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Abstract. Consider the aggregation of a collection of individual stochastic behav-

iors that fit a given stochastic choice model. We say that such a model has a repre-

sentative agent if their aggregate stochastic behaviour also fits the model. We show

that the Luce model and several prominent extensions thereof do not have a repre-

sentative agent. On the positive side, we show that the random utility model and

several domain-specific restrictions thereof do have a representative agent.
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1. Introduction

The aggregation of heterogeneous individual behavior is one of the most important

research topics in economic theory, and it has major implications for macroeconomics,

political economics, and empirical and experimental research. Both classic and recent

findings are negative. Only under very restrictive assumptions, do aggregate demand

or aggregate preferences inherit the properties of their individual counterparts (see the

classic works of Gorman, 1953; Eisenberg, 1961; Sonnenschein, 1973; Mantel, 1974;

Debreu, 1974; and recent findings by Jackson and Yariv, 2016). The results of the

above-cited studies seriously question the representative agent approach, by showing

that aggregate behavior does not necessarily match the class of individual behaviors

under consideration, and hence the use of a representative agent approach may create

problems for welfare analysis and prediction purposes (see, e.g., Kirman, 1992).
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In this paper we revisit the study of the representative agent and, in a departure from

the standard approach in the literature, take individual behavior to be stochastic. Psy-

chologists and economists alike have long advocated the stochastic view of behavior.1

This view has recently generated renewed interest because it enables the estimation of

relevant preference parameters and provides a stylized way to introduce a number of

behavioral considerations.2 This paper examines the most influential stochastic choice

models to determine whether they have a representative agent. Formally, we say that

a model has a representative agent if for every collection of individual stochastic choice

functions that fit the model, the corresponding aggregate stochastic behavior also fits

it.

In line with the literature on the aggregation of individual deterministic behavior,

we present impossibility results. Notably, we show that the Luce model (also known as

the logit model) has no representative agent and that there is basically no way to over-

come this shortcoming; the slightest individual heterogeneity places aggregate behavior

outside the Luce model. These are very negative findings, since the Luce model is, ar-

guably, the most influential stochastic choice model, both in theoretical and empirical

terms. The implications are immediately obvious: even when the Luce model is our

preferred model of individual behavior, it simply cannot be used to explain aggregate

behavior, because it could yield biased estimates, turn out inaccurate predictions, and

ultimately lead to misleading welfare implications.

We then show that these negative findings extend to several prominent generaliza-

tions of the Luce model, specifically, those with an additive i.i.d. error on the utility

evaluations (see Train (2009) for an introduction); additive perturbed utility models

(Fudenberg, Iijima, and Strzalecki, 2015); and the elimination by aspects model of

Tversky (1972), all of which have no representative agent.

In addition, we provide a technical result which is useful in determining whether a

model has a representative agent. We illustrate the use of the technique in an exercise

to show that also in the random consideration stochastic choice model of Manzini and

1Classic references in psychology and economics are Thurstone (1927), Luce (1959), Tversky

(1972), Block and Marshak (1960), and McFadden and Richter (1990).
2See Agranov and Ortoleva (2016) for a recent experimental study showing that individual behav-

ior is intrinsically stochastic. For recent theoretical papers see Gul and Pesendorfer (2006), Fudenberg

and Strzalecki (2013), Gul, Natenzon, and Pesendorfer (2014), Manzini and Mariotti (2014), Fuden-

berg, Iijima and Strzalecki (2015) and Caplin and Dean (2016).
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Mariotti (2014), which is not an extension of the Luce model, there is no representative

agent.

Importantly, and in sharp contrast with the literature on the representative agent, we

are also able to present some positive findings. We show that there is a representative

agent in the influential random utility model of Block and Marshak (1960) and also

in important subclasses of the random utility model, such as the random expected

utility model of Gul and Pesendorfer (2006), the random inter-temporal choice model

of Lu and Saito (2016), or the single-peaked random utility model of Apesteguia,

Ballester and Lu (2016). We therefore offer a general model, the random utility model,

which is widely applicable in the theory of individual decision-making and in micro-

econometrics, and also a series of domain-specific versions of the model, all of which

can be used for aggregation purposes. These are encouraging results, especially in light

of the long history of negative or very restrictive results reported in the literature for

the aggregation of individual deterministic behavior.

