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Abstract

The problem of formal likelihood-based (either classical or Bayesian) inference
for discretely observed multi-dimensional diffusions is particularly challenging. In
principle this involves data-augmentation of the observation data to give represen-
tations of the entire diffusion trajectory. Most currently proposed methodology
splits broadly into two classes: either through the discretisation of idealised ap-
proaches for the continuous-time diffusion setup; or through the use of standard
finite-dimensional methodologies discretisation of the diffusion model. The connec-
tions between these approaches have not been well-studied. This paper will provide
a unified framework bringing together these approaches, demonstrating connections,
and in some cases surprising differences. As a result, we provide, for the first time,
theoretical justification for the various methods of imputing missing data. The in-
ference problems are particularly challenging for reducible diffusions, and our frame-
work is correspondingly more complex in that case. Therefore we treat the reducible
and irreducible cases differently within the paper. Supplementary materials for the
article are avilable on line.

1 Overview of likelihood-based inference for diffu-

sions

Diffusion processes have gained much popularity as statistical models for observed and
latent processes. Among others, their appeal lies in their flexibility to deal with non-
linearity, time-inhomogeneity and heteroscedasticity by specifying two interpretable func-
tionals, their amenability to efficient computations due to their Markov property, and the
rich existing mathematical theory about their properties. As a result, they are used as
models throughout Science; some book references related with this approach to modeling
include Section 5.3 of [1] for physical systems, Section 8.3.3 (in conjunction with Section
6.3) of [12] for systems biology and mass action stochastic kinetics, and Chapter 10 of
[27] for interest rates.

A mathematically precise specification of a d-dimensional diffusion process V is as the
solution of a stochastic differential equation (SDE) of the type:

dVs = b(s, Vs; θ1) ds+ σ(s, Vs; θ2) dBs, s ∈ [0, T ] ; (1)

where B is an m-dimensional standard Brownian motion, b(·, · ; · ) : R+ ×Rd ×Θ1 → Rd

is the drift and σ(·, · ; · ) : R+ × Rd × Θ2 → Rd×m is the diffusion coefficient. These
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functionals are typically specified up to a vector of unknown parameters θ = (θ1, θ2) ∈
Θ1 × Θ2 ⊆ Rp × Rq. Since it is most common that the drift and diffusion coefficient do
not depend on common parameters, we have made this explicit in the notation to simplify
the following discussion. Standard conditions on b, σ are needed for (1) to have a unique
solution, see for example Theorem 11A of [9]. We define Γ = σσT and we will assume that
Γ is invertible for all θ2, v, s, unless otherwise stated; note that T is used both to index
final time and matrix transpose but the distinction between the two should be clear from
the context. For notational convenience we define A = Γ−1 and we occasionally drop the
arguments from drift and diffusion functionals, as we have done in this paragraph.

A perspective on diffusions that is less formal but considerably more popular in appli-
cations is afforded by a discrete-time approximation of (1). For a given finite collection
of time points 0 = τ0 < τ1 < · · · < τM = T , the Euler-Maruyama approximation of (1)
defines a non-linear Markovian time-series model with dynamics

Vτj+1
= Vτj + b(τj, Vτj ; θ1)(τj+1 − τj) + σ(τj, Vτj ; θ2)

√
τj+1 − τj ǫj , ǫj ∼ N(0, Id) . (2)

Unless b and σ are constant functions of Vt, this model implies a different distribution for
the variables {Vτj} := {Vτ0 , . . . , VτM} than the one implied by the solution of (1). However,
the distance between these two distributions converges to 0 as δ := supj(τj+1 − τj) → 0,
see Theorem 10.2.2 and Remark 10.2.3 in [14].

Likelihood-based inference for θ given high-frequency observations {Vτj} is classical
and in principle straightforward using either the approximating model (2) or continuous-
time arguments. For any δ, (2) defines a locally Gaussian Markov model and the likelihood
is immediately available. However, (2) is meant to approximate (1) and this will only be
true in the high-frequency limit δ → 0. [10] showed that when the data frequency δ is fixed
and the number of observations increases, the maximum pseudo-likelihood estimators for
(θ1, θ2) based on (2) with data generated from (1) can be inconsistent, see also [19] for
a simple example using the Ornstein-Uhlenbeck process. In the high-frequency regime,
basic stochastic calculus allows us to do statistical inference adopting the continuous-time
perspective too. The quadratic variation identity [see 13]

lim
δ→0

∑

τj≤t

(Vτj+1
− Vτj)(Vτj+1

− Vτj)
T =

∫ t

0

Γ(s, Vs; θ2)ds in probability (3)

can be used to estimate consistently (as δ → 0) the components of θ2 from high frequency
observations on [0, T ]; note that the identity might have to be applied over different time
sub-intervals of [0, T ] to provide enough estimating equations. The Cameron-Martin-
Girsanov theorem can be used to obtain a likelihood for θ1 given the estimated value
of θ2. [16] (Section 2.1) point out that this theorem is typically not formulated in a
way which is useful for statistical inference. After simple manipulation, one obtains the
following function as the continuous-time likelihood for θ1:

G(0, T, V, b, A; θ) :=

exp

{∫ T

0

b(s, Vs; θ1)
T A(s, Vs; θ2)dVs −

1

2

∫ T

0

b(s, Vs; θ1)
T A(s, Vs; θ2) b(s, Vs; θ1)ds

}
.

(4)

In practice, the integrals involved in this expression will be approximated with Riemann
sums using the observations {Vτj} yielding the approximation

G(0, T, {τj}, {Vτj}, b, A; θ) :=

exp

{
M−1∑

j=0

b(τj, Vτj ; θ1)
T A(τj, Vτj ; θ2)

[
Vτj+1

− Vτj −
1

2
b(τj, Vτj ; θ1)(τj+1 − τj)

]}
.

(5)
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It is easy to study the connections between the discrete time approach based on the Euler
approximation and the approximated continuous time approach in this high-frequency
framework. The Riemann approximation to the integrals in (5) yields precisely the same
likelihood (up to proportionality constants) for θ1 for fixed θ2 as the one obtained from
(2). When Γ is constant in v and s, the Euler likelihood using the highest order terms
in δ yields the same estimating equation for Γ as the quadratic variation identity. For
more general diffusion matrices we do not have such an explicit relation between the two
approaches. For example, this is the case when Γ(s, v; θ2) = θ2H(s, v) where (only in this
place in the article) θ2 is an unknown matrix and H a known matrix-valued function.
However, note that in such case there are several possible quadratic variation identities
(e.g. by first rescaling the data byH−1). Computationally, inference in the high-frequency
regime might pose challenges when the b and Γ are non-linear functions of the parameters.

In practice it is not easy to check whether δ is small enough for the approximations
described above to be satisfactory, and it is unclear what to do if it is deemed that δ is not
small enough. Furthermore, in many applications of interest V is only partially observed;
its components might be observed asynchronously, certain components might be latent
or there might be observation error. Therefore, when estimating diffusion processes we
typically have a subset of the data which is needed to obtain the likelihood function in
closed form or a satisfactory approximation thereof. The missing data are the unobserved
interpolating paths in the continuous-time approach, and the values of the process at a
desired frequency δ in the discrete-time approach.

Since the beginning of the 21st century Monte Carlo methods based on the principle
of data augmentation have emerged for likelihood-based inference for partially observed
diffusions. These methods involve an “imputation” step, where the existing dataset is
augmented with auxiliary variables, and an “estimation” step, where inference for the
parameters is done on the basis of the augmented dataset. In this article we will focus
on Monte Carlo maximum likelihood and Markov chain Monte Carlo data augmentation
methods.

