

that suits this labelling. We can continue with Example 1 above in order to illustrate

this case.

Example 1 (continued). Suppose now that we impose a particular type-utility

map. For example, consider the type-utility map assigning to type t the Euclidean

utility centered at t, that is γ∗(t) = −(x − t)2. In order to rationalize F , we simply

need a type distribution with mass 1
3

(resp. 1
5
) distributed across types with peak below

− log 2 (resp. above log 2), and a mass of 1
6

(resp. 3
10

) distributed across types with

peak between − log 2 and 0 (resp. between 0 and + log 2). The combination of γ∗ and

the constructed type distribution rationalizes the data. �

Finally, empirical work often comes with restrictions on both components of the

model, i.e., the analyst often fixes a specific type-utility map γ∗ and some structural

properties of the type distribution g∗. In this case, relabelling utilities and transforming

the distribution may fail to rationalize the data and hence the restriction may come at

a cost. We show this by means of our example.

Example 1 (continued). Imposing both restrictions above, namely the particular

type-utility map γ∗(t) = −(x − t)2 and the particular logistic distribution, ORUM-

rationalization of the data is no longer possible. From F1(0) = 0.5, it must be that

the location of the logistic is the peak of type 0, which is 0. Since types − log 2 and

log 2 have peaks that are symmetric with respect to 0, the logistic assumption would

require that F1(− log 2) = 1− F1(+ log 2), a contradiction. �

When parametric restrictions are jointly imposed on the type-utility map and the

type distribution, the model may be significantly restricted. It is then evident that the

foundations of parametric models often used in empirical work, such as ordered-logit

models over a specific latent parameter, may not be well understood throughout the

general result contained in Theorem 1. In the next section, we take a first step in order

to fill this gap and show that it is also possible to provide tailored characterization

results for such parametric models.
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4. Parametric ordered logit

We exemplify our approach to the study of the foundations of fully parametric models

using the logistic distribution. The ordered-logit model is a popular model not only

in economics, but in other disciplines such as political science, sociology or biology.9

Yet, despite this widespread interest in the model, the literature has not yet provided

choice-based foundations.

To simplify the analysis, we consider the following richness assumption: for every two

menus Aj and Aj′ , there exists a sequence of menus, Aj = Aj0 , . . . , Ajk . . . , AjK = Aj′

such that, for every k ∈ {0, . . . , K − 1}, there exists an interval of types that produce

non-corner maximizers in both Ajk and Ajk+1 . To motivate this richness condition,

notice that in our setting there always exists a non-empty interval of types for which

the maximizer is non-corner. Hence, if corner alternatives were never optimal, the

richness assumption would be trivially met.10 Similarly, the richness assumption is

also trivially met when only one of the corner alternatives can be the result of utility

optimization.11 In some occasions, though, optimization may lead to choice in both

corners and, since the interval of utilities generating non-corner maximizers may vary

across decision problems, the condition may not be trivially met. As an example, this

may possibly be the result of two consumption sets having disparate prices. However,

notice that, under these circumstances, the presence of another (or a chain of other)

consumption sets where prices are intermediate would produce the desired linkage

expressed in our richness assumption.

For the study of the parametric ordered-logit model, fix a generic type-utility map

γ∗ : R → U and restrict the type distribution to the logistic family GL. Recall that

a logistic type distribution (that we denote by gL) has a CDF of the form GL(t) =
1

1+e−(t−τ)/σ , where τ ∈ R and σ > 0 are the location and scale parameters.

Given the discussion in the previous section, the foundations of the parametric

ordered-logit model do not follow from the rationalizability of all the quantiles, and

9See the discussion around footnote 1 in the Introduction for references to a wide diversity of

economic settings using the ordered-logit model.
10For example, in a standard consumption setting with two goods, this is the case for Cobb-Douglas

utilities with strictly positive weights.
11For example, in the maximization of strictly convex quasi-linear utility functions in a consumption

setting with two goods.
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we need to provide tailored properties. These properties aim to capture the specific

patterns of data that the logistic distribution creates whenever a given type-utility map

γ∗ is fixed. First, as with any RUM, notice that a necessary condition for any alterna-

tive to have strictly positive mass is the existence of at least one type for which this

alternative is optimal. Importantly, notice also that for the case of corner alternatives

and the logistic model, the existence of one such type always implies the existence of

an unbounded interval of types with the same property, and must result into a strictly

positive mass for this corner alternative.12

Corner extremeness (CE). Fj(xj) > 0 (respectively, limx→xj Fj(x) < 1) if and only

if there exists t ∈ R such that x
γ∗(t)
j = xj (respectively, x

γ∗(t)
j = xj).

To formulate our second property, we use the notion of cumulative logit. Given a

non-corner alternative xj, its cumulative logit is the value `(xj) = log
Fj(xj)

1−Fj(xj) , i.e.,

the logarithm of the ratio between the cumulative mass below and above alternative

xj. When the data is generated by a logistic type distribution, it turns to be the case

that the cumulative logit `(xj) corresponds to the standardized type that has xj as

maximizer.13 Consider then two menus and a pair of non-corner alternatives in each

menu. If the sum of the pair of types associated to the first pair of alternatives coincides

with the sum of the pair of types associated to the second pair of alternatives, the sum

of cumulative logits of both pairs of alternatives should coincide.

