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a b s t r a c t 

Adaptation refers to the process of changing behavior in response to a variation in the en- 

vironment. We propose a model of an adaptive individual that contemplates two forces: 

on the one hand the individual benefits from adopting the ideal response to the new en- 

vironment, but on the other hand, behavioral change is costly. We lay down the axiomatic 

foundations of the model. We then study two applications. The first studies a situation 

where ideal behavior depends on the response of another adaptive individual. The second 

analyzes the case where the ideal response is influenced by the strategic interaction in a 

cheap talk-like game. 
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1. Introduction 

Individuals often experience shocks in their environments. The standard approach in economics entails an immediate 

adaptation to the new situation. However, research in biology and psychology has long seen adaptation to changing environ- 

ments as a gradual process of cumulated behavioral changes. 1 Building on this evidence, in this paper we offer a framework

to study behavioral adaptation that explains why and how an individual may gradually adapt her behavior to new situa- 

tions. In essence, we envision an individual that rationally understands the benefits of responding to the new situation, but 

for whom behavioral change is costly as it comes with the necessity of modifying well-formed and easy-to-apply internal 

routines. As a result, the individual must integrate both forces and gradually adapt. 

Weaning off old behavioral patterns as well as formation of new ones after a substantial change in life conditions have 

been explored by social scientists in a variety of behavioral domains such as choice of travel mode after moving home

or change of workplace ( Bamberg, 2006; Walker et al., 2015 ); leisure choices of students transferring to a new university

( Wood et al., 2005 ) or general major life changes ( Heatherton and Nichols, 1994 ). Our main purpose is to suggest a simple
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and tractable model of behavioral adaptation, based on intuitive and documented principles of behavioral change as docu- 

mented by social scientists. To this end, we build our model on two main principles: First, we study goal-targeted behavioral

change. 2 Our baseline model considers an exogenously given target behavior emerging after a shock, wheras we explore 

manipulation and endogenous determination of the target behavior later on, in the applications. Second, we conceptualize 

behavioral change as the outcome of a conflict between two forces: the desire to change and the desire not to. Behavior and

change of behavior as the outcome of two conflicting forces has been proposed and explored extensively under a variety 

of conceptualizations and domains such as reflective vs. impulsive influences of health-related behaviors ( Hofmann et al., 

2008 ) and social behavior ( Strack and Deutsch, 2004 ), hedonic goal vs. control goal of the goal conflict model of health

psychology ( Stroebe et al., 2017 ), operational vs. executive systems of hard-to-maintain behaviors ( Borland, 2013 ), etc. For

the sake of simplicity, we abstract away from the detailed functionings of these two systems, but summarize the conflict 

in unaligned cost functions. We believe the simplicity of our model brings about versatility and an ease of application to

different contexts, as we demonstrate by the two applications to strategic situations. 

To demonstrate our model, consider an individual that has suffered a medical problem and must face a change of diet.

Alternatively, think of changes in one’s time allocation patterns after starting a new career or changing one’s individual 

values upon entering a new society. In all these situations, there is an initial behavior and the individual is affected by an

important shock in the environment that suggests a different ideal response. The question arises on how to move from the

initial to the ideal response. On the one hand, the individual is reluctant to change because she suffers a cost whenever her

responses deviate from past behavior. On the other hand, the individual would like to adapt immediately to the new ideal

response, because not doing so comes with a cost. Therefore, the individual contemplates the two forces, and consequently 

selects a sequence of behaviors to rationally accommodate them. The main result of the paper provides empirically testable 

implications. Theorem 1 axiomatically characterizes the model using two properties: A monotonicity property regulating the 

direction of change in behavior and a constant difference ratio property controlling the rate of change over different periods. 

In turn, this allows us to provide the unique solution to the adaptation problem, which facilitates the study of comparative

statics and the analysis of welfare. The axiomatization of our model with simple, testable properties is useful for two rea-

sons. First, it establishes falsifiability. Given that our model corresponds to an unobservable, cognitive optimization, it is 

useful to know when an individual’s behavioral change follows an optimal path as well as when and how it does not, for

welfare inference or behavioral change interventions. Moreover, in cases an individual’s behavior follows an optimal path, 

it provides an explanation for the underlying cognitive process. Second, it facilitates the revelation of unobservable idiosyn- 

cratic parameters. Our characterization result points out the relationship between rate of behavioral change as revealed by 

observable behavior, and time preferences as given by discounting factor and adaptation preferences as given by the relative 

weight of the cost functions. 

A crucial strength of our model is that thanks to its simplicity, it is versatile enough to explore the adaptive behavior

in a number of diverse settings. We illustrate this point by way of two applications of the model; strategic coordination

and strategic communication. For the first application, we study the case where two adaptive individuals with different ini- 

tial behaviors benefit from coordinating on a common behavioral code. Think, for example, of bilateral agreements where 

convergence in behaviors is desirable but affected by strategic considerations. We study the resulting dynamic game and, 

in Theorem 2 , show the existence of a Markov-perfect equilibrium where individuals gradually adapt towards each other’s 

behavior. In the second application, we introduce uncertainty on the ideal response in a setting where an informed sender 

passes a signal on the uncertain ideal response to an uninformed receiver. We understand the receiver as an adaptive in-

dividual, while the sender only cares about the deviations between the behavior of the receiver and the realized ideal 

response. For instance, suppose a doctor that, after a medical examination, finds that the patient should adopt a specific 

diet. The doctor understands well the adaptive behavior of the patient and may strategically communicate a non-ideal diet 

in order to manipulate this adaptive process. The patient, at the same time, may also anticipate the strategic considerations 

of the doctor, and behave accordingly. We show that the setting transforms into a cheap-talk game and, in Theorem 4 , we

characterize the partition equilibria of the game. These two applications, where we exploit the determination of target be- 

havior by exploring its potential for manipulability and dynamic determination in a social context illustrate the flexibility of 

our model and its ease of application to more convoluted settings. Despite the inclusion of strategic considerations, where 

seemingly different settings and hence, solution concepts produce the very same behavior induced by our baseline model 

is a strength of our model. This helps to carry our revelation strategy given by the characterization result to those settings,

which might provide additional insights for behavior change interventions. 3 

We close this introduction by relating our paper to the economics literature. Research on inter-temporal choice with 

changing behavior can be found in habit formation/addiction models. Among these studies the closest to our approach is 
2 There is an abundance of evidence as well as a theoretical accord in behavioral psychology asserting that behavioral change is mostly goal 

driven ( Kruglanski and Szumowska, 2020 ), to the extent that behavioral change and goal pursuit have been used interchangeably by some researchers 

