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SINGLE-CROSSING RANDOM UTILITY MODELS

BY JOSE APESTEGUIA1, MIGUEL A. BALLESTER, AND JAY LU

We propose a novel model of stochastic choice: the single-crossing random utility
model (SCRUM). This is a random utility model in which the collection of preferences
satisfies the single-crossing property. We offer a characterization of SCRUMs based
on two easy-to-check properties: the classic Monotonicity property and a novel condi-
tion, Centrality. The identified collection of preferences and associated probabilities
is unique. We show that SCRUMs nest both single-peaked and single-dipped random
utility models and establish a stochastic monotone comparative result for the case of
SCRUMs.

KEYWORDS: Stochastic choice, single-crossing property, single-peaked preferences,
single-dipped preferences, random utility models, monotone comparative statics.

1. INTRODUCTION

IN A RANDOM UTILITY MODEL (RUM), there is a collection of preferences endowed with
a probability distribution. The probability of choosing an option from the set of avail-
able alternatives is described by the sum of the probability masses associated with the
preferences according to which it is the best option. This is a flexible model that can be
interpreted from the perspective of an individual or a group of individuals. In the first
case, the different preferences may stand for different criteria, selves, or moods of the in-
dividual, with their corresponding probabilities describing their prevalence. Accordingly,
individual choice here is understood as stochastic in nature.2 In the second case, the pref-
erences represent individuals who differ in their tastes and the probability masses describe
how prevalent these preferences are in the population. Here, the probability distribution
over choices describes the frequency with which the different options are selected in the
population.

Under both the individual and group interpretations, RUMs crucially allow for hetero-
geneity in preferences. A property that has been proven to have great practical relevance
when it comes to introducing structure into the modeling of preference heterogeneity
is the classic single-crossing condition (see Mirrlees (1971), Spence (1974), Milgrom and
Shannon (1994)). Let the set of alternatives X be ordered by �. The single-crossing condi-
tion essentially assumes that preferences can be ordered such that whenever x� y , lower
preferences in the collection rank y above x, and higher preferences rank x above y . This
condition has proved critical in a number of diverse, relevant settings.3

This paper proposes and explores a RUM in which preference heterogeneity is modeled
by the single-crossing condition, that is, the collection of preferences involved in the RUM

1Financial support from the 2015 BBVA Foundation Grant to Researchers, the Spanish Ministry of Science
and Innovation (ECO2014-5614-P and ECO2014-53051-P), the Catalan Agency for Research (2014-SGR-515
and 2014-SGR-694), and MOVE is gratefully acknowledged.

2Agranov and Ortoleva (2016) provided recent experimental evidence for the stochastic nature of individual
behavior.

3For example, it enables the consideration of optimal taxation and market signaling problems (Mirrlees
(1971), Spence (1974)); the derivation of sharp comparative statics results (Milgrom and Shannon (1994)); the
solution of the preference aggregation problem (Gans and Smart (1996)); the characterization of equilibria in
incomplete information games (Athey (2001)); the examination of the value of information (Persico (2000));
a means for addressing a number of political economy issues (Persson and Tabellini (2000)); and a deeper
understanding of the fundamental preference parameters such as risk, time, and altruism (see Jewitt (1987),
Benoît and Ok (2007), and Cox, Friedman and Sadiraj (2008), respectively).
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satisfies the single-crossing condition. Our model, therefore, endows heterogeneity with
an intuitive structure and is sufficiently flexible to be applied in a wide variety of settings.
We call this model the single-crossing random utility model (SCRUM).

In our first result, we characterize SCRUMs by two simple properties, Monotonicity
and Centrality, thus providing testable foundations for the model. Monotonicity is a clas-
sic property known to be satisfied by all RUMs; it simply states that the probability of
choosing an option from a set should not increase as more alternatives are added. Cen-
trality is a new property that exploits the structure that the single-crossing condition brings
to the model. Consider three ordered alternatives x � y � z. Centrality imposes that, if
the central alternative y is minimally attractive, that is, if it is chosen with strictly positive
probability in {x� y� z}, then the probability of choosing one of the extreme alternatives
does not depend on the presence of the other. The intuition is that all of the reasons
for choosing an extreme alternative in the triplet are inherited by the central alternative
when the former is absent. Note that the Centrality property uses only triplets and binary
sets, and hence is computationally easy to check. Theorem 1 shows that these properties
characterize SCRUMs. Furthermore, the proof of Theorem 1 is constructive; the collec-
tion of preferences and their associated weights are obtained from the revealed stochastic
choices. In addition and in contrast to the multiplicity of representations obtained in the
case of RUMs, we show in Proposition 1 that identification in SCRUM is unique.

Section 4 is devoted to the study of some important subclasses of SCRUMs. In par-
ticular, we investigate the case in which the RUM is composed of preferences that are
single-peaked (SPRUM). This is an economically relevant property with many applica-
tions, and known to be independent of single-crossing. Notably, in Corollary 1 we char-
acterize SPRUMs by using the property of Monotonicity together with a stronger version
of Centrality, which we call Strong Centrality. This immediately shows that, in terms of
random choice data, SPRUM is no more than a special case of SCRUM.4

The concept of standard deterministic monotone comparative statics has had signif-
icant impact in the literature. Milgrom and Shannon (1994) were the first to formally
introduce the single-crossing condition, with the purpose of examining the way in which
optimal choices vary under different preferences. They established that the optimal alter-
native of a higher-ordered preference in the collection of single-crossing preferences is
higher than the optimal alternative of a lower-ranked preference. In Section 5, we estab-
lish the stochastic analogue of the monotone comparative statics result using SCRUMs.
This result may then be instrumental in settings where the aim is to compare the stochas-
tic behavior of two individuals or populations. We identify a partial order on SCRUMs
such that the choices of a high SCRUM first-order stochastically dominate the choices
generated by a low SCRUM.