Cumulative Logit Additivity (CLA). Suppose that the types t1, t2, t
′
1, t
′
2 are such

that: (i) x
γ∗(t1)
j , x

γ∗(t2)
j and x

γ∗(t′1)
j′ , x

γ∗(t′2)
j′ are non-corner alternatives, and (ii) t1 + t2 =

t′1 + t′2. Then, `(x
γ∗(t1)
j ) + `(x

γ∗(t2)
j ) = `(x

γ∗(t′1)
j′ ) + `(x

γ∗(t′2)
j′ ).

Conditions CE and CLA are not only necessary but also sufficient for data to be

ORUM-rationalizable with type-utility map γ∗ and a logistic type distribution gL.

Theorem 2. Let γ∗ be any type-utility map. F is ORUM-rationalizable with type-utility

map γ∗ and a type distribution in GL if and only if F satisfies CE and CLA.

The sufficiency part of the proof of Theorem 2 comprises a number of steps. First,

when considering the non-corner alternatives in a given menu, the data immediately

induces a specific CDF over the corresponding interval of types that is associated to

12This is in the spirit of Gul and Pesendorfer (2006) extremeness property, and hence our name.
13That is, `(xj) = t−τ

σ whenever xj = x
γ∗(t)
j .
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these non-corner alternatives. When relevant, we need to account for the censoring

produced by corner choices, that will be optimal for an unbounded interval of types.

Hence, the masses observed at the corners must be appropriately distributed among all

their rationalizing types, in such a way as to ensure that the constructed CDF over all

types satisfies the same additivity requirement that CLA imposes over the non-corner

alternatives. We address this requirement by using a recursive construction. Second,

the ordered-logit functional form requires us to build upon Galambos and Kotz’s (1978)

Theorem 2.1.5. This classical, statistical, result provides a necessary and sufficient

condition over triplets of real numbers for a single CDF over the reals, assumed to be

symmetric with respect to the origin, to be logistic. We naturally need to extend this

result to our revealed preference setting, where: (i) distributions may have any mean

and have not yet been proven to be symmetric and, (ii) we have not one, but a collection

of menu-dependent distributions, that may potentially differ. Our CLA property using

quadruplets proves sufficient to show that our menu-dependent distributions are all

logistic and, in fact, share the same location and scale parameters. Finally, note also

that the parameters (τ, σ) of the logistic type distribution that rationalizes the data

must be unique.

5. Applications

An advantage of our results, both non-parametric and parametric, is that they are

portable to the analysis of specific economic settings of interest. We illustrate now

with three examples involving political choices, consumption or altruistic decisions,

and choices over lotteries. In each of them, we first particularize Theorem 1 provid-

ing non-parametric characterizations, and then we particularize Theorem 2 to provide

parametric characterizations of commonly used ordered-logit models in these settings.

5.1. Political Economy. Let X = R represent the space of possible policies. Follow-

ing Moulin (1984), a menu is described by a closed interval Aj = [xj, xj] capturing the

subset of feasible policies at a given situation. As it is common in political models,

let U be the collection of single-peaked utilities over the real line. That is, a utility U

belongs to U whenever there exists an alternative z ∈ R, the peak of the utility, such

that for every pair satisfying x′ < x ≤ z or z ≤ x < x′, we have U(x) > U(x′).
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We start by presenting a characterization of ORUM-rationalizability within this

setting.14 Denote by Icj the interval set of peak locations that are compatible with the

choice observation in menu j. That is, Icj = (−∞, xj] whenever c(Aj) = xj, I
c
j = c(Aj)

whenever c(Aj) 6= {xj, xj}, and Icj = [xj,+∞) whenever c(Aj) = xj. We say that

the choice function c satisfies the intersection property whenever Icj ∩ Icj′ 6= ∅ holds for

every pair of menus Aj and Aj′ .

Theorem 3. In the political economy domain, F is ORUM-rationalizable if and only

if cp satisfies the intersection property for every p.

We now discuss an intuitive ordered-logit parametric model involving Euclidean

utilities, that is a special class of single-peaked utilities. Consider the type-utility map

E(t) = −(x − t)2 in which type t is assigned the Euclidean preference with peak at

t. Notice that the following two features are true: (i) for any given menu, corner

solutions are always related to an interval of Euclidean utilities, and (ii) the type that

maximizes at the non-corner alternative xj is the one with Euclidean peak at xj. A

straightforward adaptation of Theorem 2 allows us to obtain the following immediate

characterization of this parametric model.

Theorem 4. In the political economy domain, F is ORUM-rationalizable with type-

utility map E and a type distribution in GL if and only if F satisfies: (i) Fj(xj) > 0

and limx→xj Fj(x) < 1 and (ii) if xj, yj, xj′ , yj′ are non-corner alternatives such that

xj + yj = xj′ + yj′, then `(xj) + `(yj) = `(xj′) + `(yj′).