( Berkman, 2018 ). Even though behavioral psychologists make a clear distinction between behaviors that are directed toward goals and those that are ha- 

bitual ( Miller et al., 2019 ), it is widely accepted that change of behavior, even for habits, is goal-directed to start with ( Carden and Wood, 2018 ) although 

it becomes automatic once the habit is built. Hence not only planned behavior but also habitual behavior originates from goal pursuit ( Kruglanski and 

Szumowska, 2020 ). 
3 For more on how economics research on individual behavior informs behavior change interventions of health psychology, see Wang and Groene (2020) ; 

Brown et al. (2020) . 
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Becker and Murphy (1988) . 4 They study a model of rational addiction that involves changes in behavior as the outcome of a

utility maximization process with time consistent preferences. Becker and Murphy analyze the comparative dynamics of ad- 

diction in a perfect capital market environment assuming that instantaneous utility is a function of the current consumption 

as well as the stock of past consumption. The crucial difference with their paper is conceptual. In our setting we assume

there is a given ideal response, which is either exogenously determined or is the result of some strategic interaction, allow-

ing us to study the notion of adaptation to the ideal response, which is the key concept we study in the paper. In terms of

results, we also diverge by providing characterizing properties of this type of behavior, as well as applications of our model

to a variety of settings. 

The cost of adaptation can also be related to the literature on changing tastes in dual-self models. 5 To see our model from

this perspective, one may think of a short-sighted self that prefers to stick to the current behavior and a rational self that

perfectly understands the benefits of immediate adaptation to the ideal response. Under this interpretation, and contrary 

to most of these models, the behavior of our agent is the result of an integration of these selves. In that sense, the closest

paper to ours would be Loewenstein and O’Donoghue (2004) since their ‘two minds’ model brings also a maximization 

problem of a weighted utility function. However their model lives in a static world and modeling dynamics is fundamental 

to understand the cost of adaptation. 

Akerlof (1997) studies the case where an individual considers the average behavior of the individuals in their reference 

group, and either aims at minimizing the distance with average behavior, as in the case of conformism, or at positively

deviating from it, as in the status seeking model. Hence, we share the view with Akerlof (1997) in considering behavioral

targets, that may have a social nature, as we discuss in Section 3.1 . However, we deviate by focusing in the dynamic pro-

cess of adaptation towards them. This dynamic process can also be interpreted as the internalization of prescriptions that is 

dictated by a new identity, as first formalized in economics by Akerlof and Kranton (20 0 0) . The target behavior then corre-

sponds to the behavior associated with this identity and the optimal internalization process appears as the solution to the 

negotiation between initial preferences and the new set of values. 

Finally, a direct application of our setting can be found in models of firm-level decision making with adjustment costs 

within the macroeconomics literature. Models with convex adjustment costs are utilized mainly to explain gradually ad- 

justing firm-level decision variables observed in the data, such as factor demand in partial-adjustment models ( Hamermesh 

and Pfann, 1996; Hall, 2004 ), or investment demand in general and in q -theoretic models ( Gould, 1968; Treadway, 1969;

Yoshikawa, 1980; Abel and Eberly, 1994 ). Certainly, our microeconomics perspective differentiates us from this literature. 

We provide an axiomatization of the model in terms of testable properties for the observable behavior, enabling the infer- 

ence of unobservable parameters of the model, and offer applications in order to study strategic considerations related to 

the behavioral adaptation process. 

The organization of the paper is as follows: Section 2 introduces the set-up as well as the characterization of the model.

Section 3 is devoted to the two applications, strategic coordination and strategic communication, respectively. Section 4 con- 

cludes. All proofs are left to an appendix. 

2. The adaptation problem 

Denote by � the simplex of dimension K. 6 The initial behavior of the individual is denoted by x 0 ∈ �, while the ideal

response is denoted by x ∗ ∈ �. We assume polynomial cost functions of degree q > 1 . Given the relative weight of the adap-

tation cost with respect to the cost of deviating from the ideal response, α ∈ [0 , 1] , and the discount factor of the individ-

ual, δ ∈ (0 , 1) , our individual solves what we call the Adaptation Problem with parameters (x 0 , x ∗, α, δ) , i.e., the individual

chooses a sequence of actions { x t } ∞ 

t=1 in the simplex solving 

min { x t } ∞ t=1 

∞ ∑ 

t=1 

δt−1 
(
α

K ∑ 

k =1 

| x (t−1) k − x tk | q + (1 − α) 
K ∑ 

k =1 

| x ∗k − x tk | q 
)
. 

We now investigate the testable implications of the model, by describing the optimal sequences emerging from this cog- 

nitive process. Formally, we address the question of what are the properties of an observed sequence of behaviors, { x t } ∞ 

t=1 ,

that indicate that the individual is optimally resolving an underlying Adaptation Problem. In other words, the question 

arises on whether there is an Adaptation Problem with parameters (x 0 , x ∗, α, δ) such that the observed behavior { x t } ∞ 

t=1 
by

the analyst is the solution to the problem. It turns out that only two intuitive properties are necessary and sufficient to

characterize such behavioral sequences. To present them, let D tk denote the change in behavior at time t for component k ,

i.e. D tk = x tk − x (t−1) k . 

Monotonicity (Mon) For any k and for any t > 1 : D tk > 0 ⇒ D (t+1) k > 0 . 
4 Other important works include Pollak (1970) ; O’Donoghue and Rabin (1999) ; Gruber and Koszegi (2001) ; Bernheim and Rangel (2004) or Gul and 

Pesendorfer (2007) . 
5 See the classical work of Strotz (1955) and also, Thaler and Shefrin (1981) ; Schelling (1982) ; Benabou and Pycia (2002) ; Fudenberg and Levine (2006) ; 

Pennesi (2021) and references therein. 
6 To ease the exposition, we have chosen to work on a simplex, that intuitively captures the motivating examples in the introduction. However, the 

results of this section can be easily reproduced for other standard spaces, including [0 , 1] K , R K + or R K . 
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Mon simply states that if we observe individual behavior over one dimension adjusting in a certain direction, further 

adjustments in this dimension must have exactly the same structure. 

Constant difference ratio (CDR) Let k, k ′ such that { x tk } and { x tk ′ } are not constant sequences. Then, for any t , t ′ > 1 :
D (t+1) k 

D tk 
= 

D 
(t ′ +1) k ′ 
D 

t ′ k ′ 
. 

CDR requires, for all dimensions and periods, the same constant rate of behavioral change. In other words, there is no

asymmetric adaptation pattern for different dimensions and the individual shows no accelerating or decelerating rates of 

adaptation. 

Theorem 1. The sequence { x t } ∞ 

t=1 ∈ �∞ satisfies Mon and CDR if and only if it is the (unique) solution of an Adaptation Problem.