However, data augmentation for diffusions cannot be done using off-the-shelf algo-
rithms which have successfully been applied to random-effects type models. The follow-
ing features, which are more clearly pronounced in the continuous-time approach, have
dictated the agenda on data augmentation for diffusions. First, the missing data are
infinite-dimensional in nature. Second, the imputation step requires the non-trivial sim-
ulation of conditioned stochastic processes. Third, due to (3) the missing data contain
infinite information about the diffusion coefficient whereas there is finite information in
the observed data. Fourth, the algorithms derived by the continuous-time approach typ-
ically require a finite dimensional approximation for computer implementation. Finally,
different or seemingly different methods have been developed by taking the discrete or
the continuous-time formulation of the model as the starting point, i.e., taking (2) for δ
small enough, or (4) as the joint model for observed and missing data.

On the other hand, data augmentation methods appropriately designed can handle
effectively different types of incomplete observations. The missing data problem that turns
out to be central to this technology is that of discrete-time observations, i.e., inference
for (1) on the basis of observations {Vti , i = 0, . . . , n} with 0 = t0 < t1 · · · < tn = T . This
is an important problem in its own right. Additionally, computational methods for other
types of partial observations typically involve reduction to the discretely-observed case by
imputation of unobserved values at the observation times, in order to exploit the Markov
structure of the joint model (1) sampled at discrete times. For this purpose we focus on
the discretely-observed case.
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Aims of this paper

The main aim in this paper is to provide a generic and transparent framework for data
augmentation for diffusions. We introduce a generic program which can be followed
in order to identify appropriate auxiliary variables, to design Monte Carlo maximum
likelihood and Markov chain Monte Carlo algorithms that are valid even in the limit
where continuous paths are imputed, and to approximate these limiting algorithms.

We effectively pin down the methodology to deriving importance sampling represen-
tations for the probability distribution of a conditioned diffusion. The representations
require relatively simple stochastic calculus and, as we show, they are all effectively based
on the same decomposition of the diffusion measure, expression (8) in this paper. The
representations in turn provide identities for the transition density of the diffusion. In
particular, we formally prove an identity for the transition density of multivariate non-
reducible diffusions that was heuristically derived for scalar processes in [16] (for definition
of reducible diffusions, see Section 2.1). A main result in this paper, in Section 3, is to
demonstrate that such identities are instrumental in the design of data augmentation
algorithms. We describe a general methodology that includes as special cases the data
augmentation algorithm for reducible diffusions introduced in [21] and the limit of the
algorithm introduced in [12] within a discrete-time approach for non-reducible processes.

In this paper we also bridge data augmentation methodologies that have been devel-
oped by discrete and continuous-time approaches. We demonstrate that the state-of-the-
art discrete-time importance sampling approximation to the likelihood function derived
in [8] is almost identical to a finite-dimensional approximation of the continuous-time
importance sampling approximation introduced in [16]. This connection is established
by means of some intermediate results: the identity for the transition density mentioned
above; a novel discrete-time approximation for simulating conditioned diffusions; a careful
treatment of the effect of discretising the continuous-time expressions.

The ideas in this paper go much beyond the context of elliptic diffusions that we treat
here. The generic program we propose suggests how to deal with hypoelliptic or jump
diffusions, or observation schemes different from discrete-time observations. Effectively,
the framework is a powerful extension of non-centring for stochastic processes, which was
introduced in [17, 18], and we expect it to be relevant well beyond the context of stochastic
differential equations.

In Section 2, we provide a precise introduction to the problem, couching it in mod-
ern computational statistics language and providing a description of existing importance
sampling methodologies for diffusion, bridges and giving novel results on properties of dis-
cretisation approaches. Section 3 uses the framework in the previous section to construct
and study MCMC methods for Bayesian inference, and the respective discretisations.
The paper concludes with discussion in Section 4 with proofs and other technical ma-
terial placed in appendices. In all sections, we treat the reducible and irreducible cases
separately.

2 Importance sampling representations for the miss-

ing data and likelihood approximations

2.1 Preliminaries

We focus here on discretely observed diffusions, i.e., consider observations {Vti , i = 0, . . . , n}
with 0 = t0 < t1 · · · < tn = T from (1). By the Markov property, the likelihood for this
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set of observations is obtained as a product of transition density terms,

ps,t(u, v; θ) = Pr [Vt ∈ dv | Vs = u ] / dv, t > s, u, v ∈ Rd , (6)

which, however, are unavailable for most diffusion processes. Due to the Markov property
of either the continuous-time model (1) or its Euler approximation (2), the values of the
process in between observation times are conditionally independent given the observations
and the parameters. Hence, in the rest of this section and without loss of generality we
will study importance sampling representations of the missing data only for one pair of
observations, V0 = u, VT = v, and we will treat θ as known. Intermediate times at which
we will be simulating the missing data will be denoted by {τj}, where 0 = τ0 < τ1 <
· · · < τM = T and without loss of generality we will assume that they are equally spaced,
τk+1−τk = δ andMδ = T . In the rest of the paper, when dealing with several observations
we will assume that ti − ti−1 is a multiple of δ, for each i; this is to avoid unnecessary
notation that introduces a different step δ for each pair of observations, which might of
course be useful in practice.

Additionally, let P(0, T, u; θ) be the law of (1) conditioned upon V0 = u; thus (6) is
the density of a marginal distribution of P(0, T, u; θ). Correspondingly, let P(0, T, u, v; θ)
denote the law of (1) conditioned upon V0 = u and VT = v. The diffusion process
conditioned upon its endpoints is a stochastic process known as the diffusion bridge.
Therefore, the missing data conditioned upon the observations are diffusion bridges and
their distribution is P(0, T, u, v; θ). A time subscript in the probability measures denotes
their projection to the corresponding time interval, e.g. P(0, T, u, v; θ)t denotes the law
of the diffusion bridge over paths on [0, t], for t ≤ T . We will use V to refer both to
the solution of (1) and to the corresponding bridge; the distinction will be clear from the
context, especially since we will be associating them with different measures. Finally, for
a probability measure P, EP will denote expectations with respect to it.

2.1.1 An important special case: reducible diffusions

We also introduce a special class of diffusion processes for which the theory is simpler
and more efficient simulation methods can be devised. These are diffusions for which a
transformation η(·, ·; θ2) : R+ × Rd × Θ2 → Rm exists such that Xs := η(s, Vs; θ2) solves
an SDE with unit diffusion coefficient. Such a transformation described by η is called the
Lamperti transformation of the diffusion process. Necessary conditions for η follow directly
from the application of Itô’s lemma. The following is a sufficient condition in the special
case d = m, ∇η(s, v; θ2)σ(s, v; θ2) = Id, for all s, v, θ2, where the differential operator
applies to v, and Id is the d-dimensional identity matrix. This is trivially satisfied when
d = m = 1 (under mild smoothness conditions on σ) by η(s, v; θ2) =

∫ v
1/σ(s, u; θ2)du,

but it is much harder or impossible to find such transformation in high dimensions. To
avoid unnecessary generality, reducible diffusions will refer to the smaller class of processes
for which d = m, the sufficient condition is satisfied and additionally η(s, ·; θ2) is twice
differentiable in its arguments and admits an inverse η−1 for each s, θ2. Note that under
these conditions X solves the SDE

dXs = α(s,Xs; θ)ds+ dBs (7)

where α is obtained by a direct application of Itô’s lemma. Mild and standard conditions
on α imply that the law of X is equivalent to the Wiener measure and their density is
obtained by the Cameron-Martin-Girsanov theorem. Thus, after the Lamperti transfor-
mation we obtain a process which is equivalent, in terms of the corresponding measures,
to a Gaussian process, although the original process is not. For this reason the Lamperti
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transformation should always be used where possible, since it makes the model closer to
a Gaussian for which theory and computations are typically easier. However, as pointed
out above, for many important classes of multivariate diffusions the transformation does
not exist.

In terms of notation, W and PX will be used to denote probability measures for
Brownian motion and the diffusion X in (7). The transition density of Brownian motion
is Gaussian and we will denote the Gaussian density with mean 0 and covariance matrix
Σ evaluated at y by G(y; Σ).