We close the introduction by relating our work to that part of the aggregation litera-

ture that has taken some form of stochastic approach. We start with the classic works

of McFadden (1981) and Anderson, de Palma and Thisse (1988), which have strongly

influenced the industrial organization literature. McFadden (1981) takes the data gen-

erated by a random utility model and shows that, under certain assumptions, there is

a deterministic utility function, defined over fractions of consumption, which yields the

same data. Relatedly, Anderson, de Palma and Thisse (1988) assume a logit model of

a given price-based product evaluation, and find a deterministic utility function that

is consistent with it. In both cases, the stochastic data are derived from aggregating

a group of deterministic individuals, and the deterministic utility function is that of

the representative agent. Note that this approach is very different from ours, where

we take a group of stochastic individuals and study whether their aggregate stochastic

behavior is of the same nature as their individual stochastic behaviors.

As far as we are aware, the only work that considers the problem of aggregating

stochastic individuals is Golman (2011, 2012). In a game-theoretic setting, he uses a

model of quantal response equilibrium with homogeneous utility evaluations and het-

erogeneous noise among agents, and basically shows that the noise structure of the

aggregate behavior may be different from that of the individual behaviors. Hence,

using our terminology, Golman shows that the i.i.d. additive random utility model

where all individuals share the same utility evaluation, but potentially different noise
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distributions, is not a representative-agent model. His result is related to our Corol-

lary 1, where we show that the i.i.d. additive random utility model, with potential

heterogeneity of utility evaluations and noise distributions across individuals, has no

representative agent. Overall, we depart from Golman’s work by providing a system-

atic study of the aggregation of stochastic individual decision-making, which entails

the analysis of all the relevant stochastic models in the literature. This allows us to

demarcate models without a representative agent and, importantly, it enables us to

contribute some positive findings concerning long-standing stochastic choice models.

2. Stochastic Choice Functions and the Representative Agent

Let X be a finite set of alternatives. A stochastic choice function is a mapping

ρ : X × 2X \ ∅ → [0, 1] such that the following properties hold: (i) ρ(x,A) > 0 implies

that x ∈ A and (ii)
∑

x∈A ρ(x,A) = 1. We interpret ρ(x,A) as the probability of

choosing alternative x from menu A. We denote by SCF the space of all stochastic

choice functions.

A subset of SCF is called a model. We say that a model has a representative agent if,

for every finite collection of stochastic choice functions {ρi}Ii=1 conforming to the model,

and every {λi}Ii=1 with λi > 0 and
∑I

i=1 λi = 1, the aggregate behavior ρ̄ =
∑I

i=1 λiρi

also conforms to the model. In other words, a model has a representative agent if it is

a convex subset of SCF. Otherwise, we say that the model has no representative agent.

Notice that the unrestricted model SCF does have a representative agent. We now

investigate to determine whether the most relevant models have or do not have a

representative agent.

3. The Model of Luce and Three Extensions

The most influential stochastic choice model is the Luce (1959) model, which has

provided the basis for a substantial theoretical literature, and has proved instrumental

in the micro-econometrics of discrete choice analysis. Luce choice probabilities are

formally written as ρ(x,A) = U(x)∑
y∈A U(y)

where U : X → R++ represents a utility

evaluation of the alternatives. That is, alternatives from the relevant menu A are

selected with probabilities proportional to their importance. Denoting by Luce the set

of all Luce stochastic choice functions, the following example illustrates how Luce has

no representative agent.
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Example 1. Let X = {x, y, z}. Consider the following two Luce utility values:

U1(x) = 2, U1(y) = 1, and U1(z) = 4, and U2(x) = 1, U2(y) = 2, and U2(z) = 1. Table

2 summarizes the corresponding Luce stochastic choice functions ρ1 and ρ2, together

with the aggregate behavior ρ̄ implied by weights λ1 = λ2 = 1
2
.

Table 1. Two Luce individuals and their aggregate behavior

ρ1 ρ2 ρ̄

(x, {x, y}) 2
3

1
3

1
2

(x, {x, z}) 1
3

1
2

5
12

(y, {y, z}) 1
5

2
3

13
30

(x, {x, y, z}) 2
7

1
4

15
56

(y, {x, y, z}) 1
7

1
2

9
28

Now suppose, by contradiction, that ρ̄ ∈ Luce, for some Luce values Ū . Notice that

ρ̄(x, {x, y}) = 1
2

= ρ̄(y, {x, y}) implies that Ū(x) = Ū(y). However, ρ̄(x, {x, y, z}) =
15
56
< 9

28
= ρ̄(y, {x, y, z}) implies that Ū(x) < Ū(y), which is a contradiction.