Theorem 1 , and its proof, provides several important results: (i) it permits to delineate when the data available to the

analyst, i.e. the sequence { x t } ∞ 

t=1 
, can be understood as the behavior of an individual solving an Adaptation Problem, (ii)

it characterizes the solution to the Adaptation Problem, and (iii) when the individual behaves according to the model, it 

shows how to recover from the observed behavior the unobserved parameters (x 0 , x ∗, α, δ) of the model. We now proceed

to discuss in more detail each one of these points. 

As for the first point, Theorem 1 establishes that a sequence of behaviors { x t } ∞ 

t=1 
can be understood as the result of

solving an Adaptation Problem if and only if the sequence satisfies properties Mon and CDR. Mon and CDR are simple

properties, with the aim of facilitating the testability of the model, more than aiming to lay down normative properties on

behavioral processes. 

As for point (ii), Theorem 1 shows that the Adaptation Problem has a unique solution, that is of the form x t = λ(α, δ) x ∗ +
(1 − λ(α, δ)) x t−1 for all t . The individual adapts at every period t a fraction λ(α, δ) ∈ [0 , 1] of the distance between the

current situation, x t−1 , and the ideal response x ∗, a fraction that we call the rate of adaptation . This rate is dimension and

time-invariant and depends uniquely on the parameters α and δ. From Eq. (A.3) , it is straightforward to see that λ(α, δ)

is increasing in the discount factor δ. The intuition behind this idea is as follows: If the individual becomes more patient,

future costs due to inadaptation become more relevant, leading the agent to reduce the amount of such future costs by being

more adaptive at each period. Similarly differentiating Eq. (A.3) with respect to α, one can see that λ(α, δ) is decreasing in

α. The larger the cost of adaptation, the lower the individual adapts at each period of time. Obviously, closed-form solutions

for λ(α, δ) require specific values of q . For instance when we focus our attention on the common quadratic costs, i.e, q = 2 ,

we derive the following continuous function for λ(α, δ) : 

λ(α, δ) = 

{
1 whenever α = 0 , 
(αδ−1)+ 

√ 

1+2 αδ−4 α2 δ+ α2 δ2 

2 αδ
otherwise. 

As for the recoverability of the parameters, point (iii) above, Theorem 1 allows the analyst to pinpoint from the behav-

ioral data { x t } ∞ 

t=1 
the underlying parameters of the Adaptation Problem. Suppose that { x t } ∞ 

t=1 
is a non-constant sequence.

The initial response x 0 can be uniquely identified as x 0 = 

x 1 −λx ∗
1 −λ

, with λ = 

x 2 −x 1 
x ∗−x 1 

. The ideal response can also be uniquely

identified as x ∗ = lim t x t . In principle different values of α and δ may correspond to the same rate of adaptation λ. However

identifying one of the parameters leads to a unique identification of the other. One could therefore use standard elicitation 

tests of the discount factor parameter to ultimately identify the adaptation cost parameter α. 

We now briefly remark on welfare. In order to do so we derive the value function, given the solution to the Adapta-

tion Problem. Note that the recursive substitution in the solution to the Adaptation Problem yields x t = (1 − λ(α, δ)) t x 0 +
(1 − (1 − λ(α, δ)) t ) x ∗, for all t > 0 , and hence, the one-period costs at t would be αλ(α, δ) q (1 − λ(α, δ)) q (t−1) 

∑ K 
k =1 | x k 0 −

x ∗k | q and (1 − α)(1 − λ(α, δ)) qt 
∑ K 

k =1 | x ∗k − x k 0 | q . The value function for λ(α, δ) ∈ (0 , 1) would then become: 

V (x 0 ) = 

∞ ∑ 

t=1 

δt−1 [ αλ(α, δ) q (1 − λ(α, δ)) q (t−1) 
K ∑ 

k =1 

| x k 0 − x ∗k | q + (1 − α)(1 − λ(α, δ)) qt 
K ∑ 

k =1 

| x ∗k − x k 0 | q ] 

= 

αλ(α, δ) q + (1 − α)(1 − λ(α, δ)) q 

1 − δ(1 − λ(α, δ)) q 

K ∑ 

k =1 

| x ∗k − x 0 k | q = ω(α, δ) 
K ∑ 

k =1 

| x ∗k − x 0 k | q . 

This expression neatly reflects the behavioral loss of adapting behavior. It is multiplicatively separable, with two intuitive 

terms. The latter simply captures a measure of the gap between the initial and the ideal response. The former, a function

of the behavioral parameters α and δ only, represents how costly it is for the individual to cover such gap. Let us focus

again on the interesting case where the behavioral sequence is non-constant. It follows that higher valuation of the future 

results in larger welfare loss, i.e., ∂ω 
∂δ

> 0 . On the other hand, the effect of α on welfare loss is less obvious. Expressing δ as

an implicit function of α and λ and substituting it in ω(·) reveals that ω(·) is equal to αλ(α, δ) q −1 and, ultimately, allows

to show that ω(·) is strictly concave in α. 7 As a consequence, α has both a direct effect and an indirect effect through the

adaptation rate. For lower levels of α, the direct effect outweights and welfare loss increases with α whereas for higher

levels of α the opposite takes place. 
7 To see that, we first compute ∂λ
∂α

from Eq. (A.3) and substitute it in ∂ω 
∂α

, before differentiating it once more. 
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3. Strategic targeting 

We have assumed so far that the individual internalizes an exogenous ideal response and attempts to adjust accordingly. 

In many economic situations, it happens to be the case that the ideal response emerges as the result of different strategic

considerations. In this section, we study two applications where this is the case. 

In the first subsection, we examine a situation where two adaptive individuals would like to coordinate on their behavior. 

However, since moving away from current behavior is costly, there are strategic considerations in the adaptation process of 

both individuals, resulting in a dynamic game where the optimal strategy for each individual depends on not only their 

own past behavior but also on the simultaneous behavior of the other individual. In the second subsection, we consider a

situation where a second individual has private information about the uncertain ideal response of the decision maker and, 

having understood the adaptive nature of the decision maker, communicates this ideal response strategically. Our study of 

strategic communication, therefore, requires us to show how to incorporate the treatment of uncertainty in the precise level 

of ideal response. Unlike the first application this setting does not define a dynamic game, instead it specifies a cheap-talk

game where the response of the receiver has a dynamic nature. To simplify the exposition and the presentation of results,

we assume in this section that the space of possible decisions is [0,1] and that q = 2 . 

3.1. Strategic coordination 

Consider a situation where two individuals with different initial behaviors would like to coordinate on a common be- 

havioral code, yet changing their behavior is costly. It is in their interest to converge as much as possible on common rules,

but they have well-established routines learnt from their personal experiences which hamper the adoption of a common 

standard. Certainly both of them would prefer the other individual to adopt their own standard immediately, but as long as

there is a strictly positive cost to adaptation, this will never constitute an equilibrium behavior, as hinted by the baseline

model. In this setting the ideal response is not exogenously given, but is dynamically determined by the interactive behavior 

with another individual. We investigate here the equilibrium dynamics of this situation. 