5.2. Altruism. Let X = R2
+ represent the space of all possible monetary allocations

in which the payments of a dictator, x1, and a second person, x2, are described.15

As it is usual in experimental exercises, subjects are offered budget sets of the form

Bj = {x ∈ X : p1jx
1 + p2jx

2 ≤ 1}, where pij denotes the price of a money allocation to

agent i, with both prices being strictly positive. Notice that monotonicity of preferences

allows us to focus attention on the line segment Aj = {xj ∈ X : p1jx
1
j + p2jx

2
j = 1}, i.e.,

14Remark 1 in Moulin (1984) presents a deterministic characterization of single-peaked rationaliz-

ability based upon the classical property of independence of irrelevant alternatives and a continuity

requirement (see also Bossert and Peters (2009), who analyze further the problem). These results

require the choice function to be observed across all possible menus. Since these properties are not

sufficient when data is arbitrary, as in our setting, we need to introduce a novel deterministic property,

the intersection property.
15The same results can be presented for the classical consumption setting with two commodities.
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a menu is formed by all convex combinations of the corner allocations xj = ( 1
p1j
, 0) and

xj = (0, 1
p2j

), where the allocations within a menu are ordered by the amount of money

donated (which, allegedly, is a proxy for altruism). We first provide a characterization

of ORUM-rationalizability in the altruism domain where, for simplicity, we consider

utilities U that are strictly quasi-concave and strictly monotone in both components.16

We say that the choice function c satisfies WARP if c(Aj) ∈ Bj′ and c(Aj′) ∈ Bj implies

c(Aj) = c(Aj′).

Theorem 5. In the altruism domain, F is ORUM-rationalizable if and only if every

cp satisfies WARP.

We now discuss a simple parametric result involving the logistic distribution, and the

sub-class of U involving Cobb-Douglas utilities. Namely, we fix the type-utility map

CD(t) = x1 whenever t ≤ 0, CD(t) = (x1)t(x2)1−t whenever t ∈ (0, 1) and CD(t) = x2

whenever t ≥ 1. Notice that, for the case of such Cobb-Douglas utilities: (i) for any

given menu, corner solutions are always related to an interval of types, and (ii) the type

that maximizes at the non-corner alternative xj is that with parameter p1jx
1
j (since this

is the fraction of income allocated to the dictator). We can then provide the following

characterization result.

Theorem 6. In the altruism domain, F is ORUM-rationalizable with type-utility

map CD and a type distribution in GL if and only if F satisfies: (i) Fj(xj) > 0

and limx→xj Fj(x) < 1 and (ii) if xj, yj, xj′ , yj′ are non-corner alternatives such that

p1j(x
1
j + y1j ) = p1j′(x

1
j′ + y1j′), then `(xj) + `(yj) = `(xj′) + `(yj′).

5.3. Risk. Let X = R2
+ × [0, 1] represent the set of all possible (two) state-contingent

lotteries, with x1 and x2 representing the payouts in the two states and q1j ∈ [0, 1]

describing the probability of the first state (with q2j = 1− q1j describing the probability

of the second state). A menu is a linear budget set that can be described exactly

as in the altruism case. To simplify the exposition, we assume that state 1 always

pays more in expectation, i.e.,
p2j
p1j
>

q2j
q1j

.17 Also, in the present setting, it is typically

assumed that the states are symmetric in terms of their utility evaluation, and hence

we can restrict attention to the interval of alternatives between the corners xj = ( 1
p1j
, 0)

16This is done for the ease of exposition, since this assumption allows us to use classical, determin-

istic, results (Rose (1958) and Matzkin and Richter (1991)).
17Notice that if this were not the case, we could relabel the states in each menu to guarantee it.
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and xj = ( 1
p1j+p

2
j
, 1
p1j+p

2
j
). Notice that higher levels of x2 are associated with more risk

aversion.

Kubler, Selden and Wei (2014) characterize, within this type of data, deterministic

rationalizability for the class U of expected utilities with continuous, strictly increasing

and strictly concave monetary utility functions. In order to be able to use their de-

terministic result, we consider the same class of utilities. To formalize their property,

denote the (menu-dependent) ratio of prices-to-probabilities between states by ρij =
pij
qij

.

Given two menus Aj and Aj′ , we can define the operator L(j, j′) = 0 whenever xs
′

j′ > xsj

for all s, s′ ∈ {1, 2} and L(j, j′) = maxs,s′:xsj>xs
′
j′

ρsj
ρj′s

′ otherwise. We then say that the

choice function c satisfies SAREU whenever for every sequence of menus j1, . . . , jK , it

is
∏K−1

k=1 L(jk, jk+1) < 1.18 The following is a direct implication of Theorem 1.

Theorem 7. In the risk domain, F is ORUM-rationalizable if and only if every cp

satisfies SAREU.

We conclude with a parametric application in which we consider the logistic dis-

tribution and the restriction of U to CRRA expected utilities. Let EUCRRA be the

type-utility map assigning to type t the CRRA expected utility with risk aversion

coefficient equal to t, i.e., with monetary utility function x1−t

1−t .19 Denote by κ(xj) =

log
x1j
x2j
/(log

q1j
q2j
− log

p1j
p2j

) the expression that normalizes the log-consumption ratio by the

log-ratio of probabilities and the log-ratio of prices in the menu. Notice that: (i) for

any given menu, the lower corner solution is always related to an interval of CRRA

expected utilities, and (ii) the type that maximizes at the non-corner alternative xj is

that with CRRA coefficient equal to κ(xj) (an immediate implication of the first-order

condition).