0.5 1

0.5

1

ρ (x, ·)

ρ (y, ·)

ρ1(·, {x, y})

ρ̄(·, {x, y})

ρ2(·, {x, y})

ρ1(
·, {x

, y,
z})

ρ̄(
·, {
x,
y,
z}

)

ρ 2
(·,
{x
, y
, z
})

Figure 1. Geometric Representation of Luce’s Example

Figure 1 depicts the geometry of the problem. The Luce choice probabilities in

menu {x, y} lie on the line segment connecting points (1, 0) and (0, 1). Luce implies

that the choice ratios between x and y in {x, y, z} are the same as those from {x, y},
which is represented by the dashed lines connecting the individual choice probabilities

in {x, y, z} and {x, y} with the origin. However, given the asymmetry in the individual

evaluations of z, the aggregate behavior of {x, y} does not lie on the same ray as the



6

aggregate behavior of {x, y, z}, and hence the aggregate behavior does not fit the Luce

model. �

The logic in Figure 1 suggests that the non-representative agent result can be formu-

lated in much stronger terms. Notice in the figure that even the slightest asymmetry

between individuals in terms of their evaluation of z means that aggregate behavior

no longer falls on its corresponding ray. We use this argument in Proposition 1 to

show formally that, for a subset of Luce to have a representative agent, it must con-

tain no heterogeneity whatsoever. In other words, we cannot sensibly restrict the Luce

model and obtain positive results, since, whenever we allow for two, or more, different

Luce stochastic choice behaviors, there is no representative agent. This shows that the

non-existence of a representative agent pervades the Luce model as a whole.

Proposition 1. Let |X| ≥ 3. If L ⊆ Luce has a representative agent, then |L| = 1.

Proof of Proposition 1: Let ρ1 and ρ2 in L. Since L ⊆ Luce, there exist Luce values

U1 and U2 that generate ρ1 and ρ2 and, without loss of generality, we can assume that∑
x∈X U1(x) =

∑
x∈X U2(x) = K. Consider the aggregate behavior ρ̄ = 1

2
ρ1 + 1

2
ρ2. If

L has a representative agent, then ρ̄ ∈ L ⊆ Luce. Hence, for every triple of distinct

alternatives x, y, z, it must be that

ρ̄(x,X)

ρ̄(y,X)
=
ρ̄(x,X \ {z})
ρ̄(y,X \ {z})

which is equivalent to

1
2
U1(x)
K

+ 1
2
U2(x)
K

1
2
U1(y)
K

+ 1
2
U2(y)
K

=

1
2

U1(x)
K−U1(z)

+ 1
2

U2(x)
K−U2(z)

1
2

U1(y)
K−U1(z)

+ 1
2

U2(y)
K−U2(z)

.

This ultimately implies that [U1(z)− U2(z)][U1(y)U2(x)− U1(x)U2(y)] = 0, i.e., either

U1(z)− U2(z) = 0 or U1(y)U2(x)− U1(x)U2(y) = 0.

Suppose that U1 6= U2. Then, there must exist alternatives α and β in X such that

U1(α) > U2(α) and U1(β) < U2(β). Trivially, U1(β)U2(α)−U1(α)U2(β) 6= 0 and, given

the conclusion in the previous paragraph, it must be that U1(γ) = U2(γ) for every

γ ∈ X \ {α, β}. But then, [U1(α) − U2(α)][U1(β)U2(γ) − U1(γ)U2(β)] 6= 0, which is a

contradiction. Thus, we have proved that U1 = U2 and hence, |L| = 1. �

We now show that the aggregate behavior in Example 1 is not only outside Luce, but

also outside three important extensions of the Luce model. This indicates that these

three models also fail to have a representative agent. Considering the simplicity of the
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example, these results reveal the broad magnitude of the problem. Later, in Section

5, we will return to these, and other, models to formally delineate the commonalities

underlying the non-existence results.

3.1. iid Errors. This subsection analyzes the most general version of this model, where

ρ(x,A) = Pr{U(x) + γ(x) > U(y) + γ(y) for all y ∈ A \ x} for a utility function U

over X and for i.i.d. realizations from a continuous and strictly increasing distribution

Γ over the reals.3 Denote by iid all the possible stochastic choice functions that are

generated in this way. It is well-known that this class of models includes the Luce

model, as emerges from the assumption that Γ is extreme type-I.