Let (αx , δx ) and (αy , δy ) denote the personal characteristics of two adaptive individuals with initial behaviors given by x 0 
and y 0 , respectively. Let αx , αy ∈ (0 , 1) and x 0 � = y 0 to eliminate degenerate equilibria. A Coordination Problem given by the

parameters (x 0 , α
x , δx ; y 0 , α

y , δy ) refers to the case where each individual chooses a sequence of actions, { x t } ∞ 

t=1 
and { y t } ∞ 

t=1 
respectively, in order to minimize their corresponding life-time cost functions given by: 

∞ ∑ 

t=1 

(δx ) t−1 
(
αx (x t−1 − x t ) 

2 + (1 − αx )(y t − x t ) 
2 
)
, 

∞ ∑ 

t=1 

(δy ) t−1 
(
αy (y t−1 − y t ) 

2 + (1 − αy )(x t − y t ) 
2 
)
. 

This setting now defines a dynamic game where the actions chosen by each individual determine the state for next 

period for both of them. Let σ i = (σ i 
t ) 

∞ 

t=1 denote a strategy for individual i = x, y . 

In the following result we show that the strategy profile (σ x , σ y ) defined by σ i 
t (x t−1 , y t−1 ) = γ i j t−1 + (1 − γ i ) i t−1 for

i, j ∈ { x, y } with i � = j for all t > 0 constitutes a Markov-perfect Nash equilibrium for a unique pair of γ x , γ y ∈ (0 , 1) . This

equilibrium observationally happens to coincide with one where both individuals gradually adapt, at the same rate of adap- 

tation , towards a common response. 

Theorem 2. The Coordination Problem (x 0 , α
x , δx ; y 0 , α

y , δy ) has a Markov-perfect Nash equilibrium in which both individuals

converge to 
γ y 

γ x + γ y x 0 + 

γ x 

γ x + γ y y 0 at a common rate of adaptation γ x + γ y , with γ x , γ y ∈ (0 , 1) . 

Theorem 2 shows that the strategic coordination problem of the two players aiming at adopting common standards has 

a simple, intuitive equilibrium. The common ideal response is the result of the linear combination of the initial responses, 

x 0 and y 0 , using the coefficients 
γ y 

γ x + γ y and 

γ x 

γ x + γ y , respectively. The scalars γ x and γ y can be obtained from Eq. (A.6) and

the corresponding version for γ y . In addition, Theorem 2 shows that both players adopt exactly the same rate of adapta-

tion, given by γ x + γ y , towards this equilibrium behavior. From the point of view of testability, this equilibrium has the

following properties on data: (i) Mon is satisfied by both individuals, (ii) CDR is satisfied by both individuals and also across

individuals, and (iii) the two sequences converge to the same point. 

Interestingly, note that the process of adaptation in this Coordination Game has characteristics of public goods settings. 

Moving away from the initial response entails a personal cost and at the same time generates a positive externality on

the other player, as the distance between the behavior of the two players is reduced. This immediately implies that the

equilibrium described will be inefficient; specifically, the maximization of aggregate welfare would require players to adapt 

more quickly than they are when they behave strategically. We illustrate this point for the symmetric case αx = αy = α and

δx = δy = δ. In this case it follows immediately that the common ideal response, both at equilibrium and the efficient one, is
x 0 + y 0 

2 . Therefore, we can focus on the comparison of the corresponding rates of adaptation. The optimality condition derived 

from the Bellman equation for the utilitarian problem would be αγ x − 2(1 − α)(1 − γ x − γ y ) − δαγ x (1 − γ x − γ y ) = 0 . 
150 
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Since the symmetry implies γ x = γ y = γ , this equation can be written as 

αγ − 2(1 − α)(1 − 2 γ ) − δαγ (1 − 2 γ ) = 0 . (3.1) 

Then Eq. (A.5) , the optimality condition from individual x ’s problem can be manipulated to resemble the former as 

αγ − 2(1 − α)(1 − 2 γ ) − δαγ (1 − 2 γ ) + { (1 − α)(1 − 2 γ )[1 + δγ (1 − 2 γ )] } = 0 . (3.2)

Now notice that the expression inside the paranthesis is strictly positive and the expression before that, which is basically 

the left hand side of Eq. (3.1) , is a strictly increasing function of γ . Hence for all (α, δ) , the γ that solves Eq. (3.1) is higher

than the one that solves Eq. (3.2) . The efficient rate of adaptation for both of the individuals, 2 γ from (3.1) , is always strictly

greater than their equilibrium rate of adaptation, 2 γ from (3.2) . 

An important insight of our model for this setting is that the rate at which individuals are converging to a common

behavioral code is actually an overestimation of their individual rates of adaptation; it is rather a ‘social rate’ of adaptation.

However, it is possible to infer their individual rates of adaptation, and the pairs of underlying individual paramaters (αi , δi )

by using our characterization in Theorem 1 and the explicit solution given in Theorem 1 . (Using Mon and CDR, we first

compute x 0 and y 0 , and then the individual rates of adaptation γ x , γ y . Then admissible (αi , δi ) appear out of the second-

degree equation in the proof of Theorem 2 .) Moreover, we can predict λi (αi , δi ) , once again, thanks to Theorem 1 . This

prediction would be useful to detect ‘seemingly’ fast adapting individuals with low predicted λi s, as they will essentially 

be the free riders of the social rate of adaptation. Hence their performance in different settings, when matched with other

individuals, for instance, will not necessarily mimic their previous behavior. 

3.2. Strategic communication 

Consider a situation in which an adaptive individual (from now on, the receiver) inquires of another individual (from 

now on, the sender), the ideal response before deciding on a sequence of behaviors. The sender can perfectly observe the

ideal response, only cares about receiver’s deviations from it and is fully aware of the adaptive nature of the receiver. Con-

sequently, the sender has incentives to manipulate the observed ideal response, attempting to influence the adaptation of 

the receiver. Also, having anticipated the strategic intentions of the sender, the receiver may internalize a different ideal 

response to the communicated one. For example, consider the case in which a patient is the receiver, a doctor is the sender,

and as a consequence of a health shock, a new ideal response is needed. The doctor hopes for an immediate adaptation

of the patient to the new situation, but the gradually adaptive nature of the patient may delay the process in time. If the

doctor believes that the patient is reluctant to adapt immediately, she may communicate a more extreme target than it is

actually necessary, just to provoke behaviors that are closest to the ideal response. Similarly, the patient can anticipate the 

strategic intentions of the doctor and react accordingly by internalizing an ideal response different to the one that has been

communicated. 