We close this section by situating our work within the relevant literature. RUMs have a
long tradition in economics. In early work, Block and Marschak (1960) provided a thor-
ough theoretical treatment but left their characterization as an open question. Subse-
quent contributions by Falmagne (1978), Barberà and Pattanaik (1986), and McFadden
and Richter (1990) solved the challenge posed by Block and Marschak by offering a full
characterization of the model. However, the nature of the characterizations is algorith-
mic, and hence the properties are difficult to interpret and operationalize. Notably, Gul
and Pesendorfer (2006) revisited the issue, characterizing the case in which alternatives
are lotteries and the collection of utilities consist of expected utility functions. By exploit-
ing the structure of expected utility, they were able to provide a more intuitive characteri-
zation using properties that are analogous to the standard properties in the deterministic

4In addition, we show that RUMs composed of single-dipped preferences are also special cases of SCRUMs.
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study of decision under risk. Relatedly, Lu and Saito (2016) provided easy-to-interpret
foundations for the case where alternatives are consumption streams and utilities are dis-
counted utility functions. We contribute to the study of RUMs by endowing them with a
flexible structure that makes them applicable to a number of diverse settings, and, as in
Gul and Pesendorfer and Lu and Saito, the special structure makes the model tractable
and testable.

There are a number of recent papers studying variations of the Luce (1959) model,
probably the most popular probabilistic choice model. Recently, Fudenberg and Strza-
lecki (2015) characterized a dynamic version of the Luce model, while Gul, Natenzon, and
Pesendorfer (2014) extended it to the consideration of stochastic-attribute-based choice.
Fudenberg, Iijima, and Strzalecki (2015) relaxed Luce’s IIA axiom, the key axiom char-
acterizing the Luce model, in order to consider nonlinear perturbations of utility. In Sec-
tion 6, we discuss how Luce-type models are substantially different from SCRUMs.

2. BASIC DEFINITIONS

Let (X��) be a finite, strictly linearly ordered set of alternatives. A stochastic choice
function is a mapping ρ : X × 2X \ ∅ → [0�1] such that, for every menu A ∈ 2X \ ∅, the
following properties hold: (i) ρ(x�A) > 0 implies that x ∈ A and (ii)

∑
x∈A ρ(x�A) = 1.5

We interpret ρ(x�A) as the probability of choosing alternative x from menu A.
In a random utility model (RUM), an individual randomly entertains preferences over

the alternatives, that we assume to be strict linear orders. That is, denoting by P the
collection of all strict linear orders on X , a RUM μ is a probability distribution on P .
At the moment of choice, preference P ∈ P is realized with probability μ(P), and, from
the menu of available alternatives A, the individual chooses the alternative that is best
under P . We denote this by bP(A), that is, bP(A)Px for every x ∈ A\ {bP(A)}. The RUM
stochastic choice function is therefore ρμ(x�A)= ∑

P∈P:x=bP (A) μ(P).
Given a RUM μ, we denote its support by Pμ, that is, Pμ = {P ∈ P : μ(P) > 0}. We

say that the RUM μ is single-crossing (SCRUM) if the support of μ can be ordered as
Pμ = {P1� � � � �PT } to satisfy the single-crossing condition. Namely, for every x � y and
every s > t, whenever xPty , then xPsy .6 That is, Ps is more aligned with � than Pt . Put dif-
ferently, the single-crossing condition states that the ranking of any pair of alternatives re-
verses at most once in the ordered collection of preferences, with low preferences opting
for the low alternative, and high preferences opting for the high alternative. A SCRUM
stochastic choice function is defined accordingly.

Settings fitting these assumptions abound and cover all the main preference parameters
of interest. The following are examples of SCRUM stochastic choice functions, illustrat-
ing this point in three archetypical settings: risk-taking behavior, inter-temporal decision
making, and the political economy of taxation.7

EXAMPLE 1: An investor has a monetary endowment m and has to decide the amount
x ∈ {0�1� � � � �m} to keep in his endowment and the amount m−x to invest in a risky asset

5The results of this paper hold when considering domains that include all menus with size 2 and 3.
6Note that, given the order � on X , there is at most one order of the support compatible with single-

crossing. In most applications, the order of alternatives is well-known by the analyst and thus, we have taken it
as given, thereby easing the exposition. Our model can be easily extended to consider an endogenous unknown
order over the alternatives, which can be recovered from the choice data. Details available upon request.

7More details showing the relationship of these models with SCRUM are available upon request.
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that yields k > 0 with probability p and 0 otherwise.8 Let the investor behave stochasti-
cally, entertaining a probability distribution over a collection of preferences represented
by CRRA or CARA utilities ordered by the risk-aversion coefficient. The choices of the
investor are a SCRUM stochastic choice function on the amount kept in the endowment.

EXAMPLE 2: Given the gross interest rate 1 + r, a consumer has to decide the amount
of her income x ∈ {0�1� � � � �m} saved for future consumption. That is, consumption is
m − x today and x(1 + r) in the future.9 Let the individual randomly entertain a set of
exponential discounting preferences with, for example, a log curvature over monetary
payoffs. The choices are a SCRUM stochastic choice function on the amount saved.

EXAMPLE 3: A voter has to choose from a finite set of possible income tax rates. Pers-
son and Tabellini (2000, Example 1) showed that, whenever preferences over consump-
tion and leisure are quasi-linear, we can represent preferences over taxation as a single-
crossing collection of preferences on the productivity of individuals. It follows then that
if society is heterogeneous with respect to productivity levels, the distribution of choices
within the society can be understood as a SCRUM stochastic choice function.

3. A CHARACTERIZATION OF SINGLE-CROSSING RANDOM UTILITY MODELS

In this section, we introduce two basic properties of stochastic choice functions that
characterize SCRUMs. The first property, Monotonicity, is a classic condition in the study
of stochastic choice already discussed by Block and Marschak (1960) in their analysis of
general RUMs. It states that the probability of selecting an option does not increase when
more alternatives are added to the menu.

Monotonicity (MON). If B ⊆A, then ρ(x�A) ≤ ρ(x�B).
The second property, Centrality, uses the structure brought to RUMs by the single-

crossing condition. It states that in a triplet, when the intermediate alternative is mini-
mally attractive to the decision-maker in the sense that it is chosen with strictly positive
probability, the two extreme alternatives become mutually irrelevant. That is, the choice
probability of one extreme alternative is independent of the presence of the other. In-
tuitively, given the ordered structure of the alternatives, the arguments for choosing an
extreme alternative from the triplet are inherited by the central alternative when the ex-
treme alternative is absent. Centrality imposes this only when the central alternative is
not completely unattractive to the decision-maker.