Theorem 8. In the risk domain, F is ORUM-rationalizable with type-utility map

EUCRRA and a type distribution in GL if and only if F satisfies: (i) Fj(xj) > 0

and limx→xj Fj(x) = 1 and (ii) if xj, yj, xj′ , yj′ are non-corner alternatives such that

κ(xj) + κ(yj) = κ(xj′) + κ(yj′), then `(xj) + `(yj) = `(xj′) + `(yj′).

18SAREU stands for strong axiom of revealed expected utility. In line with Kubler, Selden and

Wei (2014), we simplify the exposition by assuming that, in cp, each of the state consumptions in each

of the observations is different.
19This holds for t ∈ R \ {1} while γ(1) is the expected utility with logarithmic monetary utility

function.
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6. Conclusions

This paper has explored the empirical implications of commonly imposed parametric

assumptions in ordered random utility models (ORUMs). We have begun by charac-

terizing the non-parametric content of ORUMs, showing data is rationalizable if and

only if each quantile choice function is rationalizable. We have then demonstrated how

parametric restrictions on the type-utility map and type distribution can further shape

the empirical content of the model. We have shown that when either parametric type

distributions or semi-parametric type-utility maps are made alone, the model retains

full flexibility. However, jointly restricting both components, as is typical in empirical

work, significantly limits the space of observable behaviors consistent with the model.

We have formalized this insight by characterizing the precise restrictions created by

parametric ordered-logit models. Finally, we have demonstrated how our results pro-

vide a rigorous theoretical foundation for commonly used specifications across political

economy, altruism, and risk choice settings.

Several avenues for future work are worth exploring. An obvious one would entail

expanding beyond the logistic to examine other often-used distributions in empirical

research, such as the Gaussian one, to provide fully parametric foundations for ordered-

probit type of models.

Appendix A. Proofs

Proof of Theorem 1: We start by proving the necessity part. Suppose that F is

ORUM-rationalizable with type-utility map γ and type distribution g. For every p ∈
(0, 1), denote by tp the first type such that G(tp) ≥ p, where G is the CDF associated

to g. We claim that, for every j, the utility function γ(tp) produces a maximizer that

coincides with cpj , proving the deterministic rationalizability of cp. We proceed by

contradiction. Suppose there is a menu j such that x
γ(tp)
j 6= cpj . If a(x

γ(tp)
j ) < a(cpj),

the ordered choice structure guarantees that for every type t ≤ tp, the maximizer

of utility function γ(t) lies below x
γ(tp)
j . By the fact that the pair (γ, g) rationalizes

the data, it must be that Fj(x
γ(tp)
j ) ≥ G(tp) ≥ p, contradicting the definition of cpj . If

a(x
γ(tp)
j ) > a(cpj), it must be that cpj ∈ Aj\{xj}. If cpj = xj, the fact that Fj(c

p
j) ≥ p > 0,

together with (γ, g) rationalizing the data, guarantees that there must exist a type t

for which cpj is maximal. Similarly, whenever cpj 6= xj, the continuous and strictly

increasing nature of Fj away from the corners, together with the rationalization of the
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data, guarantees that there must exist a type t for which cpj is maximal. In both cases,

the ordered-choice structure guarantees that this type is such that t < tp. Given the

rationalization of the data, it must be G(t) ≥ p, which contradicts the definition of tp

and proves the claim.

We now prove the sufficiency part. For every p ∈ (0, 1), cp is rationalizable and

hence, there exists Up ∈ U rationalizing cp. For every type t ∈ R, define γ(t) as the

utility U
1

1+e−t . We first claim that, for every menu, the maximizers induced by γ are

non-decreasing in t. To see this, take any menu Aj. Given rationalizability, we merely

need to prove that choices c
1

1+e−t
j are non-decreasing in t. This follows immediately

from the definition of such alternatives and the fact that Fj is non-decreasing. Now,

consider g to be the logistic distribution with location 0 and variance 1. We claim

that, for every menu j and every xj ∈ Aj such that 0 < Fj(xj) < 1, Fj(xj) coincides

with the mass of utilities with a maximizer below xj. Given the non-decreasing nature

of the maximizing alternatives, we need to prove that the utility function UFj(xj) is

the last utility with maximizer below xj. First, consider p > Fj(xj). Since xj has not

reached cumulative probability p, it must be that a(cpj) > a(xj), and since utility Up

rationalizes cpj , the maximizer of Up lies strictly above xj. Second, consider the utility

function UFj(xj). By construction, c
Fj(xj)
j lies below xj and since UFj(xj) rationalizes

c
Fj(xj)
j , the maximizer of UFj(xj) lies below x. Finally, if F (xj) = 0 it is straightforward

that no utility can produce a maximizer below xj, and the mass of these utilities is zero.

Trivially, since all utilities have a maximizer below xj, F (xj) = 1 is also rationalized.