We assume that the ideal response is governed by the continuous density function f (x ∗) with mean x f and variance

v f . We model the receiver as an expected cost minimizer where costs are evaluated according to the function described

in Section 2 , and the sender’s cost function as 
∑ ∞ 

t=1 δ
t−1 
s (x ∗ − x t ) 

2 , where δs is her discount factor. We also assume that

α ∈ (0 , 1) , in order to focus on the case in which the sender and the receiver have only partially aligned preferences. All the

aspects of the game are common knowledge except the realization of x ∗. 

After observing the ideal response, the sender passes a signal ˆ x , which induces posterior beliefs about x ∗ for the re-

ceiver. The main difference with the baseline model from the perspective of the receiver is this uncertainty over the target

behavior. Therefore, we first establish how the optimal behavior of the receiver changes under uncertainty before solving 

the communication game. The following theorem shows that at the presence of uncertainty about x ∗, the receiver gradually

adapts at a rate of adaptation λ(α, δ) to the expected value of the ideal response. Suppose the receiver entertains posterior

beliefs on the ideal response given by the density function g(x ∗) , with mean x g and variance v g . 

Theorem 3. The solution to the Random Adaptation Problem (x 0 , g(x ∗) , α, δ) , is x t = λ(α, δ) x g + (1 − λ(α, δ)) x t−1 , for all t > 0 ,

with λ(α, δ) defined as in Section 2 . 

Hence what matters for the receiver is the expected value of the ideal response. We assume that upon receiving the

signal ˆ x ∈ [0 , 1] , the receiver uses Bayesian updating for her prior, i.e. p(x ∗ | ˆ x ) = q ( ̂  x | x ∗) f (x ∗) 
/∫ 1 

0 q ( ̂  x | x ) f (x ) dx . In order

to be able to solve the equilibrium explicitly, let us assume that f is uniform. Then, following Crawford and Sobel (1982) ,

a Bayesian Nash equilibrium of this game is a family of (possibly stochastic) signaling rules for the sender q ( ̂  x | x ∗) , i.e.∫ 1 
0 q ( ̂  x | x ∗) d ̂  x = 1 , and an action rule for the receiver { x t ( ̂  x ) } with the following properties: (i) for each x ∗ ∈ [0 , 1] any of the

signals used with positive probability in q ( ̂  x | x ∗) minimizes the sender’s cost given the action rule of the receiver and (ii)

for each ˆ x ∈ [0 , 1] , and taking the sender’s signalling rule as given, the action { x t ( ̂  x ) } minimizes receiver’s expected cost up

on Bayesian updating. 

The main difference from the classical cheap-talk setting is the gradual adaptation of the behavior. In the following 

theorem we deal with this by building on Theorem 3 . We collapse the dynamics thanks to the recursive structure of the

optimal action of the receiver and show that both cost functions satisfy the properties required for a partition equilibrium. 

To simplify the exposition, denote by x f (a, b) the mean of the ideal response, given the prior in the interval [ a, b] , and by

{ x t (a, b) } the sequence converging to x f (a, b) given the rate of adaptation of the receiver, λ. 
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Theorem 4. There exists an integer N̄ such that, for every 1 ≤ N ≤ N̄ , there exists { a 0 , . . . , a N } with 0 = a 0 ≤ . . . ≤ a N = 1 for

which a partition equilibrium ({ x t ( ̂  x ) } , q ( ̂  x | x ∗)) exists, with: (i) q ( ̂  x | x ∗) is uniform, supported on [ a i , a i +1 ] if x ∗ ∈ (a i , a i +1 ) , (ii)∑ ∞ 

t=1 δ
t−1 
s (a i − x t (a i , a i +1 )) 

2 = 

∑ ∞ 

t=1 δ
t−1 
s (a i − x t (a i −1 , a i )) 

2 , (iii) { x t ( ̂  x ) } = { x t (a i , a i +1 ) } whenever ˆ x ∈ [ a i , a i +1 ] , and (iv) a i +1 =
Ha i − a i −1 + 2 − H, where H(α, δr , δs ) = 

2(1 −δs (1 −λ))(2 −λ) 
λ(1+ δs (1 −λ)) 

for i < N. 

Theorem 4 solves for the partition equilibria in the communication game, in which the receiver has adaptive behavior. 

Despite the misalignment of preferences, the sender is able to partially reveal information on the ideal response to the 

adaptive receiver. The equilibria work as follows: for a partition of [0,1] into intervals, the sender merely communicates the 

interval to which the ideal response belongs, and the receiver gradually adapts, at rate of adaptation λ(α, δ) , to the expected

value of the ideal response. In our doctor-patient example, the doctor would categorize signals into degrees of severity of 

the illness or diet requirements, and communicate to the patient the category to which her case belongs to. 

4. Final remarks 

The purpose in this paper has been to offer a simple but functional theoretical framework to deal with the question of

behavioral adaptation to changing environments, a feature that we believe is the norm rather than the exception in real 

settings. Inspired by research in psychology and biology, our model envisions adaptation as a gradual process of behavioral 

change towards a target behavior. We have explored variations of the determination of the target behavior in two familiar 

economic settings. We believe these two applications merely pave the way for interesting extensions and generalizations of 

our model in more convoluted settings of behavioral change. To give a concrete example to such generalizations, one can 

consider a history dependent version of the non-adaptive cost function instead of the one that depend only on the last-

period behavior. In that case the non-adaptive part of the instantaneous cost function would be 
∑ K 

k =1 | 
∑ t−1 

τ=0 c 
t 
τ x τk − x tk | q ,

where the functional form of c t τ would determine how sticky different periods of the past for today’s self. For instance

with exponentially lagged weights more emphasis would be on the recent past or with simple arithmetic mean weights all 

past behaviors will have the same pull at any given time. 8 Certainly in this case CDR will not be satisfied as the Markov

nature of the optimal behavior disappears. Other compelling examples to extensions can be thought for our applications. For 

instance incorporation of uncertainty to the dynamic setting of Section 3.1 , where individuals only have private information 

about their own characteristics, or incorporation of an information structure as the signal to the communication setting of 

Section 3.2 , where the principal chooses the optimal information policy under commitment and knowing that the adoption 

of behavior requires an adaptation are natural, relevant and interesting questions for future exploration. 