Centrality (CEN). If x � y � z and ρ(y� {x� y� z}) > 0, then ρ(x� {x� y})= ρ(x� {x� y� z})
and ρ(z� {y� z})= ρ(z� {x� y� z}).

Theorem 1 shows that these properties are necessary and sufficient for SCRUMs.
Therefore, given the simplicity of the properties, Theorem 1 shows that SCRUMs are
easily testable.

THEOREM 1: A stochastic choice function ρ satisfies MON and CEN if and only if ρ is a
SCRUM stochastic choice function.

The proof of Theorem 1 explicitly constructs a SCRUM that explains the revealed
choice data satisfying the two properties. The construction is intuitive and easy to imple-
ment in practice, as it is based exclusively on the revealed stochastic choices in the binary

8For an influential study along these lines, see, for example, Gneezy and Potters (1997).
9For a recent study of a similar model, see Andreoni and Sprenger (2012).
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sets. First, define P1 as follows: for every pair x � y , let yP1x whenever ρ(y� {x� y}) > 0,
and xP1y otherwise. Construct P2 from P1 by reversing the ranking of exactly the pair(s)
x � y with the lowest nonzero binary choice probability ρ(y� {x� y}). Once Pt is con-
structed, identify again the pair(s) x � y , not considered previously, with the lowest binary
choice probabilities ρ(y� {x� y}), and construct Pt+1 from Pt by reversing the order of such
pair(s). Proceed in this ordered way until all the binary comparisons are exhausted.10 No-
tice, then, that by construction we have a single-crossing collection of preferences. With
respect to the probability masses, define μ(P1) as the lowest nonzero binary choice proba-
bility. Given μ(P1)� � � � �μ(Pt) and the lowest choice probability in step t + 1, ρ(y� {x� y}),
define μ(Pt+1) = ρ(y� {x� y}) − ∑t

s=1 μ(Ps). Proceed in this way until the last preference
and assign to it the remaining mass μ(PT ) = 1 − ∑T−1

s=1 μ(Ps). It is therefore the case that
all the binary probabilities are intuitively explained by the constructed SCRUM, and the
proof shows how MON and CEN extend this result to larger menus of alternatives.

Notably, another important aspect of the characterization result is that the representa-
tion is unique. That is, the SCRUM described is the unique SCRUM that generates the
stochastic choice function. This is in sharp contrast to unrestricted RUM stochastic choice
functions, which are well-known to admit multiple RUM representations (see Fishburn
(1998)). This is stated formally in Proposition 1. Moreover, the proof of the proposition
shows that choices over pairs are sufficient for identifying SCRUM.

PROPOSITION 1: Let μ and μ′ be SCRUMs such that ρμ = ρμ′ . Then, μ= μ′.

4. SINGLE-PEAKED AND SINGLE-DIPPED RANDOM UTILITY MODELS

We discuss here how the class of SCRUM stochastic choice functions covers a broad
class of behaviors and encompasses other important heterogeneous preference structures.
We start with the analysis of the well-known single-peaked preferences. Formally, we say
that the RUM μ is single-peaked (SPRUM) if every preference P in Pμ satisfies the
condition that whenever y � x � bP(X) or bP(X) � x � y , then xPy . That is, every pref-
erence has a unique peak and alternatives that are closer to the peak are more preferred.
Notice that single-peakedness is related to the (strict) convexity of preferences or the
(strict) quasi-concavity of utility functions representing these preferences. That is, if all
the alternatives in X are ordered on a line, single-peakedness is fulfilled by the restriction
to X of any strictly convex preference defined on that line.

Single-peakedness and single-crossing are distinct properties. The former establishes a
condition for each of the preferences in a collection, while the latter establishes a condi-
tion that links all the preferences of the collection. As the literature has clearly shown,
these properties turn out to be independent and consequently, we can find RUMs that
are single-crossing but not single-peaked and vice versa. The following examples illus-
trate this.

EXAMPLE 4: Let X = {x� y� z} with x � y � z and μ1 be such that Pμ1 = {P1�P2}, with
xP1zP1y and xP2yP2z. μ1 is clearly single-crossing, since x is always better than y and z,
and y is better than z only for P2. However, μ1 is not single-peaked, since for P1, x is
maximal and y is below z.

10Notice that if all the binary probabilities considered in this exercise are strictly positive, then x � y if and
only if yP1x. Similarly, if all probabilities are different from 1, then x � y if and only if xPT y . The proof also
helps to explain how P1 is always a strict linear order and how only those alternatives that are consecutive at a
given step can be reversed.
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EXAMPLE 5: Let X = {w�x� y� z} with w � x � y � z and μ2 such that Pμ2 = {P1�P2},
with yP1xP1wP1z and xP2yP2zP2w. μ2 is clearly single-peaked. It is not single-crossing,
however, since P1 should precede P2 to accommodate the order of alternatives x and y ,
but alternatives w and z force P2 to precede P1.

Despite the fact that single-peakedness and single-crossing are independent properties,
we show that the class of SPRUM stochastic choice functions is but a subset of the class
of SCRUM stochastic choice functions. We show this by providing a characterization of
SPRUMs that uses a strengthening of CEN.

Strong Centrality (SCEN). If x � y � z, then ρ(x� {x� y}) = ρ(x� {x� y� z}) and ρ(z�
{y� z})= ρ(z� {x� y� z}).

COROLLARY 1: A stochastic choice function ρ satisfies MON and SCEN if and only if ρ
is a SPRUM stochastic choice function.