This concludes the sufficiency part and the proof. �

Proof of Proposition 1: For every p ∈ (0, 1), define Up as in the proof of Theorem

1. Then, for every type t ∈ R, define γ∗(t) as the utility UG∗(t), where G∗ is the CDF

of g∗. That is, type t is assigned the utility that corresponds exactly to the quantile,

according to g∗, of this type. The ordered-choice structure of type-utility map γ∗ is

immediate and ORUM-rationalizability follows from reproducing the proof of Theorem

1 with the pair (γ∗, g∗). �

Proof of Proposition 2: Suppose that F is ORUM-rationalizable∗. Then, we can

use the same logic of Theorem 1 to show that cp, p ∈ (0, 1), must be rationalizable

by some utility Up in U∗. Given U∗, utility Up must correspond to some type, that
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we denote tp, i.e., γ∗(tp) = Up. We need to consider the distribution g∗ such that the

cumulative probability at type tp is equal to p for every p ∈ (0, 1), and it can be seen

that the pair (γ∗, g∗) is an ORUM-rationalization of the data. �

Proof of Theorem 2: Since the necessity of the axioms is straightforward, we will

now prove sufficiency. Consider any menu j. We construct a sequence of open inter-

vals of types, {I0j , I1j , . . . , Inj , . . . }, and a sequence of real functions defined over them,

{G0
j , G

1
j , . . . , G

n
j , . . . }, satisfying the following four properties:

(1) For every n, Inj ⊆ In+1
j .

(2) For every n, Gn+1
j extends Gn

j .

(3) For every n, Gn
j takes values in (0, 1), is continuous, and strictly increasing.

Moreover, if Inj is bounded from above (respectively, from below), the function

Gn
j must be strictly bounded from above by some value k < 1 (respectively,

strictly bounded from below by some value k > 0).

(4) For every n and every four types t1, t2, t
′
1, t
′
2 in Inj , if t1 + t2 = t′1 + t′2 then

log
Gnj (t1)

1−Gnj (t1)
+ log

Gnj (t2)

1−Gnj (t2)
= log

Gnj (t
′
1)

1−Gnj (t′1)
+ log

Gnj (t
′
2)

1−Gnj (t′2)
.

The first interval of types, I0j , corresponds to the set of types that have a maximizer in

Aj \ {xj, xj}.20 The first function, G0
j , corresponds to the function that choice data Fj

induces over these types, i.e., for every t ∈ I0j , G0
j(t) = Fj(x

γ∗(t)
j ). The function G0

j is

well-defined given the assumptions made on Fj. It is obviously strictly increasing and

takes values in (0, 1). Moreover, if the interval I0j is bounded from above (respectively,

from below), there is an interval of types selecting xj (respectively, xj) and hence,

limx→xj Fj(x) < 1 (respectively, limx→xj Fj(x) > 0), and the boundedness conditions

hold for G0
j . That is, property (3) is satisfied. We now show that G0

j must satisfy

property (4). To see this, notice that we can apply CLA with menu j′ = j, using the

collection of non-corner alternatives x
γ∗(t1)
j , x

γ∗(t2)
j , x

γ∗(t′1)
j , x

γ∗(t′2)
j , which brings property

(4) over G0
j .

The remaining intervals and functions are now defined recursively. Given collections

{I0j , I1j , . . . , Inj } and {G0
j , G

1
j , . . . , G

n
j } which satisfy all the properties, we define interval

In+1
j and function Gn+1

j in such a way as to guarantee that collections {I0j , I1j , . . . , In+1
j }

and {G0
j , G

1
j , . . . , G

n+1
j } also satisfy the properties. The definition of the new interval

20Notice that this set of types depends on the assumed type-utility map γ∗. Since γ∗ is fixed and

to simplify the exposition, we will avoid some references to γ∗ in the arguments that follow.
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of types, In+1
j , depends on the parity of n. If n is an even (respectively, an odd) integer,

we define interval In+1
j as follows: (i) if Inj is not bounded from above (respectively,

from below), define In+1
j = Inj and (ii) if Inj is bounded from above (respectively, from

below), define In+1
j as the union of the previous interval Inj , the least upper bound

(respectively, the greatest lower bound) znj of interval Inj , and the types t for which

there exists t′ ∈ Inj with t = 2znj − t′.21

We now consider the definition of function Gn+1
j . For every t ∈ Inj , define Gn+1

j (t) =

Gn
j (t). For the limit type znj , define Gn+1

j (znj ) = lims→znj G
n
j (s), where the right-hand

or left-hand bound must be considered, depending on the parity. Finally, for any other

type t belonging to In+1
j , we know that there exists a unique value t′ ∈ Inj such that

t = 2znj − t′, so we can define Gn+1
j (t) as the unique real value satisfying the equation:

log
Gn+1
j (t)

1−Gn+1
j (t)

= 2 log
Gn+1
j (znj )

1−Gn+1
j (znj )

− log
Gn
j (t′)

1−Gn
j (t′)

.

It is then evident that the function Gn+1
j is well defined on In+1

j and it is straight-

forward to see that Inj ⊆ In+1
j and, hence, property (1) holds. Similarly, note that the

construction guarantees that the function Gn+1
j extends Gn

j , and therefore property (2)

is satisfied.