We believe that our framework will be useful in understanding a variety of new issues related to the very question of

adaptation, and also in novel applications where adaptation is likely to play an important role. As for the former, we may

envision adaptive individuals that revise their targets due to psychological considerations. For example, it seems plausible 

that achieving goals may have a reinforcement effect on the level of aspirations, whereas failing goals create a demeaning 

effect. It would be interesting to extend our model to such a setting. As for the latter, the consideration of adaptive indi-

viduals may be instrumental in settings like markets with advertisement, political competition with informational shocks, 

etc. Our model of behavioral adaptation may draw new light in these important settings, that may have important policy 

implications. 
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Appendix A 

Proof of Theorem 1. (⇐ ) We start by solving the Adaptation Problem with parameters (x 0 , x ∗, α, δ) . Notice first that, triv-

ially, whenever α = 0 , the unique solution is x t = x ∗ for all t > 0 and, whenever α = 1 , the unique solution is x t = x 0 for all

t > 0 . We now consider the case in which α ∈ (0 , 1) . The Bellman equation of the Adaptation Problem can be written as: 

V (x t−1 ) = min { α
K ∑ 

k =1 

| x (t−1) k − x tk | q + (1 − α) 
K ∑ 

k =1 

| x ∗k − x tk | q + δV (x t ) } 

The first order conditions are: 
8 For instance consider an individual with the target behavior of 0 cigarette consumption. With history dependent cost function, consumption of 

cigarettes in period t would be compared to a weighted average of past consumption. This formulation captures the intuition that it is more difficult 

to adapt for a heavy smoker, high x 0 , with respect to a light smoker, low x 0 , not only because the distance to cover is larger (as it is the case for our 

model), but also past behavior is stickier. 
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αq | x (t−1) k − x tk | q −1 
| x (t−1) k − x tk | 
x (t−1) k − x tk 

+ (1 − α) q | x ∗k − x tk | q −1 | x ∗k − x tk | 
x ∗k − x tk 

+ δ
∂V (x t ) 

∂x tk 

= 0 . 

The Benveniste–Scheinkman conditions are: 

∂V (x t−1 ) 

∂x (t−1) k 

= −αq | x (t−1) k − x tk | q −1 
| x (t−1) k − x tk | 
x (t−1) k − x tk 

. 

Iterating one more period and combining with the first order conditions result in: 

α| x (t−1) k − x tk | q −1 
| x (t−1) k − x tk | 
x (t−1) k − x tk 

+ 

(1 − α) | x ∗k − x tk | q −1 | x ∗k − x tk | 
x ∗k − x tk 

= δα| x tk − x (t+1) k | q −1 
| x tk − x (t+1) k | 
x tk − x (t+1) k 

. (A.1) 

Now, we guess the solution to be x t = λx ∗ + (1 − λ) x t−1 for some λ ∈ (0 , 1) . Let us verify this. Since the result is trivial

whenever x ∗k = x 0 k , we have to consider the following cases: 

x ∗k > x 0 k ⇒ | x (t−1) k − x tk | = −(x (t−1) k − x tk ) 

| x ∗k − x tk | = x ∗k − x tk for all t. 

x ∗k < x 0 k ⇒ | x (t−1) k − x tk | = x (t−1) k − x tk 

| x ∗k − x tk | = −(x ∗k − x tk ) for all t. 

Hence, Eq. (A.1) can be written as: 

−α| x (t−1) k − x tk | q −1 + (1 − α) | x ∗k − x tk | q −1 = −αδ| x tk − x (t+1) k | q −1 . (A.2) 

Moreover, our guess also implies that (x tk − x (t−1) k ) = λ(x ∗k − x (t−1) k ) and (x ∗k − x tk ) = (1 − λ)(x ∗k − x (t−1) k ) for all t > 0 .

Substituting these into (A.2) , we arrive at: 

−α|−λ(x ∗k − x (t−1) k ) | q −1 + 

(1 − α) | (1 − λ)(x ∗k − x (t−1) k ) | q −1 = −αδ| − λ(1 − λ)(x ∗k − x (t−1) k ) | q −1 

finally yielding 

−αλq −1 + (1 − α)(1 − λ) q −1 = −αδλq −1 (1 − λ) q −1 

λq −1 
[ 

1 

(1 − λ) q −1 
− δ

] 
= 

1 − α

α
. (A.3) 

The left hand side of this equation is a continous and strictly increasing function of λ that approaches 0 and ∞ when λ
approaches 0 and 1, respectively. Thus, the equality must hold for exactly one value λ(α, δ) , and we have verified the guess.

To summarize, notice that setting λ(0 , δ) = 1 and λ(1 , δ) = 0 , we can then claim that for every α ∈ [0 , 1] and δ ∈ (0 , 1) ,

x t = λ(α, δ) x ∗ + (1 − λ(α, δ)) x t−1 for all t > 0 constitutes a solution to the Adaptation Problem. Uniqueness of this solution

follows from the strict convexity of the one-period cost function and the fact that the domain of the decision variable is the

unit interval. 

We now show that the solution satisfies Mon and CDR. Notice that λ(α, δ) ∈ { 0 , 1 } implies that D tk = 0 for all k and

t > 1 and both properties trivially hold. If λ(α, δ) ∈ (0 , 1) , it must be D tk � = 0 for any t > 1 and we can obtain 

D (t+1) k 

D tk 
=

x (t+1) k −x tk 

x tk −x (t−1) k 
= 

λ(α,δ) x ∗k +(1 −λ(α,δ)) x tk −λ(α,δ) x ∗k +(1 −λ(α,δ)) x (t−1) k 
x tk −x (t−1) k 

= 

(1 −λ(α,δ))(x tk −x (t−1) k ) 

x tk −x (t−1) k 
= 1 − λ(α, δ) > 0 for any k and for any t > 1 . 

This implies again both Mon and CDR and concludes the argument. 

(⇒ ) Let { x t } ∞ 

t=1 
satisfy Mon and CDR. We first show that any sequence { x tk } is either constant or strictly increasing or

strictly decreasing. Suppose first that, for a given k , there exists t such that D tk > 0 . By Mon, it must also be D (t+1) k > 0 . But

then, by iterative application of CDR, 
D 3 k 
D 2 k 

= . . . = 

D tk 
D (t−1) k 

= 

D (t+1) k 

D tk 
= 

D (t+2) k 

D (t+1) k 
= . . . , we must have D tk > 0 for all t > 1 . Suppose

now that, for a given k , there exists t such that D tk < 0 . Then, given the fact that x t belongs to the simplex, there exists

another component k ′ such that D tk ′ > 0 . By CDR, 
D (t+1) k 

D tk 
= 

D 
(t+1) k ′ 
D 

tk ′ 
> 0 , and we must have D (t+1) k < 0 . By iterative application

of CDR, D tk < 0 for all t > 1 . We have then proved that every sequence { x tk } is either constant or strictly increasing or strictly

decreasing. Hence, for every k , since { x tk } is a monotone sequence in [0,1], it must converge. We denote the limit of this

sequence by x ∗k . 