Corollary 1 implies that any SPRUM stochastic choice function is also a SCRUM
stochastic choice function and, consequently, SPRUM has no empirical content beyond
that of SCRUM. In other words, any SPRUM that fails to be single-crossing generates
a stochastic choice function that can be replicated by a SCRUM. Indeed, the proof of
Corollary 1 shows that, for this task, we can choose (uniquely) a RUM that is both single-
crossing and single-peaked. To illustrate, consider the RUM μ2 in Example 5, and recall
that it is single-peaked, but not single-crossing. We now construct an alternative RUM
that is both single-crossing and single-peaked, and that generates the same stochastic
choices as μ2. The exercise is trivial if μ2(P1) = μ2(P2) = 1

2 because, in this case, we can
just swap alternatives w and z in both preferences P1 and P2 to obtain yP ′xP ′zP ′w and
xP ′′yP ′′wP ′′z. It is immediate to see that we can reproduce the stochastic choices by sim-
ply assigning probability 1

2 to each preference in the single-crossing and single-peaked
collection of preferences {P ′�P ′′}. If one of the preferences in the support of μ2, say P1,
has a larger probability than the other, the stochastic choices can be generated by the
single-crossing and single-peaked collection of preferences {P ′�P1�P

′′} with probabilities
μ2(P2), μ2(P1)−μ2(P2), and μ2(P2), respectively.

We now show that the class inversely related to SPRUM, the single-dipped RUM, rep-
resents another interesting subclass of SCRUM stochastic choice functions. Formally,
denote by wP(X) the worst alternative in X according to preference P . Then, we say that
the RUM μ is single-dipped (SDRUM) if every preference P in Pμ satisfies: whenever
y � x � wP(X) or wP(X) � x � y , we have that yPx. It is immediate to see that we can
characterize the class of SDRUM stochastic choice functions using MON and the follow-
ing strengthening of CEN.11

Extremality (EXT). If x� y � z, then ρ(y� {x� y� z})= 0.

COROLLARY 2: A stochastic choice function ρ satisfies MON and EXT if and only if ρ is
a SDRUM stochastic choice function.

5. STOCHASTIC MONOTONE COMPARATIVE STATICS

The single-crossing condition has been instrumental in establishing the so-called mono-
tone comparative statics results. These are results that formalize the relationship between

11Extremality is an ordinal analogue of the Extremeness axiom from Gul and Pesendorfer (2006).
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preference parameters and optimal choices. Let us briefly describe the classic result.
Suppose that {P1� � � � �PT } is an ordered collection of preferences satisfying the single-
crossing condition and consider s > t. Then, for every menu A, either bPs(A) � bPt (A) or
bPs(A)= bPt (A).

In this section, we address the question of monotone comparative statics results from
the stochastic perspective of SCRUMs. To do this, we need to introduce an order on
SCRUMs and another one on stochastic choices. For the former, as in the proof of Propo-
sition 1, we denote by μ̃−1 the inverse of the c.d.f. function of a SCRUM μ. That is, μ̃−1(θ)
is the preference Pt for which the cumulated mass of the preferences Ps with s < t is
strictly smaller than θ, while the cumulated mass of preferences Ps with s ≤ t is weakly
larger than θ. We can then say that μ is higher than ν if, for every θ ∈ (0�1], whenever
x � y and xν̃−1(θ)y , then xμ̃−1(θ)y . In other words, the cumulative preference of μ is
always more aligned with � than that of ν. We rank the stochastic choices by the stan-
dard first-order stochastic dominance criterion. That is, if we enumerate the alternatives
in a menu A as a|A| � · · · � a2 � a1, we say that ρμ first-order stochastically dominates ρν

for the menu A if, for every i ∈ {1�2� � � � � |A|}, ∑|A|
j=i ρμ(aj�A) ≥ ∑|A|

j=i ρν(aj�A). In other
words, ρμ assigns larger probabilities of choice to higher alternatives than ρν does.

PROPOSITION 2: SCRUM μ is higher than SCRUM ν if and only if ρμ first-order stochas-
tically dominates ρν for every menu A.

Notice, first, that Proposition 2 encompasses the classic result whenever both μ and
ν are degenerate, that is, whenever they assign mass 1 to a unique preference. Suppose
now that both SCRUMs have the same support, that is, Pμ = Pν. In this case, the idea
of a higher SCRUM is equivalent to stochastic dominance on the cdfs over the common
single-crossing support. That is, our result states that the c.d.f. of μ first-order stochasti-
cally dominates the c.d.f. of ν if and only if, for every menu A, the choices of the former
first-order stochastically dominate the choices of the latter. This has important practical
implications, as the following example illustrates.

EXAMPLE 6: Let X = {x� y� z} with x � y � z. Consider two SCRUMs μ and ν with the
same ordered support, Pμ = Pν = {P1� � � � �P4}, where zP1yP1x, zP2xP2y , xP3zP3y , and
xP4yP4z, and masses μ = (0�06�0�24�0�23�0�47) and ν = (0�17�0�42�0�2�0�21). Clearly,
μ is higher than ν, and hence Proposition 2 implies that ρμ first-order stochastically dom-
inates ρν .

These SCRUMs follow from considering two individuals in the following risk setting.
Alternatives x� y , and z are equiprobable lotteries with payoffs (30�30), (20�40), and
(15�50), respectively. The individuals entertain two different CRRA parameters, 0�7 for μ
and 0�4 for ν, subject to a logistic perturbation.12 Thus, in this context of decision-making
under risk, and for the case of a binary comparison of lotteries, our stochastic monotone
comparative result can be read as follows: the more risk-averse agent μ chooses safer
alternatives more often than does the less risk-averse agent ν.

Suppose, in contrast, that the two individuals entertain the same CRRA levels of 0�7
and 0�4, but the perturbation is now on the utility values rather than on the space of

12In both cases, the scale of the logistic distribution is 0�25.



668 J. APESTEGUIA, M. A. BALLESTER, AND J. LU

CRRA parameters.13 This case gives rise to two RUMs with support on all possible
preferences P = {P1�P2�P�P

′�P3�P4}, where yPzPx and yP ′xP ′z. Specifically, they are
μ1 = (0�11�0�18�0�11�0�17�0�22�0�21) and μ2 = (0�17�0�35�0�10�0�06�0�25�0�08). Obvi-
ously, these RUMs fail to be SCRUMs and Proposition 2 cannot be applied. However, the
standard approach in the literature is to consider the first individual as more risk-averse
than the second, given the order on the CRRA parameters. It is then that problems arise.
Consider alternatives x � y , for instance. The allegedly more risk-averse agent chooses
the safer alternative x with a 0�61 probability, less often than does the allegedly less risk-
averse agent, who does so with probability 0�67. For general results on this problem, see
Apesteguia and Ballester (2016).

