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Abstract 

This paper compares the finite sample performance of the canonical correlation regression estimator (CCR) and 
Stock and Watson's (A simple estimator of cointegration vectors in higher order integrated systems, Econometrica, 
1993, 61(4), 783-820) dynamic ordinary least squares estimator (DOLS) using the models proposed by Inder 
(Journal of Econometrics, 1993, 57, 53-68). The CCR estimator shows smaller bias than the OLS and the fully 
modified. The DOLS estimator performs systematically better than the CCR estimator. 
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1. Introduction 

The estimation of a long-run relationship involving cointegrated variables has been the focus 
of a lot of recent papers. Many studies have reported alternative cointegrating vector 
estimators and their asymptotic properties (e.g. Phillips and Loretan, 1991). The general 
result is that those asymptotic properties are not affected by endogeneity or serial correlation 
if the estimators are properly corrected. However, the applied researcher does not usually 
have enough data to justify the application of asymptotic theory. For this reason it is 
important to consider the small-sample performance of alternative cointegrating vector 
estimators. On the one hand, the general result points to a large bias in small samples for any 
estimator that ignores short-run dynamics. On the other, the error correction mechanism 
(ECM) estimator, which considers explicitly knowledge of the short-run dynamics, has 
problems in terms of t-statistics far from their theoretical distributions. 
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This paper compares, using a common model, the finite sample performance of two recently 
proposed cointegrating vector estimators: the canonical cointegration regression estimator 
(CCR) (Park, 1992) and Stock and Watson's (1993) dynamic OLS estimator (DOLS). 

2. The estimators 

2.1. The specification of  the model 

Let y, = (Y l t ,  Y2t) be an m-dimensional I(1) process. The generating mechanism for Yt is the 
cointegrated system in its triangular form 

Yl, =/3 'Yz t  + Ult ' (1) 

A y 2 ,  = U2t , (2) 

where u, = (ui,, u'2, ) is, in the general case, strictly stationary with zero mean and finite 
covariance matrix 2;. The benchmark case can be defined by u, being I I D N ( 0 , 2 )  and ,Y, 
block-diagonal. In this situation, Ay2, is strictly exogenous and the OLS estimator of/3 in (1) is 
the MLE. In the general case, whenever ~ is not block-diagonal and/or the u, process is 
weakly dependent, the OLS estimator is not efficient. 

2.2. The CCR estimator 

The CCR estimator is based on a transformation of the variables in the cointegrating 
regression that removes the second-order bias of the OLS estimator in the general case 
mentioned in Subsection 2.1. 

The long-run covariance matrix corresponding to (1) and (2) can be written as 

12=li._m-ff E ut Z ut = 1221  1222 
" ' t = l  

The matrix 12 can be represented as the following sum: 

1 2 = ~ + F + F ' ,  

where 

=lim --1 ~ E(utu,t) ' 
n - - ~  n t = l  

1"-1 2 
F = l i m  -2- ~'~ E(utu;-k), 

n - * ~  I t  k = l  t = k + l  

A = X + F = ( A  1 A 2 ) = [  All A'2] 
' LA21 A z z J  " 

(3) 

(4) 

(5) 

(6) 

(7) 
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The transformed series is obtained as 1 

Y2, Y2, (~-1 , * = - A:) u,,  (8) 

Y l t  = YI t  - ( '~ -1A213 + (0 ,  ~.Q12~"~ 2;)')'U t . ( 9 )  

The canonical cointegration regression takes the following form: 

Y l t  ---- [3 Y2t + n i t  ' (10) 

where 

/g l t  = U l t  - -  ~'~12~'~221U2t" (11) 

Therefore, in this context the OLS estimator of (10) is asymptotically equivalent to the ML 
estimator. The reason is that the transformation of the variables eliminates asymptotically the 
endogeneity caused by the long-run correlation of Yl, and Y:t. In addition (11) shows how the 
transformation of the variables eradicates the asymptotic bias due to the possible cross 
correlation between Ul, and u2,. 

2.3. Stock and Watson's approach 

Stock and Watson (1993) have proposed to estimate [3 running the following regression: 

yl, = [3'y2, + d(L) Ay2, + v,, (12) 

where d(L) is two-sided. 
This approach is motivated as an MLE for the triangular representation in (1) and (2) 

assuming that u, is a Gaussian linearly regular stationary stochastic process. The leads and lags 
of Ay2, eliminate asymptotically any possible bias due to endogeneity or serial correlation. 

3. The Monte Carlo results 

This paper adopts the models in Inder (1993) to compare the finite sample properties of the 
CCR and the DOLS estimators. Inder (1993) points out the bias problems of the FM 
estimator and 'blames' the particular generating mechanism used by Phillips and Hansen 
(1990) as the reason for the good performance of the fully modified estimator in their Monte 
Carlo experiment. 2 

The generating process is 

The fully modified estimator (FM) is similar to the CCR. The difference is that the FM transforms only the 
dependent  variable and, in the second step, corrects the OLS estimate in the regression of the modified y~,. 

2 Inder (1993) reports that the bias of the FM estimator is as large as the bias of the OLS estimator. Stock and 
Watson (1993) also indicate that, for their generating processes, the FM estimator tends to have biases comparable 
with the OLS estimator. 
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Ylt  = pt +/30Y2, + /31Y2, t - i  + °t lYl , t -1  + t i l t ,  (13) 

Yzt = Y2,t-1 + t t2 , ,  (14) 

Ult  = P l l ' O l t  ' (15) 

t/2t ---- P21"Olt -t- P22~'/2t -1- P23~l , t - I  , (16) 

where 'l~l t and rt2t are independently and identically distributed standard normal variables. The 
value of Pll is equal to 0.2 for all the experiments. The set of parameter values is included in 
Table 1. The benchmark case considered in Section 2 is presented in the first panel of Table 1 
[(/30 = 1 , / 3 1  ~- 0 ,  o~ 1 : 0 )  and p = ( P 2 1  : 0 ,  P22 = 1, P23 : 0 ) ] .  