We now replicate the logic of Example 1 within the larger class of iid. Specifically,

given that ρ̄(x, {x, y}) = 1
2

= ρ̄(y, {x, y}), the i.i.d. nature of the error implies that

Ū(x) = Ū(y), and hence it should also be that ρ̄(x, {x, y, z}) = ρ̄(y, {x, y, z}), which is

not the case. This proves the following corollary.

Corollary 1. iid has no representative agent.

3.2. Additive perturbed utility. The additive perturbed utility model (APUM)

contemplates a decision-maker maximizing expected utility and a convex perturbation

function that can be interpreted as a desire for randomization, or the cost of sticking to

a plan, etc (see Mattsson and Weibull, 2002; Fudenberg, Iijima, and Strzalecki, 2014).

Adopting the formal specification of Fudenberg, Iijima, and Strzalecki (2014), in an

APUM there is a utility function U over X representing the value of each alternative,

and a cost function c : [0, 1] → R ∪ {∞}, strictly convex, C1 on (0, 1) and with

limq→0 c
′(q) = −∞, representing the cost of choosing any alternative with a given

probability. Denote by ρ(A) = {ρ(x,A)}x∈A the choice probabilities in A. Then, the

APUM choice probabilities are ρ(A) = arg maxp
∑

x∈A[U(x)p(x) − c(p(x))]. Denote

by APUM the set of all APUM stochastic choice functions. It is a well-known fact

that, under a particular cost function, APUM includes Luce (see Fudenberg, Iijima, and

Strzalecki, 2014).

Example 1 again serves to show that APUM has no representative agent. The argument

is analogous to the previous one. Notice that, whenever ρ̄(x, {x, y}) = 1
2

= ρ̄(y, {x, y}),
the symmetry and continuity of the cost function c again imply that Ū(x) = Ū(y), and

hence it should follow that ρ̄(x, {x, y, z}) = ρ̄(y, {x, y, z}), which is not the case. The

following corollary is therefore proved.

3See Train (2009) for a textbook introduction of this model.
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Corollary 2. APUM has no representative agent.

3.3. Elimination by Aspects. Tversky (1972) introduces the following attribute-

based stochastic choice model, which he calls elimination by aspects (EBA). Alter-

natives in X are evaluated by their attributes or aspects. Faced with menu A, the

individual randomly selects one aspect and eliminates all the alternatives in A that

do not possess it. The individual continues in this way until only one alternative

remains, and this is her choice. Aspects are selected à la Luce, that is, with prob-

abilities proportional to their importance, and this determines the choice probabil-

ities. Formally, let W : 2X → R++ represent the evaluation of aspects. Then,

ρ(x,A) =
∑

B:B 6⊇AW (B)ρ(x,A∩B)∑
B:B∩A6∈{A,∅}W (B)

. Denote by EBA the set of all EBA stochastic choice

functions.

An W consistent with the ρ̄ of Example 1 should satisfy the following system of

equations:

ρ̄(x, {x, y}) = W ({x})+W ({x,z})
W ({x})+W ({y})+W ({x,z})+W ({y,z}) = 1

2

ρ̄(x, {x, z}) = W ({x})+W ({x,y})
W ({x})+W ({z})+W ({x,y})+W ({y,z}) = 5

12

ρ̄(y, {y, z}) = W ({y})+W ({x,y})
W ({y})+W ({z})+W ({x,y})+W ({x,z}) = 13

30

ρ̄(x, {x, y, z}) =
W ({y})+W ({x,y}) 1

2
+W ({x,z}) 5

12
W ({x})+W ({y})+W ({z})+W ({x,y})+W ({x,z})+W ({y,z}) = 15

56

ρ̄(y, {x, y, z}) =
W ({y})+W ({x,y}) 1

2
+W ({y,z}) 13

30
W ({x})+W ({y})+W ({z})+W ({x,y})+W ({x,z})+W ({y,z}) = 9

28

It is routine to check that this system of equations does not have any solution with

strictly positive values, leading us to the following result.

Corollary 3. EBA has no representative agent.

4. Random Utility Models

This section shows the presence of a representative agent in the general class of

random utility models (RUMs), and in certain relevant domain restrictions. RUMs

have proved very useful, both in theory and applications, and encompass a wide array of

important models, such as that of Luce (see, e.g., Block and Marshak, 1960; McFadden,

1981).

In a RUM, the individual entertains preferences randomly. At the moment of choice,

a preference is realized, and the maximal alternative for that preference is chosen from

the menu of available alternatives. Formally, denote by P the collection of all linear
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orders over X.4 Consider the simplex ∆(P) of all probability distributions on P . Any

µ ∈ ∆(P) defines an associated stochastic choice function by considering ρ(x,A) =∑
P∈P:x=mP (A) µ(P ), where mP (A) denotes the maximal element in A according to P .5

We denote by RUM the set of all RUM stochastic choice functions.