We now discuss property (3). Notice that, by the continuity of Gn
j and the fact that

all values belong to (0, 1), it is guaranteed that the limit value at znj is well defined

when needed. The continuity of the function Gn+1
j is then a direct consequence of this

limit definition at znj . To appreciate the strictly increasing nature of the new function,

consider two types t1 < t2. If both types belong to Inj , we know that Gn+1
j (t1) <

Gn+1
j (t2) must hold because Gn+1

j extends the strictly increasing function Gn
j . If t1 ∈ Inj

but t2 does not, it must be the case that n is even and there exists t′2 ∈ Inj such that

t2 = 2znj − t′2. Since log
Gnj (z

n
j )

1−Gnj (znj )
> log

Gnj (t
′
2)

1−Gnj (t′2)
, it is log

Gn+1
j (t1)

1−Gn+1
j (t1)

= log
Gnj (t1)

1−Gnj (t1)
<

log
Gnj (z

n
j )

1−Gnj (znj )
< 2 log

Gnj (z
n
j )

1−Gnj (znj )
− log

Gnj (t
′
2)

1−Gnj (t′”)
= log

Gn+1
j (t2)

1−Gn+1
j (t2)

, as desired. If t1 is not in Inj

21Intuitively we are extending the original right-bounded (respectively, left-bounded) interval Inj

beyond its boundary and adding the boundary point. This step is not needed when there are no

corner choices because then the initial interval I0j equals the set of all types, R. When choices are

observed in only one of the corner alternatives, or, equivalently, I0j is bounded on one side, the logic

requires a unique duplication, which already forms the entire real line. If choices are observed in both

corner alternatives, or, equivalently, the initial interval is bounded on both sides, we need to duplicate

the initial bounded interval an infinite number of times, as the proof indicates.
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but t2 is, an analogous argument applies in which n is odd and znj is the lower bound of

Inj . If neither is in Inj , they must both be above or below znj , depending on the parity.

There must exist t′1, t
′
2 ∈ Inj such that t1 = 2znj − t′1 and t2 = 2znj − t′2. It clearly must

be that t′1 > t′2 and we know that Gn
j (t′1) > Gn

j (t′2). The definition of Gn+1
j (t1) and

Gn+1
j (t2) guarantees that the former is strictly smaller than the latter. Hence, we have

shown that Gn+1 is strictly increasing and, to complete property (3), we need to show

that this function takes values in (0, 1) and is bounded as required. We show the case

of n being even, the other case being analogous. If Inj is not bounded from above, the

new function replicates the original one and the property holds. If Inj is bounded from

above, we know that the value Gn+1(znj ) must be strictly lower than 1 by virtue of the

boundedness condition. For every t ∈ In+1
j with t > znj , the construction guarantees

that Gn+1
j takes values in (0, 1). To show boundedness, notice that nothing changes

at the lower end of the interval and, since Gn+1
j extends Gn

j , the property is satisfied.

For the upper end of the interval, suppose that In+1
j is bounded from above, in which

case it must be that Inj is bounded from below (say, with largest lower bound k). It

then follows that log
Gn+1
j (t)

1−Gn+1
j (t)

< 2 log
Gn+1
j (znj )

1−Gn+1
j (znj )

− log
Gnj (k)

1−Gnj (k)
, and hence Gn+1

j (t) must

be strictly lower than 1. This completes the proof that Gn+1
j satisfies property (3).

To see that property (4) holds, consider any four types t1, t2, t
′
1, t
′
2 in In+1

j such that

t1 + t2 = t′1 + t′2 and assume, without loss of generality, that t1 < t′1 ≤ t′2 < t2.
22 Again,

we show the case of n even, the other case being analogous. We start by noticing

that property (4) holds over the closure of Inj , denoted by I
n

j , thanks to the recursive

assumption on Gn
j , the fact that Gn+1

j extends Gn
j , and the limit construction at znj .

Hence, we only need to consider cases where not all four types belong to I
n

j :

• Case 1: None of the four types belongs to I
n

j . There must exist s1, s2, s
′
1, s
′
2 ∈ Inj

such that t1 = 2znj − s1, t′1 = 2znj − s′1, t2 = 2znj − s2 and t′2 = 2znj − s′2. Clearly,

it must be that s1 + s2 = s′1 + s′2 and hence, we know that log
Gnj (s1)

1−Gnj (s1)
+

log
Gnj (s2)

1−Gnj (s2)
= log

Gnj (s
′
1)

1−Gnj (s′1)
+ log

Gnj (s
′
2)

1−Gnj (s′2)
, which is equivalent to log

Gnj (s1)

1−Gnj (s1)
+

log
Gnj (s2)

1−Gnj (s2)
+4Gn+1

j (znj ) = log
Gnj (s

′
1)

1−Gnj (s′1)
+log

Gnj (s
′
2)

1−Gnj (s′2)
+4Gn+1

j (znj ), which implies

log
Gnj (t1)

1−Gnj (t1)
+ log

Gnj (t2)

1−Gnj (t2)
= log

Gnj (t
′
1)

1−Gnj (t′1)
+ log

Gnj (t
′
2)

1−Gnj (t′2)
, as desired.

• Case 2: t1 ∈ I
n

j . There must exist s2, s
′
1, s
′
2 ∈ Inj such that t′1 = 2znj − s′1,

t2 = 2znj − s2 and t′2 = 2znj − s′2. It must be that t1 + s′1 + s′2 = s2 + 2znj .