Table 1 compares the bias and the root mean squared error (RMSE) of four estimators: 
• OLS: ordinary least squares estimator. 
• CCR: canonical cointegration regression estimator. A consistent estimator of Z is 

1 n 

= n ~  tiff',. (17) 

The CCR results in Table 1 are obtained using the non-parametric estimator of F:  

1 ~, c(k) ~ fifi;-k, (18) 
% ~ -  n k~>l t = k + l  

where c(k) has been chosen to be a QS kernel with an automatic bandwidth. 
• CCRPW: CCR estimator using a VAR prewhitened kernel estimator of the long-run 

covariance matrix) 
• DOLS: dynamic OLS estimator. Among all the estimators reported by Stock and Watson 

(1993), the DOLS has the smallest bias in their Monte Carlo results excluding, of course, 
Johansen's MLE. The set of regressors contains.one lead and one lag of the first difference 
of Y2,. 

4 .  C o n c l u s i o n s  

The results in Table 1 show the following facts: 
1. The CCR estimator performs much better than the OLS estimator for all the models. 

The efficiency improvement of the CCR estimator over the fully modified, measured as the 
ratio of the root mean squared error, ranges from a 20% improvement to a 200% 
improvement. The smallest improvement corresponds to high values of a 1. 

2. The CCRPW estimator does not improve over the performance of the standard CCR for 
the models considered in Table 1. 

3. The DOLS estimator has substantial bias when a 1 = 0.8. However,  it has smaller bias 
and root mean squared error than the other estimators presented in Table 1. 

30gak i  and Park (1993). We thank Masao Ogaki for providing the GAUSS code to run this estimator. 
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Table 1 

T = 50 p = (0, 1, 0) p = (0.5, 0.866, 0) p = (0.5, 0.707, 0.5) 

Estimator Bias RMSE Bias RMSE Bias RMSE 

/30 = 1/31 = 0 %  = 0 

OLS -0.0000 0.013 0.0092 0.016 -0.0002 0.008 
CCR -0.0007 0.015 0.0020 0.013 -0.0000 0.007 
CCRPW - 0 . 0 0 0 6  0.014 0.0025 0.013 -0.0000 0.007 
SW -0.0000 0.015 0.0001 0.013 0.0018 0.008 

/3o = 0.6/31 = 0 a I = 0.4 

OLS - 0.0648 0.081 - 0.0482 0.061 - 0.0425 0.054 
CCR -0.0293 0.049 -0.0209 0.036 -0.0169 0.027 
CCRPW - 0.0273 0.047 - 0.0209 0.036 - 0.0 173 0.027 
SW -0.0112 0.030 -0.0092 0.024 -0.0079 0.015 

/30 = 0.2/31 = 0 a, = 0.8 

OLS -0.2880 0.332 -0.2518 0.291 -0.2282 0.266 
CCR -0.2228 0.281 -0.1935 0.246 -0.1729 0.210 
CCRPW -0.2323 0.293 -0.1969 0.248 -0.1734 0.219 
SW -0.2008 0.245 -0.1743 0.214 -0.1627 0.201 

130 = 0.6/31 = 0.4 al = 0 

OLS - 0 . 0 4 0 5  0.052 -0.0300 0.040 -0.0274 0.036 
CCR -0.0069 0.019 -0.0051 0.015 -0.0058 0.012 
CCRPW -0.0073 0.019 -0.0065 0.017 -0.0058 0.012 
SW -0.0003 0.016 0.0001 0.014 0.0020 0.008 

/3. = 0.4/31 = 0.2 a I = 0.4 

OLS -0.0952 0.118 -0.0788 0.099 -0.0670 0.086 
CCR -0.0502 0.076 -0.0436 0.065 -0.0321 0.048 
CCRPW - 0 . 0 5 0 6  0.075 -0.0439 0.066 -0.0320 0.048 
SW -0.0150 0.032 -0.0135 0.027 -0.0118 0.019 

/3o =0.1/31 =0.1 a~ =0.8  

OLS -0.3244 0.373 -0.2875 0.332 -0.2610 0.306 
CCR -0.2519 0.317 -0 .228l  0.286 -0.2002 0.252 
CCRPW -0.2629 0.327 -0.2341 0.291 -0.2082 0.259 
SW -0.2292 0.280 -0.2035 0.246 -0.1862 0.226 

R e f e r e n c e s  

Inder, B., 1993, Estimating long-run relationships in economics: A comparison of different approaches, Journal of 
Econometrics 57, 53-68. 

Ogaki, M. and J. Park, 1993, Inference in cointegrated models using VAR prewhitening to estimate shortrun 
dynamics, Mimeo. 

Park, J., 1992, Canonical cointegrating regressions, Econometrica 60, 119-143. 
Phillips, P. and B. Hansen, 1990, Statistical inference in instrumental variables regression with I(1) processes, 

Review of Economic Studies 57, 99-125. 



234 J.G. Montalvo / Economics Letters 48 (1995) 229-234 

Phillips, P. and M. Loretan, 1991, Estimating long-run economic equilibria, Review of Economic Studies 58, 
407-436. 

Stock, J. and M. Watson, 1993, A simple estimator of cointegrating vectors in higher order integrated systems, 
Econometrica 61(4), 783-820. 