Proposition 2 also establishes comparative statics for the more general case in which
the SCRUMs do not share the same support. Notice that, in this case, Pμ ∪ Pν may fail
to be single-crossing, thus making it difficult to compare the cdfs of the two individuals.
We can, however, invert these cdfs and check whether, for every θ ∈ (0�1], the associated
preference for μ is higher than that of ν. When this is the case, Proposition 2 guarantees
first-order stochastic dominance in terms of choices.

6. FINAL REMARKS

In this paper, we have proposed and studied a new stochastic choice model that can
be used in a wide variety of settings, specifically those in which the single-crossing prop-
erty applies. We have also shown that the model is easily testable in practice. This is in
contrast to the traditional characterization of RUMs which involves the complex higher-
order Block–Marschak inequalities. By exploiting the structure that the single-crossing
condition brings to RUMs, our approach is able to do with such complicated properties.14

We close this paper by commenting on the relationship between SCRUMs and two clas-
sical properties and, thereby, on the relationship between SCRUMs and other stochas-
tic choice models. Let us start with Luce’s well-known Independence of Irrelevant Al-
ternatives axiom (Luce-IIA). This property essentially requires that the choice ratio be-
tween two alternatives is independent of other available alternatives, that is, ρ(x�A)

ρ(y�A)
= ρ(x�B)

ρ(y�B)
,

whenever ρ(y�A) > 0 and ρ(y�B) > 0. It can be seen that Luce-IIA is in direct conflict
with CEN by simply considering three ordered alternatives x � y � z. Notice that, when
eliminating x from {x� y� z}, ρ(x� {x� y� z}) must be completely inherited by y according
to CEN, whenever y is chosen with strictly positive probability, but, by Luce-IIA, must be
distributed proportionally between y and z. Contrary to CEN, Luce-IIA ignores the struc-
ture of heterogeneity. As mentioned in the Introduction, in recent years Luce’s model has
been extended in many directions by considering relaxations of Luce-IIA, and therefore,
all these models differ in structure from SCRUMs.

We conclude with some remarks on stochastic transitivity, another cornerstone concept
for understanding stochastic choice models. It is well-known that RUMs fail to satisfy
even the weakest version, namely, ρ(x� {x� y}) > 1

2 , and that ρ(y� {y� z}) > 1
2 implies that

ρ(x� {x�z}) ≥ 1
2 . For purposes of illustration, consider the Condorcet cycle defined by

three equiprobable preferences P1, P2, and P3 over three alternatives x, y , and z, with

13The most standard approach considers i.i.d. extreme type I additive perturbations for all available alterna-
tives, giving rise to the well-known logit model. We use this distribution in our example, with a scale parameter
of 0.25.

14Future research should study the generalization to partial orders of the orders imposed on X and on Pμ,
and their consequences on the tractability of the higher-order Block–Marschak inequalities.
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xP1yP1z, yP2zP2x, and zP3xP3y . It is clear that the RUM probabilities are ρ(x� {x� y}) =
ρ(y� {y� z}) = 2

3 >
1
2 but ρ(x� {x�z}) = 1

3 . However, notice that this example is not single-
crossing. Indeed, the single-crossing condition implies that Condorcet cycles of this kind
cannot occur.15 This implies, in turn, that the Manzini and Mariotti (2014) model is not
a special case of our model, because theirs is compatible with this type of Condorcet
cycles. To see that SCRUMs are not a special case of their model, simply notice that their
i-Asymmetry property is in direct conflict with Centrality.

PROOFS

PROOF OF THEOREM 1: We divide the proof into a series of claims. Claims 1 to 6 prove
the sufficiency of the axioms. Claim 7 proves their necessity.

CLAIM 1: Let ρ satisfy MON and CEN and x � y � z. Then, ρ(z� {y� z})≤ ρ(z� {x�z})≤
ρ(y� {x� y}) whenever ρ(y� {x� y� z}) > 0 and ρ(z� {y� z}) ≥ ρ(z� {x�z}) ≥ ρ(y� {x� y})
whenever ρ(y� {x� y� z})= 0.

PROOF: Suppose, first, that ρ(y� {x� y� z}) > 0. CEN implies that ρ(z� {y� z}) = ρ(z�
{x� y� z}), while MON implies that ρ(z� {x� y� z}) ≤ ρ(z� {x�z}), leading to ρ(z� {y� z}) ≤
ρ(z� {x�z}). Also, MON guarantees that ρ(z� {x�z}) = 1 − ρ(x� {x�z}) ≤ 1 − ρ(x�
{x� y� z}), while CEN implies that ρ(x� {x� y� z}) = ρ(x� {x� y}), guaranteeing that
ρ(z� {x�z}) ≤ 1 − ρ(x� {x� y}) = ρ(y� {x� y}). Next, let ρ(y� {x� y� z}) = 0. It must then
be that ρ(x� {x� y� z}) + ρ(z� {x� y� z}) = 1 = ρ(x� {x�z}) + ρ(z� {x�z}) and MON im-
plies both that ρ(x� {x� y� z}) = ρ(x� {x�z}) and that ρ(z� {x� y� z}) = ρ(z� {x�z}). The
use of MON guarantees that ρ(z� {y� z})≥ ρ(z� {x� y� z})= ρ(z� {x�z}) and ρ(z� {x�z})=
1 − ρ(x� {x�z})= 1 − ρ(x� {x� y� z})≥ 1 − ρ(x� {x� y})= ρ(y� {x� y}). Q.E.D.

CLAIM 2: Let ρ satisfy MON and CEN, and A = {a1� a2� � � � � a|A|} be such that a|A| �
· · · � a2 � a1 with ρ(ai� {ai−1� ai� ai+1}) > 0 for every i ∈ {2� � � � � |A| − 1}. Then, ρ(a1�A) =
ρ(a1� {a1� a2}), ρ(ai�A) = ρ(ai� {ai−1� ai� ai+1}), 2 ≤ i ≤ |A| − 1, and ρ(a|A|�A) = ρ(a|A|�
{a|A|−1� a|A|}).