2.2 ABC for diffusions

One of the earliest simulation methods for diffusion bridges is proposed in [20], although
here we present the idea from a different perspective than the original article. Cast in
modern terms, this method can be interpreted as an Approximate Bayesian Computation
approach to simulating diffusion bridges. Simulation of bridges is a type of inverse prob-
lem. One way to solve this problem is by simulating a diffusion path forwards according
to P(0, T, u; θ) and accept it if VT = v. This would yield exact draws from P(0, T, u, v; θ)
but the probability that VT = v, is zero under P(0, T, u; θ). However, using Bayes theorem
and the Markov property, we have for ǫ > 0 such that T − ǫ > 0,

P(0, T, u, v; θ)T−ǫ = P(0, T − ǫ, u, z; θ) ⊗ p0,T−ǫ(u, z; θ)pT−ǫ,T (z, v; θ)

p0,T (u, v; θ)
dz

=
pT−ǫ,T (VT−ǫ, v; θ)

p0,T (u, v; θ)
P(0, T − ǫ, u; θ) ∝ pT−ǫ,T (VT−ǫ, v; θ)P(0, T − ǫ, u; θ)

(8)

This identity immediately suggests an importance sampling algorithm for diffusion bridges
on [0, T − ǫ]; simulate paths forwards according to P(0, T − ǫ, u; θ) and weight them
by pT−ǫ,T (VT−ǫ, v; θ). The weight is actually intractable due to the intractability of the
transition density. Nevertheless, for ǫ small enough it can be approximated by a Gaussian
density according to (2); hence the ABC algorithm. Note that this importance sampling
representation yields an identity for the transition density by integrating both sides over
paths:

p0,T (u, v; θ) =

∫
pT−ǫ,T (VT−ǫ, v; θ) dP(0, T − ǫ, u; θ) =

∫
pT−ǫ,T (z, v; θ) p0,T−ǫ(u, z; θ)dz

(9)
which is the Chapman-Kolmogorov equation. Albeit simple, this importance sampling
representation is not efficient. As ǫ → 0, i.e., as the bias in the weights due to the Euler
approximation decreases, the weights converge to zero, P(0, T, u; θ)-a.s. In practice, given
a set of simulated paths and for ǫ small enough, a single path will have massively larger
weight than all others.

2.3 Efficient importance sampling of diffusion bridges

Efficient importance sampling schemes can be derived by exploiting known probabilistic
properties of diffusion bridges. First, note that the diffusion bridge is a Markov process.
Additionally, it is known that the bridge of (1) solves the following SDE:

dVs = ( b(s, Vs; θ1) + Γ(s, Vs; θ2)∇Vs
log ps,T (Vs, v; θ) ) ds+ σ(s, Vs; θ2) dBs (10)
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on s ∈ [0, T ] with V0 = u. This result can be proved using the theory of h-transforms,
see for example Chapter IV.39 of [23], which is also based on a decomposition of mea-
sures similar to (8). This representation is not helpful for direct simulation of the bridge
because the drift of (10) involves the transition density. Nevertheless, it is useful for de-
riving efficient importance sampling algorithms, as we now describe. First, note that the
SDEs for the conditioned and unconditioned diffusion have the same diffusion coefficient.
Second, given that the solution of (10) hits VT = v P(0, T, u, v; θ) − a.s. at time T , we
approximate the drift and the diffusion coefficient of (1) at times s near T by the con-
stants b(T, v; θ1) and σ(T, v; θ2) respectively. Then the unconditional process is a scaled
Brownian motion with drift, for which the bridge process is tractable and solves an SDE
whose drift is given by (v − Vs)/(T − s). These two observations suggest that we can
improve on the ABC method by proposing paths according to a stochastic process which
hits v at time T almost surely, thus incorporating part of the weight into the proposal.
[6] proposed the following stochastic process for this purpose,

dVs =
v − Vs

T − s
ds+ σ(s, Vs; θ2) dBs, s ∈ [0, T ] , V0 = u . (11)

Let Q(0, T, u; θ2, v) denote the law generated by the solution of this SDE; the notation
reflects that this is not the law of a conditioned process, instead of one whose drift
depends on v. [6] showed that Q(0, T, u; θ2, v) is equivalent to P(0, T, u, v; θ) under certain
conditions on b and σ (see Assumption 4.2 of their paper) and obtained the density
between the two measures up to proportionality. Here, we present a slightly different
argument directly based on (8) and we obtain an identity for the transition density.

We have that

dP(0, T, u, v; θ)T−ǫ

dQ(0, T, u; θ2, v)T−ǫ

=
dP(0, T, u, v; θ)T−ǫ

dP(0, T − ǫ, u; θ)
× dP0, (T − ǫ, u; θ)

dQ(0, T, u; θ2, v)T−ǫ

=
pT−ǫ,T (VT−ǫ, v; θ)

p0,T (u, v; θ)

dP(0, T − ǫ, u; θ)

dQ(0, T, u; θ2, v)T−ǫ

=
1

p0,T (u, v; θ)
G(0, T − ǫ, V, b, A; θ) pT−ǫ,T (VT−ǫ, v; θ)

× exp

{
−
∫ T−ǫ

0

(v − Vs)
T

T − s
A(s, Vs; θ2)dVs

+
1

2

∫ T−ǫ

0

1

(T − s)2
(v − Vs)

TA(s, Vs; θ2)(v − Vs)ds

}

where we have used (8) in the second equation and Girsanov’s theorem for the processes
in (1) and (11) applied over the time-interval [0, T − ǫ], for the third equation followed
by a rearrangement of terms. We now need to study the stability of the last expression
as ǫ → 0. The first term is constant in ǫ and the second has the well defined limit
G(0, T, V, b, A; θ). For small ǫ, we will approximate pT−ǫ,T (VT−ǫ, v; θ) by a zeroth-order
Euler approximation,

(2π)−d/2 |A(T − ǫ, VT−ǫ; θ2)|1/2 ǫ−d/2 exp

{
− 1

2ǫ
(v − VT−ǫ)

TA(T − ǫ, VT−ǫ; θ2)(v − VT−ǫ)

}
.

The ratio between this approximation and the transition density converges to 1 almost
surely under Q(0, T, u; θ2, v) and the assumed conditions. To determine the limit of the
remaining terms we carefully apply Itô’s formula on the exponent of the Euler approxi-
mation above, which brings up terms that cancel others in the exponent of the likelihood
ratio obtained above; see Appendix A for details. Thus we obtain a well-defined limit as
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ǫ → 0, which is

dP(0, T, u, v; θ)

dQ(0, T, u; θ2, v)
=

1

p0,T (u, v; θ)
R0(θ) (12)

where

R0(θ) = (2πT )−d/2 |A(T, v; θ2)|1/2 exp
{
− 1

2T
(v − u)TA(0, u; θ2)(v − u)

}

×G(0, T, V, b, A; θ)ζ(0, T, V, A; θ2) .

In the above expression, we define

ζ(0, T, V, A; θ2) = exp

{
−1

2

∫ T

0

1

T − s
(v − Vs)

T (⋄ dA)(v − Vs)

}
.

The ⋄-stochastic integral is obtained as the limit of sums where the integrand is computed
at the right limit of each time interval as opposed to the left limit used in the definition of
the Itô integral, or the middle point used in the Stratonovich integral. On the technical
side, to establish this limit as ǫ → 0, we need to ensure that ζ is well defined. Note the
division by T −s in the integrand could be the cause of instability. A rough way to ensure
that this stochastic integral is well defined is to assume that A and σ are bounded. The
argument is sketched in Appendix A.

Notice now that we have an identity for the transition density of (1). Integrating both
sides of the likelihood ratio above with respect to Q(0, T, u; θ2, v) we obtain that

p0,T (u, v; θ) = EQ(0,T,u;θ2,v)

[
R0(θ)

]
. (13)

When d = m and σ = Id, (11) is the Brownian bridge, i.e., the Brownian motion
conditioned to take the values u, v at times 0, T respectively, and ζ = 1. In general,
though, (11) will not correspond to a conditioned diffusion, it is instead a stochastic
process controlled to hit the value v at time T .