We now revisit Example 1. Table 2 provides the individual distributions, µ1 and µ2,

that generate the stochastic choice functions ρ1 and ρ2. Notably, the average distribu-

tion µ̄ = 1
2
µ1 + 1

2
µ2 does indeed generate aggregate behavior ρ̄, thus showing that ρ̄ is

also present in RUM. To see the rationale behind this observation, notice that, for any

alternative x and menu A, ρ̄(x,A) = 1
2
ρ1(x,A) + 1

2
ρ2(x,A) = 1

2

∑
P :x=mP (A) µ1(P ) +

1
2

∑
P :x=mP (A) µ2(P ) =

∑
P :x=mP (A)(

1
2
µ1(P ) + 1

2
µ2(P )) =

∑
P :x=mP (A) µ̄(P ).

Table 2. RUMs generating the stochastic choice of Example 1

xyz xzy yxz yzx zxy zyx

µ1
2
35

8
35

1
21

2
21

8
21

4
21

µ2
1
6

1
6

1
4

1
4

1
12

1
6

µ̄ 47
420

83
420

25
168

29
168

117
504

45
252

Note: ωηθ denotes the linear order P with

ωPηPθ.

It is immediate that this observation extends to every collection of RUM stochastic

choice functions, which shows that RUM is convex. Thus, the next result immediately

follows.

Proposition 2. RUM has a representative agent.

The convexity of RUM had already been pointed out by Gul, Natenzon and Pe-

sendorfer (2014). Notice that the connection between convexity and the presence of a

representative agent in RUM is novel.

We now extend the logic leading to the above result to particular RUMs that impose

more behavioral structure, and are relevant to understanding specific settings, such as

those involving risk preferences or time preferences, etc. The argument rests on the

fact that the mapping from ∆(P) to SCF, which assigns to any probability distribution

µ the corresponding RUM stochastic choice function, as suggested above, is a linear

mapping. Thus, the next result immediately follows.

4A linear order is a transitive, complete and asymmetric binary relation.
5That is, mP (A)Py for every y ∈ A \ {mP (A)}.
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Corollary 4. The set of RUMs associated to a convex subset of ∆(P) has a represen-

tative agent.

Notice that, for every Q ⊆ P , ∆(Q) is a convex subset of ∆(P), and hence Corollary

4 implies that the following families of RUMs have a representative agent.

(1) RUMs with expected utilities (Gul and Pesendorfer, 2006): Let X be a set of

lotteries and consider all the probability distributions with support on the set

of preferences which admit an expected utility representation.

(2) RUMs with discounted utilities (Lu and Saito, 2016): Let X be a set of mon-

etary streams and restrict RUMs to the set of probability distributions with

support on preferences which admit a discounted utility representation.

(3) RUMs with single-peaked (or single-dipped) preferences (Apesteguia, Ballester

and Lu, 2016): Let ≺ be an order over the set of alternatives X and consider

the set of probability distributions with support on preferences which are single-

peaked or single-dipped with respect to ≺.

To conclude, notice also that the same logic can be applied to parametric restric-

tions of the models described above. For example, there is also a representative agent

in RUMs with CRRA expected utilities and in RUMs with exponential discounted util-

ities. These results are of high practical relevance since both of which are often used

in applied work.

5. The Instrumental Value of Random Utility Models6

Given the definition of RUM and the linearity argument used in Proposition 2, it is

immediate to see that RUM can be written as the convex hull of the set of stochastic

choice functions rationalized by some linear order, a class we denote by RAT.7 Hence, it

follows that every model ∆ containing RAT and having a representative agent must also

contain RUM. In this section we offer a technical result which, by extending this idea,

establishes sufficient conditions for a model not to have a representative agent. This

result can be used to prove, alternatively, that the models studied in Section 3 have

no representative agent and, also, to establish further negative results – in particular,

6We owe the main result of this section to Drew Fudenberg, Ryota Iijima and Tomasz Strzalecki,

who kindly commented on a previous version of this paper.
7We formally write ρ ∈ RAT whenever there exists P ∈ P such that, for every menu A and

alternative x, x = mP (A) implies that ρ(x,A) = 1.
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we show that the random consideration set model of Manzini and Mariotti (2014) is

another model with no representative agent.