PROOF: The result is trivial if |A| < 3. Otherwise, repeated use of CEN guaran-
tees that 1 = ρ(a1� {a1� a2� a3})+ρ(a2� {a1� a2� a3})+ρ(a3� {a1� a2� a3})= ρ(a1� {a1� a2})+
ρ(a2� {a1� a2� a3}) + ρ(a3� {a2� a3}) = ρ(a1� {a1� a2}) + ρ(a2� {a1� a2� a3}) + (1 − ρ(a2�
{a2� a3}))= ρ(a1� {a1� a2})+ρ(a2� {a1� a2� a3})+(1−ρ(a2� {a2� a3� a4}))= ρ(a1� {a1� a2})+
ρ(a2� {a1� a2� a3}) + ρ(a3� {a2� a3� a4}) + ρ(a4� {a2� a3� a4}) = · · · = ρ(a1� {a1� a2}) +
∑|A|−1

i=2 ρ(ai� {ai−1� ai� ai+1}) + ρ(a|A|� {a|A|−2� a|A|−1� a|A|}) = ρ(a1� {a1� a2}) + ∑|A|−1
i=2 ρ(ai�

{ai−1� ai� ai+1})+ ρ(a|A|� {a|A|−1� a|A|}). By MON, it must be the case that ρ(a1� {a1� a2})+
∑|A|−1

i=2 ρ(ai� {ai−1� ai� ai+1}) + ρ(a|A|� {a|A|−1� a|A|}) ≥ ∑|A|
i=1 ρ(ai�A) = 1 and hence the re-

sult follows. Q.E.D.

CLAIM 3: Let ρ satisfy MON and CEN. Given a menu A, denote the set {x ∈ A :
ρ(x�A) > 0} by Ā and its elements by ā|Ā| � · · · � ā2 � ā1. Then:

(1) For every A′ such that Ā ⊆A′ ⊆A and for every x ∈A′, ρ(x�A)= ρ(x�A′).
(2) For every x ∈ A \ Ā such that ā1 � x, ρ(x� {x� ā1})= 0.

15Details available upon request.
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(3) For every x ∈ A \ Ā such that x � ā|Ā|, ρ(x� {ā|Ā|�x})= 0.
(4) For every x ∈ A \ Ā such that āi+1 � x� āi, ρ(x� {āi� x� āi+1})= 0.

PROOF: For the first part, simply notice that
∑

x∈A′ ρ(x�A) = 1 = ∑
x∈A′ ρ(x�A′) and

hence, the result follows immediately from MON. For the second and third parts, no-
tice that MON implies that every alternative āi ∈ Ā is chosen with positive probabil-
ity in every triplet of Ā ∪ {x} and then menu Ā ∪ {x} is bound by the conditions de-
scribed in Claim 2. Hence ρ(x� Ā ∪ {x}) is equal to ρ(x� {x� ā1}) in the second part, and
to ρ(x� {ā|Ā|�x}) in the third part. By the first part, these values are equal to zero. For the
last part, suppose, by way of contradiction, that there exists x /∈ Ā such that āi+1 � x � āi

and ρ(x� {āi� x� āi+1}) > 0. This again guarantees that menu Ā ∪ {x} is bound by the con-
ditions described in Claim 2, thereby implying that ρ(x� Ā∪ {x}) = ρ(x� {āi� x� āi+1}) > 0.
This contradicts the first part, and the claim is proved. Q.E.D.

CLAIM 4: Let ρ satisfy MON and CEN. Define, for every θ ∈ (0�1], the binary relation
xPθy ⇔ [y � x and ρ(x� {x� y})≥ θ] or [x� y and ρ(y� {x� y}) < θ]. Then, Pθ is a strict lin-
ear order.

PROOF: Completeness and asymmetry of Pθ are immediate. To prove transitivity, let
xPθy and yPθz. We prove that xPθz by using Claim 1 accordingly:

(1) z � y � x. Notice that xPθy and yPθz imply, respectively, θ ≤ ρ(x� {x� y}) and θ ≤
ρ(y� {y� z}) and hence θ ≤ min{ρ(x� {x� y})�ρ(y� {y� z})} ≤ ρ(x� {x�z}), thus implying that
xPθz.

(2) y � z � x. Then, it is the case that ρ(z� {y� z}) < θ ≤ ρ(x� {x� y}) and it must be the
case that ρ(z� {y� z}) ≤ ρ(x� {x� y}) ≤ ρ(x� {x�z}), thus implying that θ ≤ ρ(x� {x�z}) or
xPθz.

(3) z � x� y . Then, ρ(y� {x� y}) < θ ≤ ρ(y� {y� z})≤ ρ(x� {x�z}) and xPθz.
(4) x � z � y . Then, ρ(z� {x�z}) ≤ ρ(y� {x� y}) < θ ≤ ρ(y� {y� z}) and, given that x � z,

we again obtain that xPθz.
(5) y � x� z. Then, ρ(z� {x�z})≤ ρ(z� {y� z}) < θ ≤ ρ(x� {x� y}) and xPθz.
(6) x� y � z. Then, ρ(z� {x�z})≤ max{ρ(z� {y� z})�ρ(y� {x� y})}< θ and xPθz.

Q.E.D.

CLAIM 5: Let ρ satisfy MON and CEN. Consider the RUM μ that assigns, to any P ∈ P ,
the value μ(P) = L{θ : P = Pθ}, where Pθ is defined as in Claim 4 and L is the Lebesgue
measure. Then, ρ= ρμ.

PROOF: We prove that, for every x ∈ Ā, ρ(x�A) = ρμ(x�A) and thus obtain that∑
x∈Ā ρ(x�A) = 1 = ∑

x∈Ā ρμ(x�A) and, since ρμ is a stochastic choice function, it must
assign mass zero to any alternative x /∈ Ā, thus concluding the proof of the claim. Con-
sider then x ∈ Ā. By the first part of Claim 3, we know that ρ(x�A) = ρ(x� Ā). We now
consider three cases, depending on the position of x in menu Ā, borrowing the notation
of Claim 4.