2.3.1 The reducible case

An alternative class of proposals is available for reducible diffusions (recall the definition
and notation in Section 2.1.1), obtained as Vs = η−1(s,Xs; θ2), for X a Brownian bridge
with endpoints η(0, u; θ2) and η(T, v; θ2) at times 0 and T respectively. This family of
stochastic processes are diffusion bridges and do not solve an SDE of the type (11) unless
σ = Id, in which case we obtain again the Brownian bridge proposal. Thus, according to
this scheme, paths X are proposed according to W(0, T, η(0, u; θ2), η(T, v; θ2)) and then
are deterministically transformed to yield a proposed diffusion bridge. The same argument
we used above can be employed to derive the weights that should be associated to bridges
proposed in this manner to represent the diffusion bridge (10), the only difference being
that we work with PX and W. Working as above we obtain that for any u, v ∈ Rd,

dPX(T, η(0, u; θ2), η(T, v; θ2); θ)

dW(T, η(0, u; θ2), η(T, v; θ2))
=

1

p0,T (u, v; θ)
R0

η(θ)

R0
η(θ) =

G(η(T, v; θ2)− η(0, u; θ2);T Id)

J(T, v; θ2)
G(0, T,X, α, Id; θ) .

(14)

The product p0,T (u, v; θ)J(T, v; θ2) is the transition density of (7), which is obtained from
the one of (1) by the change of variables VT → XT = η(T, v; θ2) and induces the Jacobian
term J(T, v; θ2); X is the proposed Brownian bridge. Since the proposed bridge V is a
transformation of X, the likelihood ratio above is the corresponding importance sampling
weight for sampling from (10). In this case, we obtain the transition density identity,

p0,T (u, v; θ) = EW(0,T,η(0,u;θ2),η(T,v;θ2))

[
R0

η(θ)
]
. (15)
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2.4 Finite dimensional approximation of the proposals

The proposals and the weights involved in the importance sampling algorithms for diffu-
sion bridges will typically have to be approximated for computer implementation. Under
additional assumptions on the coefficients of (1), which when d > 1 are stronger than
assuming that V is reducible, such approximations might be avoidable - this is the exact
simulation and inference paradigm of [3]. In this section we deal with the approximation
of the proposals, and address the approximation of the weights in Section 2.5.

2.4.1 The reducible case

In the case of reducible diffusions the proposal process is a diffusion bridge itself. It is in
fact a simple Brownian bridge, the SDE of which we can solve exactly in order to generate
skeletons {Xδ

τj
}Mj=0 according to the following scheme, where recall that δ = τk+1 − τk,

Xδ
τk+1

= Xδ
τk
+ δ

η(T, v; θ2)−Xδ
τk

T − τk
+

√
T − τk+1

T − τk
(Bτk − Bτk−1

) Xτ0 = η(0, u; θ2) , (16)

where {Bτj} ∼ Wδ(0, T, 0) is a skeleton of Brownian motion on [0, T ]. The law of {Xτj}
will be denoted byWδ(0, T, η(0, u; θ2), η(T, v; θ2)). Note that bothWδ(0, T, η(0, u; θ2), η(T, v; θ2))
and Wδ(0, T, 0) are exact projections of W(0, T, η(0, u; θ2), η(T, v; θ2)) and W(0, T, 0) re-
spectively on the lattice {τj}.

2.4.2 The irreducible case

It is impossible to simulate exact skeletons of (11) when σ is not constant in the state
variable, but we can consider two different approximate discretisations:

1. One possibility is to use the Euler-Maruyama scheme to discretise (11). It is conve-
nient here to define the scheme as a continuous-time one, i.e., to define the approx-
imating diffusion U δ

s as follows

dU δ
s = b̃(s, U δ

s ) ds+ σ̃(s, Y δ
s ; θ2) dBs

where σ̃(s, Y δ
s ; θ2) = σ(τk, Y

δ
τk
; θ2) and b̃(s, U δ

s ) = (v−U δ
τk
)/(T − τk), for all τk ≤ s <

τk+1 and U δ
0 = V0 = u; the generated discrete-time chain will be denoted by {U δ

τj
},

and its transition density gδτk,τk+1
(w, z; θ2).

2. Another possibility is to discretise based on a local linearisation of (11), according
to the ideas proposed in a series of articles by Ozaki and Shoji [see, for example,
26, 25]. We define the approximating diffusion Y δ

s as follows:

dY δ
s =

v − Y δ
s

T − s
ds+ σ̃(s, Y δ

s ; θ2) dBs (17)

with σ̃ defined as above and Y δ
0 = V0 = u. The point is that (17) is a piecewise-linear

SDE which can be easily solved and leads to the following discrete-time chain:

Y δ
τk+1

= Y δ
τk
+ δ

v − Y δ
τk

T − τk
+ σ(τk, Y

δ
τk
; θ2)

√
T − τk+1

T − τk
(Bτk −Bτk−1

) , Y δ
τ0
= u , (18)

where as in (16) {Bτj} ∼ Wδ(0, T, 0) is a Brownian skeleton. In the rest of the paper,
the law of {Y δ

τj
} will be denoted by Qδ(0, T, u; θ2, v), and its transition density by

qδτk,τk+1
(w, z; θ2).
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The explosion of the drift of (11) near time T means that the usual Lipschitz and
growth conditions that are typically used in the literature to study the order of discretisa-
tion schemes (see for example [14, 15] for extensive treatment of various such results) do
hold here. Theorem 1 below shows that under usual assumptions on σ, which are detailed
in Appendix B, both the Euler-Maruyama and the local linearisation approaches provide
strong approximation of order 1/2 to (11), i.e., they retain the order they have when the
drift of the approximated SDE is more regular. In order to avoid excessive notation, the
result is proved for d = 1 in Appendix B.

Theorem 1. Let d = 1 and consider the technical conditions on σ stated in Appendix
B. Then, for any step size 0 < δ < min{1, T} there exist constants L > 0 and E > 0
independent of δ such that for all 0 < t < T

E[(Y δ
t − Vt)

2] ≤ Lδ , E[(U δ
t − Vt)

2] ≤ Eδ

where the expectation is taken with respect to the Brownian motion which drives both (11)
and the approximations.

The theorem shows that the two schemes are equivalent in terms of their order, as
it happens under regular conditions on the drift of the approximated diffusion, see for
example [25]. However, their efficiency in practical situations can differ considerably. Our
simulation studies (not included here) mainly for square-root diffusion coefficients, show
that the mean square error when using the Euler approximation to (11) is bigger than
when using (18) for all 0 < t < T . The advantage of using (18) is more apparent for times
near the end point.

Quantitive results on relative efficiency of discretisation schemes are scarce in the
literature. We can provide a concrete such result for the two schemes under consideration
in this section for a simple, although still interesting, process. The following proposition
is proved in Appendix B.

Proposition 1. Let V be the solution to the standard Brownian bridge SDE, i.e., equation
(17) with d = 1, σ = 1, u = v = 0 , T = 1. Let 0 < δ < min{1, T} be any step size and
U δ
t the corresponding Euler-Maruyama approximation; let τk = kδ, for k = 1, . . . , ⌊T/δ⌋.

Then,

E[(Vτk − U δ
τk
)2] ≥ δ2

9
(1− τk)

2

[
1

(1− τk + δ)3
− 1

]
+

δ3

3
(1− τk)

2

E[(Vτk − U δ
τk
)2] ≤ δ2

9
(1− τk)

2

[
1

(1− τk)3
− 1

]
+

δ3

3
(1− τk)

2

[
1

(1− τk)4
− 1

]

where the expectation is taken with respect to the Brownian motion that drives both the
exact solution and the approximation.