22Notice that if the types were equal across the two pairs, the property would be trivially satisfied.
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Define t̂ = s2 + znj − t1, which belongs to Inj . Given that t1 + t̂ = s2 + znj ,

property (4) holds over these four types. Now, notice that it must also be that

s′1 + s′2 = t̂ + znj and hence property (4) holds over these four types. We can

combine the two expressions to verify that property (4) holds over t1, t2, t
′
1 and

t′2, as desired.

• Case 3: t1, t
′
1 ∈ I

n

j . There must exist s2, s
′
2 ∈ Inj such that t2 = 2znj − s2,

and t′2 = 2znj − s′2. It must be that t1 + s′2 = t′1 + s2 and hence, we know that

log
Gnj (t1)

1−Gnj (t1)
+log

Gnj (s
′
2)

1−Gnj (s′2)
= log

Gnj (t
′
1)

1−Gnj (t′1)
+log

Gnj (s2)

1−Gnj (s2)
, which implies log

Gnj (t1)

1−Gnj (t1)
+

log
Gnj (s

′
2)

1−Gnj (s′2)
+2Gn+1

j (znj ) = log
Gnj (t

′
1)

1−Gnj (t′1)
+log

Gnj (s2)

1−Gnj (s2)
+2Gn+1

j (znj ), which implies

log
Gnj (t1)

1−Gnj (t1)
+ log

Gnj (t2)

1−Gnj (t2)
= log

Gnj (t
′
1)

1−Gnj (t′1)
+ log

Gnj (t
′
2)

1−Gnj (t′2)
, as desired.

• Case 4: t1, t
′
1, t
′
2 ∈ I

n

j . There must exist s2 ∈ Inj such that t2 = 2znj − s2. It

must be that t1 + 2znj = t′1 + t′2 + s2. Define t̂ = t1 + znj − t′1, which belongs

to Inj . Given that t′1 + t̂ = t1 + znj , property (4) holds over these four types.

Now, notice that it must also be that t̂ + znj = t′2 + s2 and hence property (4)

holds over these four types. We can combine the two expressions to verify that

property (4) holds over t1, t2, t
′
1 and t′2, as desired.

This completes the proof that the collections {I0j , I1j , . . . , In+1
j } and {G0

j , G
1
j , . . . , G

n+1
j }

satisfy all the properties. The limit interval of the sequence {I0j , I1j , . . . , Inj , . . . } is the

entire set of reals. The limit function of the sequence {G0
j , G

1
j , . . . , G

n
j , . . . }, which we

denote by Gj, must be a continuous, strictly increasing CDF over the reals. Moreover,

it extends G0
j and must also satisfy property (4) above.

Consider the median type of distribution Gj, i.e., the type τj such that Gj(τj) = .5.

Define the function Hj over the reals as follows:

Hj(w) = Gj(τj + w).

We claim that Hj is a continuous, strictly increasing CDF over the reals, and is sym-

metric with respect to the origin. We need to show symmetry. For this, consider

t1 = τj − w, t2 = τj + w and t′1 = t′2 = τj. Then, since t1 + t2 = t′1 + t′2, we

know that log
Gj(t1)

1−Gj(t1) + log
Gj(t2)

1−Gj(t2) = log
Gj(t

′
1)

1−Gj(t′1)
+ log

Gj(t
′
2)

1−Gj(t′2)
= 0 + 0 = 0. Hence, it

must be that log
Gj(t1)

1−Gj(t1) = log
1−Gj(t2)
Gj(t2)

and Gj(t1) = 1 − Gj(t2) follows. As a result,

Hj(−w) = Gj(t1) = 1−Gj(t2) = 1−Hj(w), and the symmetry of Hj has been proved.
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Consider now the following function defined over the positive reals:

Oj(w) =
1−Hj(w)

Hj(w)
.

Since Hj is a continuous, strictly increasing CDF over the reals with Hj(0) = .5,

1 − Oj(w) must be a continuous, strictly increasing CDF over the positive reals with

no strictly positive mass at zero. Moreover, given that Gj satisfies property (4) above,

the definition of Hj and Oj guarantees that Oj(w)Oj(z) = Oj(w + z) must hold for

every pair of positive real values w and z. One can then reproduce the standard

argument dating back to Cauchy (1821), which is described in Galambos and Kotz

(1978; Theorem 1.3.1), to guarantee that Oj must be an exponential distribution, with

no strictly positive mass at the origin.23 That is, there exists σj ∈ R++ such that

1−Oj(w) = 1− 1−Hj(w)

Hj(w)
= 1− e−w/σj ,

and hence, for every w ≥ 0, it is true that Hj(w) = 1

1+e−w/σj
. Moreover, given the

symmetry of Hj with respect to the origin, for every w < 0, it must also be true that

Hj(w) = 1 − Hj(−w) = 1 − 1

1+ew/σj
= 1

1+e−w/σj
. That is, Hj is a logistic distribution

with location parameter equal to zero and scale parameter σj, and Gj is ordered logistic

with location parameter τj and scale parameter σj. Since Gj extends G0
j , all choices in

menu j are explained by this distribution.