(1) Let x = ā1. Since menu Ā is bound by the conditions described in Claim 2, it is the
case that ρ(ā1� Ā) = ρ(ā1� {ā1� ā2}). Hence, given the construction of μ, it is sufficient to
show that ā1 = bPθ(A) if and only if θ ≤ ρ(ā1� {ā1� ā2}). For every θ ≤ ρ(ā1� {ā1� ā2}), it is
clearly the case that ā1Pθā2, and for any āj with j > 2, the first part of Claim 1 also guaran-
tees that ρ(ā1� {ā1� āj})≥ ρ(ā1� {ā1� ā2}), and hence, ā1Pθāj . Let y ∈A \ Ā. If ā1 � y , then



SINGLE-CROSSING RANDOM UTILITY MODELS 671

the second part of Claim 3 guarantees that ρ(y� {y� ā1}) = 0, thereby implying that ā1Pθy
for every θ. If ā2 � y � ā1, the fourth part of Claim 3 guarantees that ρ(y� {ā1� y� ā2}) =
0, and Claim 1 implies that ρ(ā1� {ā1� y}) ≥ ρ(ā1� {ā1� ā2}), and thus, ā1Pθy for every
θ ≤ ρ(ā1� {ā1� ā2}). Finally, if y � ā2 � ā1, MON implies that ρ(ā2� {ā1� ā2� y}) > 0 and
Claim 1 again guarantees that ρ(ā1� {ā1� y}) ≥ ρ(ā1� {ā1� ā2}), leading to ā1Pθy for ev-
ery θ ≤ ρ(ā1� {ā1� ā2}). Thus, ā1 = bPθ(A) whenever θ ≤ ρ(ā1� {ā1� ā2}). Clearly, if θ >
ρ(ā1� {ā1� ā2}), ā2Pθā1 and hence, ā1 �= bPθ(A). This concludes the proof of this case.

(2) Let x = ā|Ā|. It is the case that ρ(ā|Ā|� Ā) = ρ(ā|Ā|� {ā|Ā|−1� ā|Ā|}) = 1 − ρ(ā|Ā|−1�
{ā|Ā|−1� ā|Ā|}). Given the construction of μ, it is sufficient to show that ā|Ā| = bPθ(A)
if and only if θ > ρ(ā|Ā|−1� {ā|Ā|−1� ā|Ā|}). For every θ ≤ ρ(ā|Ā|−1� {ā|Ā|−1� ā|Ā|}), we have
ā|Ā|−1Pθā|Ā|, and thus ā|Ā| �= bPθ(A). For every θ > ρ(ā|Ā|−1� {ā|Ā|−1� ā|Ā|}), it is clearly the
case that ā|Ā|Pθā|Ā|−1, and also, for any āj with j < |Ā| − 1, Claim 1 guarantees that
ρ(āj� {āj� ā|Ā|}) ≤ ρ(ā|Ā|−1� {ā|Ā|−1� ā|Ā|}), and hence it is also the case that ā|Ā|Pθāj . Now,
let y ∈ A \ Ā. If ā|Ā| � ā|Ā|−1 � y , MON implies that ρ(ā|Ā|−1� {y� ā|Ā|−1� ā|Ā|}) > 0 and
Claim 1 guarantees that ρ(y� {y� ā|Ā|}) ≤ ρ(ā|Ā|−1� {ā|Ā|−1� ā|Ā|}) < θ, leading to ā|Ā|Pθy . If
ā|Ā| � y � ā|Ā|−1, the fourth part of Claim 3 guarantees that ρ(y� {ā|Ā|−1� y� ā|Ā|}) = 0 and
Claim 1 implies that ρ(y� {y� ā|Ā|})≤ ρ(ā|Ā|−1� {ā|Ā|−1� ā|Ā|}) < θ, leading, again, to ā|Ā|Pθy .
Finally, if y � ā|Ā|, the third part of Claim 3 implies that ρ(y� {y� ā|Ā|})= 0, which leads to
ā|Ā|Pθy for every θ. Therefore, ā|Ā| = bPθ(A) whenever θ > ρ(ā|Ā|−1� {ā|Ā|−1� ā|Ā|}) and the
proof of the case is complete.

(3) Let x = āi, with 1 < i < |Ā|. The use of Claim 2 and CEN guarantees that
ρ(āi� Ā) = ρ(āi� {āi−1� āi� āi+1}) = 1 − ρ(āi−1� {āi−1� āi� āi+1}) − ρ(āi+1� {āi−1� āi� āi+1}) =
1 − ρ(āi−1� {āi−1� āi}) − ρ(āi+1� {āi� āi+1}) = ρ(āi� {āi� āi+1}) − ρ(āi−1� {āi−1� āi}). Given
the construction of μ, it is sufficient to prove that āi = bPθ(A) holds if and only if
θ ∈ (ρ(āi−1� {āi−1� āi})�ρ(āi� {āi� āi+1})]. Now, for every θ ≤ ρ(āi−1� {āi−1� āi}) and θ >
ρ(āi� {āi� āi+1}), it is the case that āi−1Pθāi and āi+1Pθāi, respectively, and hence, āi �=
bPθ(A). For every θ ∈ (ρ(āi−1� {āi−1� āi})�ρ(āi� {āi� āi+1})], we know that both āiPθāi−1

and āiPθāi+1 hold, and Claim 1 again guarantees that āiPθāj whenever j ≤ i − 1 or
j ≥ i + 1. Then, consider y ∈ A \ Ā. If āi−1 � y or āi � y � āi−1, we can apply Claim 1
over the triplet {y� āi−1� āi} to get ρ(y� {y� āi}) ≤ ρ(āi−1� {āi−1� āi}) < θ and hence, āiPθy .
If āi+1 � y � āi or y � āi+1, we can apply Claim 1 over the triplet {āi� y� āi+1} to get
ρ(āi� {āi� y}) ≥ ρ(āi� {āi� āi+1}) ≥ θ and hence, āiPθy . Therefore, āi = bPθ(A) whenever
θ ∈ (ρ(āi−1� {āi−1� āi})�ρ(āi� {āi� āi+1})], and the proof of this case is complete. Q.E.D.

CLAIM 6: Let ρ satisfy MON and CEN. Then the RUM μ defined in Claim 5 is single-
crossing.

PROOF: Relabel the preferences in Pμ as P1�P2� � � � �PT by using the induced order
s > t ⇔ inf{θ : Ps = Pθ} > inf{θ : Pt = Pθ}. Then, let x � y and s > t be such that xPty .
Since xPty , it must be that ρ(y� {x� y}) ≤ inf{θ : Pt = Pθ} < inf{θ : Ps = Pθ} and hence,
xPsy , thus proving the single-crossing property. Q.E.D.