Formally, suppose we consider a model ∆ that may fail to contain RAT, but find, when

taking the closure of the model, cl(∆), that, in fact, RAT ⊆ cl(∆). We can extend our

previous reasoning to prove that a necessary condition for ∆ to have a representative

agent is that RUM ⊆ cl(∆). This immediately implies that, if one closed superset of ∆

fails to contain RUM, the model ∆ has no representative agent. The applicability of the

result is facilitated by understanding a closed superset of ∆ as the class of stochastic

choice functions that satisfy a closed property, as shown below.

Proposition 3. Let ∆ be such that RAT ⊆ cl(∆). If there exists a closed model M with

∆ ⊆M and RUM 6⊆M , then ∆ has no representative agent.

Proof of Proposition 3: Proceeding by contradiction, suppose that ∆ has a rep-

resentative agent. Let ρ ∈ RUM and RAT = {r1, r2, . . . , r|P|}. By the logic in Propo-

sition 2, we know that there are weights λ1, . . . , λ|P| such that ρ =
∑|P|

i=1 λiri. Since

ri ∈ RAT ⊆ cl(∆), we can find a sequence {ρji} such that {ρji} ⊆ ∆ and limj ρ
j
i = ri.

Hence, ρ =
∑|P|

i=1 λiri =
∑|P|

i=1 λi limj ρ
j
i = limj

∑|P|
i=1 λiρ

j
i . Since ∆ has a representative

agent,
∑|P|

i=1 λiρ
j
i = δj ∈ ∆ and hence, ρ = limj δ

j ∈ cl(∆) ⊆ M . We have proved that

RUM ⊆M , which is a contradiction. �

Proposition 3 can then be used to reproduce the negative results of Section 3. TakeM

to represent the set of stochastic choice functions satisfying weak stochastic transitivity,

which clearly constitute a closed model.8 It is well-known that RUMs do not necessarily

satisfy weak stochastic transitivity, but the i.i.d. errors models do.9 Furthermore,

Fudenberg, Iijima, and Strzalecki (2014) show that APUM satisfies weak stochastic

transitivity and Tversky (1972) argues that his EBA does also. Then, it is clear that

Luce, iid, APUM and EBA are all subsets of M , unlike RUM, which is not. Now, let r ∈ RAT

be rationalized by preference P , with x1Px2P . . . Px|X|. Clearly, the sequence of Luce

utility values defined by U j(xi) = 2j(|X|−i) creates a sequence of Luce stochastic choice

functions converging to r, and hence RAT ⊆ cl(Luce). Since Luce is in the intersection

of iid, APUM, and EBA, all the conditions of Proposition 3 hold, showing that none of

these models has a representative agent.

8The stochastic choice function ρ satisfies weak stochastic transitivity if, for every three alterna-

tives x, y and z, whenever ρ(x, {x, y}) ≥ 1
2 and ρ(y, {y, z}) ≥ 1

2 , then ρ(x, {x, z}) ≥ 1
2 .

9See for instance, Block and Marshak (1960)
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Proposition 3 allows us to establish further results. We now use it to show that

Manzini and Mariotti’s (2014) random consideration set model, which is independent

of the Luce model, is another model without a representative agent. Here, the indi-

vidual contemplates the available alternatives with a given probability, the attention

parameter, and then selects the preference-maximal alternative among the considered

alternatives. There are some technical details to be discussed. The model encompasses

only strictly positive stochastic choice functions and, when no alternative is considered,

a default alternative a∗ 6∈ X is always assumed to be contemplated and thus, chosen.10

Denote by RCS the set of all random consideration set choice functions and consider

M to be the closure of all the strictly positive stochastic choice functions satisfying

i-Independence.11 Manzini and Mariotti (2014) show that i-Independence is one of the

characterizing properties of RCS and hence, RCS ⊆M . Also, to see that RAT ⊆ cl(RCS),

one simply needs to consider a sequence of stochastic choice functions belonging to RCS,

in which all the attention parameters approach 1. Finally, it can be seen that M does

not contain RUM by showing a strictly positive RUM that fails to satisfy i-Independence.

Let X = {x, y, z}, xP1yP1z, zP2yP2x, µ(P1) = µ(P2) = 1
2
− 2ε and µ(P ) = ε for every

other P ∈ P \{P1, P2}, with ε sufficiently small. Then, p(x,{x,y})
p(x,{x,y,z}) = 1, but p(x,{x})

p(x,{x,z}) = 2

and the proof is complete.

Corollary 5. RCS has no representative agent.
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