First, note that the local linearisation scheme is exact for this SDE, i.e., E[(Vt−Y δ
t )

2] =
0 for all t. Second, the tight bounds allow us to refine our understanding of the theoretical
properties of the Euler-Maruyama scheme for processes which are controlled to hit an
endpoint. The result implies that for any t < 1 the Euler scheme provides a strong
approximation of order 1, not just 1/2 that it is ensured in Theorem 1. This is unsurprising
since the Brownian bridge SDE satisfies standard Lipschitz and growth conditions on [0, t]
(e.g Theorem 10.2.2 in [14]), and the noise is additive since σ = 1. On the other hand,
E[(V1−δ − U δ

1−δ)
2] is only of O(δ), i.e., we recover the lower order of Theorem 1 for times

arbitrarily close to the endpoint.
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2.5 Discretisation of the weights

The identities derived in (13), (15) can be used for the Monte Carlo estimation of the
transition density of the process for given parameters θ. Such estimates can be embedded
to Monte Carlo maximum likelihood schemes, e.g. as in [8, 2], or other type of stochastic
optimisation or approximation methods, e.g. Monte Carlo EM algorithms as in [3, 6],
in order to compute the maximum likelihood estimator of θ. Section 3 shows that these
identities are the main building block of MCMC algorithms for Bayesian inference for θ.

For practical implementation, the continuous-time identities typically require a finite
dimensional approximation on the basis of a skeleton of the proposal process produced as
described in Section 2.4. In particular, G(0, T, {τj}, {Y δ

τj
}, b, A; θ) is the obvious Riemann-

sum approximation based on a skeleton produced by (18), and

ζ(0, T, {τj}, {Y δ
τj
}, A; θ2) :=

exp

{
−1

2

M−2∑

j=0

1

T − τj+1

(v − Y δ
τj+1

)T [A(τj+1, Y
δ
τj+1

; θ2)− A(τj, Y
δ
τj
; θ2)](v − Y δ

τj+1
)

}
(19)

is the approximation of ζ, where, as we pointed out earlier, the integrand is evaluated
at the right limit of each time interval of length δ. Note that the sum above runs up to
M −2 and not M −1, which is the case in (5); this is due to the fact that (v−Vs)/(T −s)
yields 0/0 at s = T , almost surely under Q(0, T, u; θ2, v), thus effectively we set this ratio
equal to 0. We can then approximate p0,T (u, v; θ) by EQδ(0,T,u;θ2,v)

[
Rδ(θ)

]
, where

Rδ(θ) = (2πT )−d/2 |A(T, v; θ2)|1/2 exp
{
− 1

2T
(v − u)TA(0, u; θ2)(v − u)

}

×G(0, T, {τj}, {Y δ
τj
}, b, A; θ) ζ(0, T, {τj}, {Y δ

τj
}, A; θ2) . (20)

In the case of reducible diffusions, G(0, T, {τj}, {Xτj}, α, Id; θ) is the approximation
of the Girsanov formula of the transformed process based on a Brownian bridge skeleton
{Xτj}, and p0,T (u, v; θ) is approximated by EWδ(0,T,η(0,u;θ2),η(T,v;θ2))

[
Rδ

η(θ)
]
where

Rδ
η(θ) =

G(η(T, v; θ2)− η(0, u; θ2);T )

J(T, v; θ2)
G(0, T, {τj}, {Xτj}, α, Id; θ) .

We comment on the convergence of Rδ(θ) and Rδ
η(θ) to R0(θ) and R0

η(θ) respectively,
as δ → 0 in Section 3.4.

2.6 Bridging continuous and discrete-time approaches

We can study the efficient simulation of the missing data within the discrete-time ap-
proach. In this framework, for a pair of observations Vτ0 = u and VτM = v, the missing
data are the variables {Vτj}M−1

j=1 . The joint model of observed and missing data is the
Euler-Maruyama approximation of (1), i.e., a Markov chain with Gaussian transition
density

pEτj ,τj+1
(w, z; θ) = G(z − w − δ b(τj, w; θ1); δ Γ(τj, w; θ2)) , w, z ∈ Rd

where the superscript indicates that this is the Euler approximation to (6). Note that the
k-steps ahead transition density for k > 1, which we will denote by pEτj ,τj+kδ(u, v; θ), is the
k’th convolution of Euler transition density given above and it will be typically intractable
unless b(s, u; θ1) is linear in u, and Γ(s, u; θ2) is constant in u. Thus, it is important to note
that the Euler approximation provides tractable dynamics only one-step ahead. Recent
results on the approximation error |pE0,T (u, v; θ)− p0,T (u, v; θ)| can be found in [11].
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It is easy to see that the discrete-time process conditioned on the endpoints Vτ0 =
u, VτM = v is also Markov with transition density

pEτj ,τj+1
(w, z; θ)

pEτj+1,τM
(z, v; θ)

pEτj ,τM (w, v; θ)
∝ pEτj ,τj+1

(w, z; θ)pEτj+1,τM
(z, v; θ) , j = 0, . . . ,M−2 . (21)

The transition density of the conditioned process is intractable due to the intractability of
the convoluted Euler density. Hence direct simulation of the missing data is not feasible
even in the discrete-time approach.

On the other hand, importance sampling is a feasible alternative. [8] replace the
convoluted Euler densities in (21) by a nonstandard Euler approximation G(v−z−δ(M−
j − 1) b(τj , w; θ1); δ(M − j − 1) Γ(τj, w; θ2)). The latter approximation is used so that the
product in (21) is a Gaussian density that can be used to generate proposals, which can
then be weighted to yield samples from the distribution of the missing data. [8] call the
stochastic process on the lattice {τj} generated in this manner, the modified Brownian
bridge. The following Proposition, which can be immediately verified by simple algebra,
provides insights into the properties of the modified Brownian bridge.

Proposition 2. The transition density of the so called modified bridge in [8] is precisely
the transition density of the stochastic process with the dynamics defined in (18), i.e. the
local linearisation of (11).

The relation of (18) to the proposal process (11) was missing in the literature. [8]
noticed that (18) is similar to the Euler approximation of (11) except for the factor
(T−τk+1)/(T−τk) in the variance. This is the reason they referred to (18) as the modified
bridge. The better performance of the modified bridge over the Euler approximation to
(11) was left in [8] as a surprising result. We have shown in Theorem 1 that this is not a
modified approximation but in fact the local linearisation scheme.

As in [8], we next use (18) to derive an approximation for pE0,T (u, v; θ). It directly
follows from the transition density of the missing data (by multiplying terms) that the
weight associated to each proposed process {Y δ

τj
}M−1
j=1 ∼ Qδ(0, T, u; θ2, v) should be

1

pE0,T (u, v; θ)
Rδ

E , Rδ
E =

∏M−1
j=0 pEτj ,τj+1

(Y δ
τj
, Y δ

τj+1
; θ)

∏M−2
j=0 qδτj ,τj+1

(Y δ
τj
, Y δ

τj+1
; θ2)

,

which yields the following identity

pE0,T (u, v; θ) = EQδ(0,T,u;θ2,v)

[
Rδ

E

]
. (22)

Note that Rδ
E is an unbiased estimator of pE0,T (u, v; θ), which however is different from the

true transition density.
Proposition 2 establishes that a discrete-time proposal process, the so-called modi-

fied Brownian bridge, coincides with the the discretisation using local linearisation of the
continuous-time proposal process (17). Thus, we can directly compare the two corre-
sponding estimators of the transition density Rδ

E and Rδ. The following result, which
is proved in Appendix C, establishes a remarkable correspondence between the two. In
order to avoid excessive notation, the result is proved (hence also stated) for d = 1.