CLAIM 7: Let ρμ be a SCRUM stochastic choice function. Then ρμ satisfies MON and
CEN.

PROOF: It is well-known that any RUM stochastic choice function satisfies MON. For
CEN, consider a triplet x � y � z with ρμ(y� {x� y� z}) > 0. Given the order of the single-
crossing collection of preferences in Pμ, let ty = min{t : y = bPt ({x� y� z})}, which must
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exist because ρμ(y� {x� y� z}) > 0. Since x � y and yPtyx, single-crossing guarantees that
yPtx for every t < ty and, by the definition of ty , it must then be that zPtyPtx for every
t < ty . Single-crossing also guarantees that yPtz for every t ≥ ty . Hence, it must be the
case that ρμ(z� {x� y� z}) = ∑

t<ty
μ(Pt) = ρμ(z� {y� z}). Analogously, let ty = max{t : y =

bPt ({x� y� z})}. It must be the case that xPtyPtz for every t > ty and yPtx for every t ≤ ty ,
which implies that ρμ(x� {x� y� z})= ∑

t>ty μ(Pt)= ρμ(x� {x� y}). Q.E.D.

PROOF OF PROPOSITION 1: Given a SCRUM μ with ordered support P1� � � � �PT , de-
note by μ̃ the cumulative distribution function (c.d.f.) of μ, that is, μ̃(Pt) = ∑

s≤t μ(Ps).
Denote by μ̃−1 the inverse of the c.d.f., that is, μ̃−1(θ) = {Pt : μ̃(Pt−1) < θ ≤ μ̃(Pt)}.16

Suppose, by way of contradiction, that ρμ = ρμ′ but μ �= μ′. Then, there must exist θ∗

such that μ̃−1(θ∗) �= μ̃′−1(θ∗) for some θ∗ ∈ (0�1]. In other words, there exist x � y
for which, w.l.o.g., xμ̃−1(θ∗)y and yμ̃′−1(θ∗)x. The single-crossing condition implies that
ρμ(y� {x� y}) < θ∗ and ρμ′(y� {x� y})≥ θ∗, which is a contradiction. Q.E.D.

PROOF OF COROLLARY 1: Let ρ satisfy MON and SCEN. Notice that we can repro-
duce the first part of Claim 1 in the proof of Theorem 1 to show that ρ(z� {y� z}) ≤
ρ(z� {x�z}) ≤ ρ(y� {x� y}) holds whenever x � y � z. We now prove that the strict lin-
ear order Pθ, with θ ∈ (0�1], constructed in Claim 4 of the proof of Theorem 1, satisfies
single-peakedness. If bPθ(X) � x � y , it must be that ρ(y� {y�x}) ≤ ρ(x� {x�bPθ(X)}) < θ
and hence xPθy . If y � x � bPPθ(X), it must be that θ ≤ ρ(bPθ(X)� {x�bPθ(X)}) ≤
ρ(x� {x� y}) and hence xPθy . Then, the SCRUM constructed in the proof of Theo-
rem 1 is also a SPRUM, and sufficiency follows. To show that a SPRUM stochas-
tic choice function ρμ satisfies SCEN, consider three alternatives such that x � y � z.
Single-peakedness guarantees that ρμ(x� {x� y� z}) = ∑

P:xPy�xPz μ(P) = ∑
P:xPy μ(P) =

ρμ(x� {x� y}) and ρμ(z� {x� y� z})= ∑
P:zPy�zPx μ(P) = ∑

P:zPy μ(P) = ρμ(z� {z� y}), and ne-
cessity follows. Q.E.D.

PROOF OF COROLLARY 2: Let ρ satisfy MON and EXT. We can reproduce the sec-
ond part of Claim 1 in the proof of Theorem 1 to show that ρ(z� {y� z}) ≥ ρ(z� {x�z}) ≥
ρ(y� {x� y}) holds whenever x � y � z. We now prove the single-dippedness of every pref-
erence Pθ defined in the proof of Theorem 1. If wPθ(X) � x � y , then it must be that
ρ(y� {y�x}) ≥ ρ(x� {x�wPθ(X)}) ≥ θ and ultimately yPθx. If y � x � wPθ(X), it must be
that θ > ρ(wPθ(X)� {x�wPθ(X)}) ≥ ρ(x� {x� y}) and hence yPθx. Necessity is immediate,
and thus omitted. Q.E.D.

PROOF OF PROPOSITION 2: For the “only if” part, suppose that μ is higher than ν
and assume, by way of contradiction, that ρμ does not first-order stochastically domi-
nate ρν . That is, there exists i such that

∑|A|
j=i ρν(aj�A) >

∑|A|
j=i ρμ(aj�A). Then it must

be 1 < i and we have
∑i−1

j=1 ρμ(aj�A) >
∑i−1

j=1 ρν(aj�A). Let x and y be the best al-
ternatives in A for preferences μ̃−1(

∑i−1
j=1 ρμ(aj�A)) and ν̃−1(

∑i−1
j=1 ρμ(aj�A)), respec-

tively. Clearly, ai � x and y � ai−1, implying y � x. However, xμ̃−1(
∑i−1

j=1 ρμ(aj�A))y but
yν̃−1(

∑i−1
j=1 ρμ(aj�A))x, a contradiction with the fact that μ is higher than ν.

16Notice that, in Claims 4 to 6 of the sufficiency part of the proof of Theorem 1, we discuss how to construct
a SCRUM from the choice data. We started by defining Pθ in Claim 4, which can be thought of as μ̃−1, and
from this constructed the associated RUM.
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For the “if” part, suppose that ρμ first-order stochastically dominates ρν and assume, by
way of contradiction, that μ is not higher than ν. That is, there exist x � y and θ∗ ∈ (0�1]
such that xν̃−1(θ∗)y but yμ̃−1(θ∗)x. Clearly, by the definition of Pθ, ρμ(y� {x� y})≥ θ∗ and
ρν(y� {x� y}) < θ∗, which implies ρν(x� {x� y}) > ρμ(x� {x� y}) and contradicts the fact that
ρμ first-order stochastically dominates ρν in menu {x� y}. Q.E.D.
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