We now show that { x t } ∞ 

t=1 
is the solution of an Adaptation Problem. If D tk = 0 for all t > 1 and for all k , we can simply

define x 0 = x 1 = x ∗ and { x t } ∞ 

t=1 will be the solution to (x 0 , x ∗, 1 , δ) for any δ ∈ (0 , 1) . Then, suppose that there exists k such

that { x tk } is not constant. Define λ = 

x 2 k −x 1 k 
x ∗k −x 1 k 

. From the reasoning in the previous paragraph we know that { x tk } is strictly

monotone, and hence λ ∈ (0 , 1) . We now show recursively that x tk = λx ∗k + (1 − λ) x (t−1) k holds for all t > 1 . By definition,

x 2 k = λx ∗k + (1 − λ) x 1 k . Assume that this holds for all values up to t . We show that it also holds for x (t+1) k . First notice

that x 3 k − x 2 k = (1 − λ)(x 2 k − x 1 k ) . By CDR,
x (t+1) k −x tk 

x tk −x (t−1) k 
= 

x 3 k −x 2 k 
x 2 k −x 1 k 

= (1 − λ) for all t > 1 . But then, x (t+1) k − x tk = (1 − λ)(x tk −
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x (t−1) k ) . By the induction argument, we have x (t+1) k = (1 − λ) x tk − (1 − λ) x (t−1) k + x tk = λx ∗k + (1 − λ) x tk , as desired. For

any other non-constant { x tk ′ } , CDR also ensures that x tk ′ = λx ∗k ′ + (1 − λ) x (t−1) k ′ holds for every t > 1 . This is also trivially

true for any other k ′ such that { x tk ′ } is constant. We then have found a value λ ∈ (0 , 1) such that x tk = λx ∗k + (1 − λ) x (t−1) k 

holds for every k and every t > 1 . Defining x 0 k = 

x 1 k −λx ∗k 
1 −λ

guarantees that x 1 = λx ∗ + (1 − λ) x 0 . Hence, from the sufficiency

part, we just need to find α ∈ (0 , 1) and δ ∈ (0 , 1) such that λ = λ(α, δ) holds, as given by Eq. (A.3) . Notice that λ(α, δ) is

an onto function. Then, fixing any δ ∈ (0 , 1) , Eq. (A.3) defines α ∈ (0 , 1) uniquely, concluding the proof. �

Proof of Theorem 2. Consider individual x . The period t pay-off depends on not only her previous action x t−1 , but also

on the period strategy of the other player, which in turn is also a function of x t−1 as well as y t−1 , i.e., y t = σ y 
t (x t−1 , y t−1 ) .

We first show that the strategy profile (σ x , σ y ) defined by σ i 
t (x t−1 , y t−1 ) = γ i j t−1 + (1 − γ i ) i t−1 for i, j ∈ { x, y } with i � = j

for all t > 0 is indeed a Markov-perfect Nash equilibrium for a unique pair of γ x , γ y ∈ (0 , 1) . The Bellman equation of the

Coordination Problem for individual x can be written as: 

V 

x (x t−1 , y t−1 ) = min { αx (x t−1 − x t ) 
2 + (1 − αx )(σ y 

t (x t−1 , y t−1 ) − x t ) 
2 + δx V 

x (x t , y t ) } . 
The first order condition of the right hand side of this equation is: 

−2 αx (x t−1 − x t ) − 2(1 − αx )(σ y 
t (x t−1 , y t−1 ) − x t ) + δx ∂V (x t , y t ) 

∂x t 
= 0 , 

and the first derivatives with respect to the state variables are given by: 

∂V 

x (x t−1 , y t−1 ) 

∂x t−1 

= 2 αx (x t−1 − x t ) + 2(1 − αx )(σ y 
t (x t−1 , y t−1 ) − x t ) 

∂σ y 
t (x t−1 , y t−1 ) 

∂x t−1 

∂V 

x (x t−1 , y t−1 ) 

∂y t−1 

= 2(1 − αx )(σ y 
t (x t−1 , y t−1 ) − x t ) 

∂σ y 
t (x t−1 , y t−1 ) 

∂y t−1 

Iterating the first expression one more period and combining it with the first order condition result in: 

−2 αx (x t−1 − x t ) − 2(1 − αx )(σ y 
t (x t−1 , y t−1 ) − x t )+ (A.4) 

δx [2 αx (x t − x t+1 ) + 2(1 − αx )(σ y 
t+1 

(x t , y t ) − x t+1 ) 
∂σ y 

t+1 
(x t , y t ) 

∂x t 
] = 0 , 

Now notice that for (σ x , σ y ) as defined, we get σ y 
t − σ x 

t = y t − x t = (1 − γ x − γ y )(y t−1 − x t−1 ) = . . . = (1 − γ x −
γ y ) t (y 0 − x 0 ) . Second, notice also that (x t−1 − x t ) = γ x (x t−1 − y t−1 ) = −γ x (1 − γ x − γ y ) t−1 (y 0 − x 0 ) . Since, 

∂σ y 
t+1 

(x t ,y t ) 

∂x t 
= γ y ,

Eq. (A.4) becomes: 

2 αx γ x (1 − γ x − γ y ) t−1 (y 0 − x 0 ) − 2(1 − αx )(1 − γ x − γ y ) t (y 0 − x 0 )+ 

δx [ −2 αx γ x (1 − γ x − γ y ) t (y 0 − x 0 ) + 2(1 − αx )(1 − γ x − γ y ) t+1 (y 0 − x 0 ) γ
y ] = 0 , 

or simply, 

αx γ x − (1 − αx )(1 − γ x − γ y ) + δx [ −αx γ x (1 − γ x − γ y ) + (1 − αx ) γ y (1 − γ x − γ y ) 2 ] = 0 . (A.5) 

To obtain Eq. (A.5) , we have used the fact that γ x + γ y � = 1 . This follows from the fact that the individual faces non-zero

routine costs, αx > 0 , which leads her not to adapt completely after one period. Now, Eq. (A.5) can be rewritten as a second-

degree equation on γ x as a function of αx , δx , γ y : 

δx [ αx (1 − γ y ) + γ y ](γ x ) 2 + [1 − 2(1 − αx ) δx γ y (1 − γ y ) − δx (1 − γ y ) αx ] γ x + (A.6) 

(1 − αx )(1 − γ y )[ δx γ y (1 − γ y ) − 1] = 0 . 