Proposition 3. Let d = 1. Then, we can construct Rδ(θ) and Rδ
E(θ) on the same

probability space and then,

Rδ(θ)

Rδ
E(θ)

=
|A(T, v; θ2)|1/2

|A(τM−1, Y δ
τM−1

; θ2)|1/2
(23)
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This correspondence appears even more striking when we repeat this calculation with
other natural discretisations of (17). In particular, consider the Euler discretisation of (17)
discussed in Section 2.4, in terms of a discrete-time skeleton {U δ

τj
} and transition density

gδτk,τk+1
(w, z; θ2). The approximation of the continuous-time estimator of the transition

density is again Rδ(θ), given in Section 2.5, albeit computed on the basis of {U δ
τj
} and

not {Y δ
τj
}. We can use {U δ

τj
} as a discrete-time proposal process within a discrete-time

approach. Working as above, the weight assigned to each proposed skeleton is:

1

pE0,T (u, v; θ)

∏M−1
j=0 pEτj ,τj+1

(U δ
τj
, U δ

τj+1
; θ)

∏M−2
j=0 qδτj ,τj+1

(U δ
τj
, U δ

τj+1
; θ2)

∏M−2
j=0 qδτj ,τj+1

(U δ
τj
, U δ

τj+1
; θ)

∏M−2
j=0 gδτj ,τj+1

(U δ
τj
, U δ

τj+1
; θ2)

.

A careful calculation shows that the third term equals

√
T

δ
exp

{
−1

2

M−2∑

j=0

(∆Bτj)
2

T − τj+1

}
(24)

where B is the Brownian motion that drives the Euler approximation and hence the
same process for all δ subsampled at increasingly high frequency. Note that (24) does
not depend on θ, but it might be dependent with the second term in the weight, due to
the dependence of both on the same driving Brownian motion. Recalling that Mδ = T ,
τj = jδ, and that ∆Bτj has the same distribution as δY 2

j , where Yj for j = 0, . . . ,M − 2
are iid standard Gaussian, (24) has the same distribution as the following random variable

√
M

M−2∏

j=0

exp{−1

2

Y 2
j

M − j − 1
} .

It is now easy to check that this has mean 1 and variance
√
2M/(M + 1)− 1, which does

not disappear even as M → ∞.
The above demonstration provides a further argument in favor of the so-called modified

Brownian bridge as a discrete-time proposal process. Using the Euler discretisation of (17)
as a discrete-time proposal process leads to an importance sampling weight which is the
product of two terms: the weight associated with the modified Brownian bridge proposal
and a random variable independent of the parameters, which marginally has mean 1. If
the second term were independent of the first term then the modified Brownian bridge
weight would be a Rao-Blackwellisation of that based on the Euler discretisation.

3 Markov chain Monte Carlo for discretely observed

diffusions

3.1 Data augmentation (DA) framework

Throughout this section we assume a Bayesian framework, although a good deal of the
issues we address applies to maximum likelihood inference using variants of the EM al-
gorithm and Monte Carlo maximum likelihood. Recall the notational conventions intro-
duced in Section 2.1. If π(θ) denotes the prior density (with respect to the Lebesgue, say,
measure) of the parameters, statistical inference is based on the posterior density

π(θ | {Vti}) ∝ π(θ)
n−1∏

i=0

pti,ti+1
(Vti , Vti+1

; θ) .
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Typically, this function will not be computable due to the unavailability of the transition
density terms.

Data augmentation (DA) can be used for Bayesian inference for the parameters of a
statistical model when the posterior density is not (easily) computable. This approach has
two main components. The first is mathematical and consists of identifying a joint distri-
bution of parameters and auxiliary variables such that it admits the posterior distribution
of interest as a marginal. We will be referring to this joint distribution as the auxiliary dis-
tribution. The second component of DA is computational and it consists of sampling from
the auxiliary distribution using MCMC. Typically, component-wise updating algorithms
are used for this purpose, such as the Gibbs sampler and the Metropolis-within-Gibbs,
which iteratively sample auxiliary variables and parameters from the conditionals of the
auxiliary distribution. The aim is to choose an auxiliary distribution which is possible to
sample from. However, this choice is to large extent problem specific.

The first contribution of this section is to show that the transition density identities
we obtained in Section 2 provide a general way of constructing auxiliary distributions for
diffusions. We first treat reducible diffusions and then move to the general case.

3.2 The reducible case

Consider the following measure on parameters and bridges:

n∏

i=1

R0,i
η (θ,X(i))

n⊗

i=1

W(ti−1, ti, η(ti−1, Vti−1
; θ2), η(ti, Vti ; θ2)) π(dθ) (25)

where

R0,i
η (θ,X(i)) =

G(η(ti, Vti ; θ2)− η(ti−1, Vti−1
; θ2);T Id)

J(ti, Vti ; θ2)
G(ti−1, ti, X

(i), α, Id; θ)

is defined as R0
η(θ) in Section 2.3 but over the time period [ti−1, ti], X

(i) = (X
(i)
t , ti−1 ≤

t ≤ ti) for i = 1, . . . , n are the auxiliary variables, which are bridges that interpo-
late the Lamperti-transformed observations, and the dependence of R0,i

η on each bridge

X(i) is made explicit in the notation. Thus, the measure above is a change of mea-
sure from the product measure defined by the composition of the prior measure and
independent Brownian bridge measures, with density given by

∏n
i=1 R

0,i
η (θ,X(i)). It is

a direct application of (15) that this auxiliary measure admits the posterior measure
π(dθ | {Vti}) as a marginal. Note that under this measure, the X(i)’s conditionally on the
parameters are independent and each distributed according to a measure proportional to
R0,i

η (θ,X(i))W(ti−1, ti, η(ti−1, Vti−1
; θ2), η(ti, Vti ; θ2)).

On the computational side, there are two main problems with this auxiliary distribu-
tion. The first is due to the fact that the auxiliary variables are infinite-dimensional. This
can be dealt with using approximations, a topic which we addressed in Section 2 and we
consider further down. The second, however, is more fundamental and it is due to the
fact that for any i, the measures W(ti−1, ti, η(ti−1, Vti−1

; θ2), η(ti, Vti ; θ2)) are singular for
different values of θ2. That is, for each θ2 the corresponding Brownian bridge measure
has non-zero support on sets of paths which have zero probability under the Brownian
bridge measures for different values of θ2. The reason for this phenomenon is that each
such measure concentrates all its mass on paths with given endpoints, but these endpoints
change with θ2. This has serious implications to any component-wise updating MCMC
algorithm which targets (25). Any such algorithm will typically not be able to change the
initial value of θ2, i.e., it will not be ergodic. If θ2 → η(·, ·; θ2) is many-to-one then the
algorithm might be able to make some moves, but they will be very restricted and in any
case this situation is uncommon.
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The second contribution in this section is the idea that had we been able to obtain a
transition density identity as in (15) where the expectation is with respect to a distribution
that does not depend on θ, then we would be able to find an auxiliary distribution in which
these singularities would not appear. The change of measure in these expectations cannot
be achieved using importance sampling techniques. This is again because the measures
W(ti−1, ti, η(ti−1, Vti−1

; θ2), η(ti, Vti ; θ2)) are singular for different values of θ2, hence it is
not possible to find a common dominating measure. However, we can use properties of
the Brownian bridge to achieve the change of measure. One such useful property is the
linear tilting: if Z(i) ∼ W(ti−1, ti, 0, 0) and

X
(i)
t = Zt +

t− ti−1

ti − ti−1

η(ti, Vti ; θ2) +
ti − t

ti − ti−1

η(ti−1, Vti−1
; θ2) , t ∈ [ti−1, ti] , (26)

then X(i) ∼ W(ti−1, ti, η(ti−1, Vti−1
; θ2), η(ti, Vti ; θ2)). In this way, X(i) is a function of

Z(i), θ2 and the observations, and we will write X(Z(i), θ2), where the dependence of the
transformation on the observations is suppressed for economy. Therefore, the transition
density identity (15), applied to a pair of consecutive observations Vti−1

, Vti can we re-
written as

pti−1,ti(Vti−1
, Vti ; θ) = EW(ti−1,ti,0,0)

[
R0,i

η (θ,X(Z(i), θ2))
]
,

which implies that the following auxiliary distribution

n∏

i=1

R0,i
η (θ,X(Z(i), θ2))

n⊗

i=1

W(ti−1, ti, 0, 0) π(dθ) (27)

admits π(dθ | {Vti}) as a marginal. In this auxiliary distribution the auxiliary variables
are the tilted bridges Z(i), for i = 1, . . . , n. Note that this measure is dominated by the
product measure given by the prior measure and independent Brownian bridge measures.