Consider now two menus j and j′. By our richness assumption, there exists a se-

quence of menus j0 = j, j1, . . . , jk, . . . , jK = j′ such that, for every k ∈ {0, . . . , K − 1},
I0
jk
∩ I0

jk+1 6= ∅. Consider t ∈ I0
jk
∩ I0

jk+1 and take t1 = t2 = t′1 = t′2 = t. Using the

ordered-logit structure of Gjk and Gjk+1 , it follows that they must both have a common

location parameter τ and a common scale parameter σ. The recursive application of

this argument shows that Gj and Gj′ must have the same common parameters τ and

σ, which concludes the proof. �

Proof of Theorem 3: We first claim that a choice function c defined over J menus

has the intersection property if and only if it can be deterministically rationalized by

a single-peaked utility function. For the necessity part, suppose that all choices are

generated by a single-peaked utility function, with peak in z ∈ R. Notice that for every

menu j, Icj must include the peak alternative z: either because z belongs to Aj and is

23The property is satisfied by exponential distributions with and without strictly positive mass at

zero. Since we know that O has no strictly positive mass at zero, it must be one of the latter.
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thus chosen, or because z does not belong to Aj and the chosen alternative is the closest

corner to z in Aj. Thus, the intersection property trivially holds. For the sufficiency

part, consider the following two cases. First, there exists one menu Aj such that

c(Aj) 6= {xj, xj}. Denote this chosen element by z and construct the Euclidean utility

with peak at z, −(x− z)2. Euclidean utilities are trivially single-peaked utilities. We

show that this utility rationalizes all choices. It trivially rationalizes menu j. For any

other j′, it can be that y ∈ Aj′ or y 6∈ Aj′ . In the former case, the intersection property

requires that c(Aj′) = y, and rationalization holds. In the latter case, the intersection

property requires that c(Aj′) is the corner alternative closest to y, and rationalization

holds. Second, suppose that corner alternatives are selected in all menus. By the

intersection property, it must be the case that whenever c(Aj) = xj and c(Aj′) = xj′ , it

is xj ≥ xj′ . Hence, the largest right-corner choice, denoted y1, must be lower than the

smallest left-corner choice, denoted y2. One can set the peak of the Euclidean utility

to be any alternative in [y1, y2] and this utility rationalizes all choices. The result then

follows from Theorem 1. �

Proof of Theorem 4: Consider the type-utility map E. First, notice that for every

menu Aj, the non-empty interval of types (−∞, xj] (respectively [xj,∞)) is mapped

into utilities that select alternative xj (respectively, alternative xj). For Corner ex-

tremeness to be satisfied, corners should have strictly positive mass. This is guaranteed

by assumption (i). Second, notice that for any type t and menu Aj, if t has non-corner

maximizer, it must be the case that x
E(t)
j coincides with the peak of E(t). Then, as-

sumption (ii) guarantees that CLA holds. The application of Theorem 2 concludes the

proof. �

Proof of Theorem 5: The necessity of WARP for deterministic rationalizability

with strictly convex and strictly monotone utilities is well-known in the consumption

literature. Similarly, sufficiency requires to use the classical argument developed by

Rose (1958) for the two-dimensional consumption setting and conclude that a choice

function satisfying WARP must also satisfy the Strong Axiom of Revealed Preference

and, as a result, this allows us to construct a utility function that rationalizes all

choices. In particular, this utility function can be selected to be strictly quasi-concave

and strictly monotone in both goods (see, e.g., Matzkin and Richter (1991)). The

application of Theorem 1 concludes the proof. �
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Proof of Theorem 6: Consider the type-utility map CD. First, notice that for every

menu Aj, the non-empty interval of types (−∞, 0] (respectively [1,∞)) is mapped into

utilities that select alternative xj (respectively, alternative xj). Again, assumption (i)

guarantees that CE holds. Second, notice that for any type t and menu Aj, if t has

non-corner maximizer, it must be the case that t ∈ (0, 1), and the maximizer x
CD(t)
j

must be such that the fraction of income spent in the first good is equal to t. Then,

assumption (ii) guarantees that CLA holds. The application of Theorem 2 concludes

the proof. �

Proof of Theorem 7: Theorem 1 in Kubler, Selden and Wei (2014) shows that a

deterministic choice function, over an arbitrary set of linear budget sets is rationalizable

by a utility in U if and only if it satisfies SAREU. We can then use our Theorem 1 and

the result follows. �

Proof of Theorem 8: Consider the type-utility map EUCRRA. First, notice that for

every menu Aj, the non-empty interval of types (−∞, 0] is mapped into utilities that

select alternative xj and that no type is mapped into a utility that selects alternative

xj. Hence, assumption (i) guarantees that CE holds. Second, non-corner maximizers

are associated to types t > 0. Moreover, it is immediate to see that the first-order

condition of a CRRA expected utility maximization over a linear budget set can be

expressed as t = −κ(xj) > 0. Thus, assumption (ii) guarantees that CLA holds. The

application of Theorem 2 concludes the proof. �
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[18] Cauchy, A.L. (1821), Cours d’Analyse de l’École Royale Polytechnique, I.re Partie. Analyse
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