The negative root of this expression is always smaller than 0, hence γ x (αx , δx , γ y ) would be the positive root, that always

lies in (0,1) (the explicit expression is omitted as it is cumbersome). Notice that the solution to individual y ’s problem would

yield γ y (αy , δy , γ x ) ∈ (0 , 1) in a similar way. The uniqueness of the pair (γ x , γ y ) follows from the fact that both of these

functions are continuous in (0,1) and strictly decreasing in γ y and γ x , respectively. Also, notice that, in consonance with 

the adaptation rate obtained in Theorem 1 , the limits of γ x when γ y approaches to 0 and 1 are, respectively, λ(αx , δx ) < 1

and 0. Similarly, the limits of γ y when γ x approaches 0 and 1 are, respectively, λ(αy , δy ) < 1 and zero. Thus, for given

(αx , αy , δx , δy ) , the reaction functions must cross (only once) and hence, there exists a unique pair (γ x , γ y ) ∈ (0 , 1) . 

For the pair of strategies in equilibrium, (γ x , γ y ) , notice that individual x converges to x 0 + 

∑ ∞ 

t=1 (x t − x t−1 ) = x 0 +∑ ∞ 

t=1 γ
x (1 − γ x − γ y ) t−1 (y 0 − x 0 ) = x 0 + 

γ x (y 0 −x 0 ) 
γ x + γ y = 

γ x y 0 + γ y x 0 
γ x + γ y = 

γ x 

γ x + γ y y 0 + 

γ y 

γ x + γ y x 0 , as desired. With respect to the rate of

adaptation, notice that x t+1 − x t = γ x (1 − γ x − γ y ) t (y 0 − x 0 ) = (1 − γ x − γ y )(x t − x t−1 ) and hence, from the reasoning in

Theorem 1 , the rate of adaptation of x is equal to γ x + γ y . The same holds for individual y , concluding the proof. �

Proof of Theorem 3. The receiver minimizes the expected cost function E [ 
∑ ∞ 

t=1 δ
t−1 (α(x t−1 − x t ) 

2 + (1 − α)(x ∗ − x t ) 
2 )] ,

which can be equivalently expressed as follows: 

E [ ·] = 

∞ ∑ 

t=1 

δt−1 α(x t−1 − x t ) 
2 + (1 − α) E 

[ 

∞ ∑ 

t=1 

δt−1 (x ∗ − x t ) 
2 

] 
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= 

∞ ∑ 

t=1 

δt−1 α(x t−1 − x t ) 
2 + (1 − α) E 

[ 

∞ ∑ 

t=1 

δt−1 (x ∗ − x g + x g − x t ) 
2 

] 

= 

∞ ∑ 

t=1 

δt−1 α(x t−1 − x t ) 
2 + (1 − α) E 

[ 

∞ ∑ 

t=1 

δt−1 ((x ∗ − x g ) 
2 + (x g − x t ) 

2 + 2(x ∗ − x g )(x g − x t )) 

] 

= 

∞ ∑ 

t=1 

δt−1 α(x t−1 − x t ) 
2 + (1 − α) 

[ 

∞ ∑ 

t=1 

δt−1 (v g + (x g − x t ) 
2 + E [2(x ∗ − x g )(x g − x t )]) 

] 

. 

Now, notice that E [2(x ∗ − x g )(x g − x t )] must be equal to zero, and hence, we can conclude that E [ 
∑ ∞ 

t=1 δ
t−1 (α(x t−1 −

x t ) 
2 + (1 − α)(x ∗ − x t ) 

2 )] = 

∑ ∞ 

t=1 δ
t−1 (α(x t−1 − x t ) 

2 + (1 − α)(x g − x t ) 
2 ) + (1 − α) 

v g 
1 −δ

. It is obvious from this expression

that the expected cost function is equivalent to the cost function of the baseline model with the expected value of the

ideal response x g , plus an additional component that does not depend on x t . Thus the solution follows immediately from

Theorem 1 as x t = λ(α, δ) x g + (1 − λ(α, δ)) x t−1 , for all t > 0 . �

Proof of Theorem 4.. From Theorem 3 , we know that given g(x ∗) , the cost minimizing action for the receiver is to choose

{ x t } such that x t = λx g + (1 − λ) x t−1 , for all t > 0 . By using this recursive process and the fact that α, δ, λ ∈ (0 , 1) , we can

rewrite the cost functions of both the sender and the receiver as a sole function of x g instead of using the entire sequence

of behaviors. Formally: 

C s (x g , x ∗; x 0 , α, δ, δs ) = 

(x ∗ − x g ) 2 

1 − δs 
+ 

2(1 − λ)(x ∗ − x g )(x g − x 0 ) 

1 − δs (1 − λ) 
+ 

(1 − λ) 2 (x g − x 0 ) 
2 

1 − δs (1 − λ) 2 
, 

C r (x g , x ∗; x 0 , α, δ) = 

(1 − α)(x ∗ − x g ) 2 

1 − δ
+ 

2(1 − α)(1 − λ)(x ∗ − x g )(x g − x 0 ) 

1 − δ(1 − λ) 

+ 

[ αλ2 + (1 − α)(1 − λ) 2 ](x g − x 0 ) 
2 

1 − δ(1 − λ) 2 
. 

These functions are twice continuously differentiable functions with 

∂ 2 C i 
∂x 2 g 

> 0 and 

∂ 2 C i 
∂ ̄x x g 

< 0 , i ∈ { s, r} . Therefore, the exis-

tence of the equilibrium as described follows from Theorem 1 of Crawford and Sobel (1982) . Having received the message

that the ideal response belongs to (a i , a i +1 ) , the posterior on this interval will also be uniform and the receiver will gradually

adapt to the point 
a i + a i +1 

2 . The intervals can be determined through the arbitrage condition 

∑ ∞ 

t=1 δ
t−1 
s (a i − x t (a i , a i +1 )) 

2 =∑ ∞ 

t=1 δ
t−1 
s (a i − x t (a i −1 , a i )) 

2 . That is, if the signal belongs to the boundary of two intervals, the sender must be indifferent

between the gradual adaptation to the low or the high interval. Using the uniformity assumption, algebraic manipulation 

shows that this simply becomes a second degree difference equation a i +1 = Ha i − a i −1 + 2 − H, where H = 

2(1 −δs (1 −λ))(2 −λ) 
λ(1+ δs (1 −λ)) 

>

2 . Hence, the solutions to the difference equation are of the form k 1 r 
i 
1 

+ k 2 r 
i 
2 

+ x 0 , where r 1 = 

H + 
√ 

H 2 −4 
2 and r 2 = 

H −
√ 

H 2 −4 
2 

are the different real roots of the associated characteristic function. Since a 0 = 0 and a N = 1 , the constants become k 1 =
(1 −r N 

2 
) x 0 −1 

r N 
2 

−r N 
1 

and k 2 = 

1 −(1 −r N 
1 
) x 0 

r N 
2 

−r N 
1 

, providing ultimately the complete partition with N intervals. �
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