This is our proposed auxiliary distribution for reducible diffusions, which is the same as
the one obtained in [21], although we have used a different and we believe more transparent
and direct argument here. The conditional distribution of θ given the auxiliary variables
has density proportional to

π(θ)
n∏

i=1

R0,i
η (θ,X(Z(i), θ2)) .

Conditionally on θ the auxiliary variables are independent and distributed according to a
measure proportional to R0,i

η (θ,X(Z(i), θ2))W(ti−1, ti, 0, 0).
The conditional independence of the auxiliary variables given θ is the main advan-

tage of a component-wise updating algorithm, which updates parameters and auxiliary
variables in separate blocks according to their conditional distributions. Within such an
algorithm, the conditional distribution of θ will typically be sampled using a Metropolis-
Hastings step. It is a computationally costly step, since for the proposed value of θ, the
paths X(i) will have to be reconstructed by tilting the existing paths Z(i). On the other
hand, note that only when changing θ2 the paths X

(i) need reconstruction, which suggests
that it might be computationally beneficial to update θ1 and θ2 in separate steps. For
several interesting models, the update of θ1 conditionally on θ2 and the auxiliary variables
can be done by direct simulation, for example when the drift of (1) is linear in θ1, see for
example [7]. The conditional distribution of the auxiliary variables will also by sampled
using a Metropolis-Hastings step. Different proposal distributions can be considered to

this effect. One possibility is to propose independent Z̃(i) ∼ W(ti−1, ti, 0, 0) and accept
them with probability

min
{
R0,i

η (θ,X(Z̃(i), θ2))/R
0,i
η (θ,X(Z(i), θ2)), 1

}
.
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Alternatively, we can use local algorithms to update the auxiliary variables by doing local
perturbations to Z(i) which leave the dominating measure W(ti−1, ti, 0, 0) invariant, see
for example the algorithms reviewed in [5].

Practical implementation of the algorithm requires a finite-dimensional approximation.
Using the ideas from Section 2 this amounts to approximating the dominating measure by
π(dθ) ⊗n

i=1 W
δ(ti−1, ti, 0, 0), hence the auxiliary variables by the skeletons {Z(i)

τi,j} for τi,j
equally spaced at distance δ between ti−1 and ti, and each factor R0,i

η by Rδ,i
η , computed

as in Section 2.5 with the obvious modifications.

3.3 The irreducible case

The same arguments as for the reducible case suggest the following auxiliary distribution

n∏

i=1

R0,i(θ, V (i))
n⊗

i=1

Q(ti−1, ti, Vti−1
; θ2, Vti) π(dθ) (28)

where

R0,i(θ, V (i)) = (2π(ti − ti−1))
−d/2 |A(ti, Vti ; θ2)|1/2G(ti−1, ti, V

(i), b, A; θ)ζ(ti−1, ti, V
(i), A; θ2)

× exp

{
− 1

2ti − ti−1

(Vti − Vti−1
)TA(ti−1, Vti ; θ2)(Vti − Vti−1

)

}

is defined as R0(θ) in Section 2.3 but over the time period [ti−1, ti], V
(i) = (V

(i)
t , ti−1 ≤

t ≤ ti) for i = 1, . . . , n are the auxiliary variables, which are processes that interpolate
the observations, and the dependence of R0,i on each process V (i) is made explicit in the
notation. It is again immediate consequence of (13) that this auxiliary measure admits
π(dθ | {Vti}) as a marginal.

Note that under this auxiliary measure and conditionally on θ, the V (i)’s are indepen-
dent and each distributed according to a measure proportional toR0,i(θ, V (i))Q(ti−1, ti, Vti−1

; θ2, Vti).
Recall from Section 2.3 and Equation (12), that this measure is the diffusion bridge mea-
sure P(ti−1, ti, Vti−1

, Vti ; θ), i.e., the law of a process that solves the SDE (10). Due to the
quadratic variation identity (3), these laws for different θ2’s will typically be mutually
singular, since different θ2’s will typically imply different quadratic variation processes.
Thus, for different θ2’s the conditional auxiliary measures will be mutually singular, hence,
as with (25) in the reducible case, component-wise updating algorithms that target the
joint auxiliary measure will not be ergodic. This problem was first pointed out by [21].

As with the reducible case, we will overcome this problem by seeking a change of
measure in the transition density identity (13). In the reducible case we obtained this
change by linearly transforming the Brownian bridge and we then approximated the
resulting infinite-dimensional measure for practical purposes. The possibility to identify
changes of measure in infinite-dimensional spaces will be harder in more general contexts,
for example for irreducible diffusions.

The third main idea we introduce in this section, is that we can exploit the connec-
tion between discrete and continuous-time results by reversing the operations of change
of measure and approximation. That is, we can first approximate (28), building on the
results of Sections 2.4 and 2.5, and then devise a change of measure. For example, we can
approximate the dominating measure by π(dθ)⊗n

i=1 Q
δ(ti−1, ti, Vti−1

; θ2, Vti), although we
could have used an alternative approximation of each Q(ti−1, ti, Vti−1

; θ2, Vti), e.g. by the
Euler scheme. Given the advantages of the local linearisation of (17) over alternatives
discussed in Sections 2.4 and 2.6, we will concentrate on Qδ in the rest of this section.
We also approximate each R0,i(θ, V (i)) by Rδ,i(θ, {Y δ,(i)

τi,j }) as suggested in Section 2.5.
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Component-wise MCMC algorithms on the resulting finite-dimensional auxiliary distri-
bution will be ergodic, but the mixing time will deteriorate as δ → 0; see Section 2.3 of
[21] for a worked example and [24] for a rigorous evaluation of how small δ needs to be
for the resulting approximation bias to be insignificant, in models where MCMC can be
applied without such approximation error.

To combat the algorithmic deterioration with δ, we can perform a change of measure
in the finite-dimensional auxiliary distribution, which is rather straightforward. One
possibility is to work with π(dθ) ⊗n

i=1 W
δ(ti−1, ti, 0). Let {Z(i)

τi,j} be the new auxiliary
variables, which under each dominating measure Wδ(ti−1, ti, 0) are Brownian skeletons.

Let Y δ({Z(i)
τi,j}, θ2) denote the discrete-time process produced by (18) where Z

(i)
τi,j −Z

(i)
τi,j−1

are used as the noise increments. We can then define the new auxiliary distribution

n∏

i=1

Rδ,i(θ, Y δ({Z(i)
τi,j

}, θ2))
n⊗

i=1

Wδ(ti−1, ti, 0) π(dθ) . (29)

The conditional density of θ given the auxiliary variables is proportional to

π(θ)
n∏

i=1

Rδ,i(θ, Y δ({Z(i)
τi,j

}, θ2))

and the auxiliary variables conditionally on θ are independent, each distributed according
to a measure proportional to Rδ,i(θ, Y δ({Z(i)

τi,j}, θ2))Wδ(ti−1, ti, 0). The simulation from
these conditionals can be done along the suggestions made for the reducible case. In
particular, an independence sampler is one option for sampling the auxiliary variables,

according to which proposals are generated according to
˜{Z(i)

τi,j} ∼ Wδ(ti−1, ti, 0) and
accepted with probability

min

{
Rδ,i(θ, Y δ(

˜{Z(i)
τi,j}), θ2))/Rδ,i(θ, Y δ({Z(i)

τi,j
}), θ2)), 1

}
.

We can now link this presentation to previous results in the literature on MCMC
methods for partially observed irreducible diffusions. The specific approximation of Q by
Qδ, together with the independence sampler for the auxiliary variables is closely related
with the algorithm of [12]. [12] start from a discrete-time missing data perspective, and
inspired by the modified Brownian bridge proposal they (effectively) consider the auxiliary
distribution

n∏

i=1

Rδ,i
E (θ, {Y δ,(i)

τi,j
})

n⊗

i=1

Qδ(ti−1, ti, Vti−1
; θ2, Vti) π(dθ) .

where Rδ,i
E (θ, {Y δ,(i)

τi,j }) is defined analogously to Rδ
E in Section 2.6 but over [ti−1, ti]. To

combat the anticipated mixing problems they perform the transformation discussed above
and work instead with the auxiliary distribution (29) but with Rδ,i(θ, Y δ({Z(i)

τi,j}, θ2)) re-
placed by Rδ,i

E (θ, Y δ({Z(i)
τi,j}, θ2)). Proposition 3 shows that the two auxiliary distributions,

that of [12] and the one we discussed above, are slightly different. However, it is useful
to realise that this is only one of the possible algorithms for posterior inference, other
approximation or sampling schemes can be considered.

3.4 Robustness of posterior distributions and MCMC algorithms
to approximations

In this paper we have managed to construct on the same probability space stochastic
processes, likelihood estimates and MCMC algorithms that can be obtained either for the
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continuous-time model and then be approximated or for a discrete-time approximation of
the model. This joint construction provides an ideal framework for studying the proper-
ties of these processes and inference algorithms as δ → 0, i.e., as the approximation to the
continuous-time limit improves. We have obtained such concrete results for the stochastic
processes involved in this framework, see Theorem 1. What is beyond the scope of this
paper, and is missing from the literature, is a similar study of the properties of the algo-
rithms. We are particularly interested in the stability properties of the finite-dimensional
MCMC algorithms discussed in this section. In the reducible case there exists a lim-
iting algorithm, which we approximated, but there exist no general concrete results on
the convergence properties of the Markov chain that operates on the infinite-dimensional
space, neither for that of the approximating chains. In the irreducible case, we do not
even have a formal result establishing the limit of the finite-dimensional algorithms to an
infinite-dimensional one.

Consider first the case of reducible diffusions, for which an infinite-dimensional sam-
pler is well-defined. It is known that approximating a Markov chain kernel does not
guarantee good approximation of the corresponding limiting distribution. Moreover, even
when the limiting distribution of the discrete chains do converge to the desired continu-
ous time limit, the MCMC algorithm on the discretisation space may not share similar
convergence characteristics (for example geometric ergodicity) as the idealised chain op-
erating in the continuous time limit. See for example [22, 4] for a discussion of these
issues, counter-examples where the expected convergences fail to hold, and positive re-
sults showing robustness of both the target distribution and the convergence properties of
the MCMC chain. For irreducible diffusions we face the additional challenge to establish
that a limit is well defined.

Unfortunately, results to guarantee robustness are not readily available from existing
theory in the literature, particularly as the state spaces of the approximating chains are
invariably changing as discretisations become increasingly finer. However it seems clear
that methods based on total variation bounds and associated coupling arguments (as used
for example in the papers mentioned above) ought to provide some reassurance, perhaps
in the presence of weak additional regularity conditions. The embedding of the discrete-
time approaches within a continuous-time framework and the results on convergence of
the stochastic processes involved are important steps in this direction. We also have some
preliminary results on the convergence of the weight Rδ to its limit R0. Giving precise
statements of results in this direction is beyond the scope of this paper, but it will be the
focus of ongoing work.

4 Discussion

In this paper we introduce a generic framework for data augmentation for diffusions.
There are some key ideas that underpin this framework. One is the embedding of different
stochastic processes that have been used for simulation of conditioned diffusions within a
common framework, that of different discretisations of (11). We demonstrated the strong
convergence of appropriate discretisations of these processes to their desired limits.

We also emphasise important identities for the diffusion transition density and the
respective discretisations. These are developed by simple albeit not completely trivial
stochastic analysis tools, in particular the decomposition of measure (8) and the Cameron-
Martin-Girsanov theorem. The embedding of discrete and continuous-time approaches in
a common framework allowed us to study the connection between different estimators of
the likelihood for diffusions. Proposition 3 shows that apparently different schemes are
closely related and the discussion that follows it makes a case for the optimality of some
of those.
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A third key idea is that these identities can be used to find auxiliary distributions
within a data augmentation framework for Bayesian inference for partially observed dif-
fusions. This allows us to obtain expressions for the joint distribution of parameters and
auxiliary variables in a rather simple and automatic way bypassing complications that
can be found in previous works on this topic. The resulting auxiliary distributions do
not lend themselves to Gibbs sampling, due to the mutual singularity of the conditional
distributions of the auxiliary variables. Nevertheless, another key idea in this paper is
a change of measure which results in auxiliary distributions that can be sampled by the
Gibbs sampler or other component-wise updating MCMC algorithms.

Our methods and theoretical results rely on certain assumptions on the coefficients
of (1). Those in Appendix B for the proof of Theorem 1 are merely technical. The
assumptions that σ and A are bounded, which can be used to establish that the importance
sampling approximation (12) is valid, are probably unnecessarily strong. The assumption
of ellipticity of (1) is of course more restrictive and not only of technical nature. In general,
it is hopeless to study importance sampling for hypoelliptic diffusion bridges without
assumptions on the structure of σ. However, for specific (and at the same time practically
relevant) type of hypoelliptic diffusions, e.g. integrated diffusions, importance sampling
representations such as those obtained in Section 2.3 should be possible, as well as the
transition density identities that then form the backbone of the MCMC methodology. It
is also interesting and challenging to study such representations and identities for other
Markov processes, e.g. jump diffusions. These questions form part of our current research
agenda.

The derivation of such representations and identities is to some extent model specific
and it might require careful probabilistic analysis. However, and we think this is the
appeal of this work, once these results are obtained they can be quite easily utilised
within MCMC algorithms for parameter estimation when the underlying processes are
partially observed.

More generally, a lot of the ideas in this paper can be considered in broader terms,
without explicit reference to diffusions per se, but of relevance to other high or infinite-
dimensional Bayesian inference contexts. In particular, let π0(dθ) be the prior distribution
of the parameters of a statistical model. Then, Bayesian inference is based upon the pos-
terior distribution, say π1(dθ) ∝ L(θ)π0(dθ), where L(θ) is the likelihood. Implicit in this
construction is the statistical model from which the likelihood is derived from, as well as
the dependence of L(θ) on observed data, which has been suppressed for notational econ-
omy. Data augmentation methods come into play when L(θ) is intractable or expensive
to compute, but auxiliary variables V that take values on a space V , and an expanded
distribution π(dθ, dV ) can be identified, such that π(dθ, dV ) admits π1(dθ) as a marginal.
The aim is then to sample from this auxiliary distribution using component-wise updating
MCMC algorithms. The first challenge with DA is to identify such auxiliary expansions.
The approach we developed in Section 2 in terms of likelihood identities provides one
generic way to achieve this. In particular, suppose we have that L(θ) = EQθ

[G(V ; θ)],
where the equality holds π0−a.s, G is positive, and the expectation is taken with respect
to a distribution Qθ on V , which as the notation suggests might depend on θ. Then, we can
work with the auxiliary expansion π(dθ, dV ) ∝ G(V ; θ)Qθ(dV )π0(dθ), which by construc-
tion admits π1 as a marginal. The second challenge with DA arises when the measures Qθ

for different θ’s are mutually singular, i.e., for θ1 6= θ2, Qθi(dV ) > 0 =⇒ Qθj(dV ) = 0
for i 6= j. In that case, any component-wise updating MCMC algorithm is not ergodic.
The change of measure approach introduced in Section 3 can provide the solution in
such frameworks. Finally, when V is an infinite-dimensional space an approximation will
be needed for practical implementation. Again, our results can be helpful in analyzing
methods that either discretise a limiting algorithm or they start by a finite-dimensional
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approximation of the statistical model.

Supplementary Materials

Appendix: Appendix A gives details for the derivation of the likelihood (12). Appendix
B gives the proof of Theorem 1 and Proposition 1. Appendix C gives the proof of
Proposition 3. (data aug diffusions appendix.pdf).
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