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Abstract

The main purpose of this thesis is to present, in a unified manner, how non-centered param-

eterisations can be applied in a wide range of hierarchical models. The aim of such parame-

terisations is to improve the performance of the Gibbs sampler and related componentwise-

updating MCMC algorithms which are used to perform Bayesian inference. The main at-

traction of the centered and the non-centered methodology is that they both provide a

general parameterisation strategy. Thus, the performance of the corresponding MCMC al-

gorithms can be studied in a general way abstracting from the technicalities of a particular

model. On the other hand, detailed knowledge about a specific model can be useful in

finding parameterisations which are preferable to both the non-centered and the centered.

Our partially-non-centered parameterisations try to combine the generality of the centered

and non-centered methodology together with the specificity of a particular model to produce

better parameterisations.

We review the existing theory for comparing different parameterisations in the context of

the Gibbs sampler. We apply this theory to investigate when the non-centered is preferable

to the centered parameterisation for a wide range of linear Gaussian models. Qualitative

comparison of the two schemes, based on the notions of geometric and uniform ergodicity of

Markov chains, is provided for a class of linear non-Gaussian models.

We introduce state space expansion techniques which allow us to construct non-centered

parameterisations for a wide range of distributions. We also suggest a variety of tech-

niques for non-centering Poisson processes. We link our work with existing methodologies

in Bayesian non-parametrics.

We review a family of stochastic volatility models recently introduced in the literature by

Barndorff-Nielsen and Shephard (2001). We proceed to conduct Bayesian inference for these

models using centered and non-centered MCMC algorithms, which we have introduced for

this purpose. The efficiency of these algorithms is assessed using several simulated datasets.

We use our methods to provide estimates of the model parameters for a financial series of

Deutsch Mark against US Dollar exchange rates.

We introduce a hierarchical model diagnostic tool and apply it to assess identifiability

and fit of the stochastic volatility models.

We introduce partially-non-centered methods that attempt to outperform both the cen-

tered and non-centered. Some analytic results are given and applications in random-effects
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models, hierarchical generalised linear and geostatistical mixed models are considered. We

also provide a discussion on how this method relates to other augmentation methods recently

introduced in the literature.
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1.8 Basics of Lévy processes and infinite divisibility . . . . . . . . . . . . . . . . 25

2 Convergence rates and reparameterisations for the Gibbs sampler on nor-

mal hierarchical models 30

2.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1 Rates of convergence of the Gibbs sampler . . . . . . . . . . . . . . . . . . . 30

2.1.1 Gibbs sampler on Gaussian target distributions . . . . . . . . . . . . 34

2.1.2 Measures of efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Parameterisations of hierarchical models . . . . . . . . . . . . . . . . . . . . 39

2.3 The normal hierarchical model . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.1 Brownian motion interpretation . . . . . . . . . . . . . . . . . . . . . 42

2.3.2 Effect of prior distribution on the rate of convergence . . . . . . . . . 44

2.4 A general normal hierarchical model . . . . . . . . . . . . . . . . . . . . . . 44

2.5 A State-space model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.6 Linear non-Gaussian model . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

i



3 Convergence of MCMC for linear hierarchical models with heavy-tailed

links 58

3.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1 Markov chain theory for general state spaces . . . . . . . . . . . . . . . . . . 59

3.1.1 φ-irreducibility and small sets . . . . . . . . . . . . . . . . . . . . . . 59

3.1.2 Recurrence and Harris chains . . . . . . . . . . . . . . . . . . . . . . 60

3.1.3 The ergodic theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1.4 Uniform ergodicity of Markov chains . . . . . . . . . . . . . . . . . . 62

3.1.5 Geometric ergodicity of Markov chains . . . . . . . . . . . . . . . . . 63

3.1.6 De-initialising chains . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Linear non-Gaussian models and robust Bayesian analysis . . . . . . . . . . 67

3.2.1 The Dawid/O’Hagan conditions . . . . . . . . . . . . . . . . . . . . . 68

3.2.2 Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 Convergence of the CA and the NCA for the Cauchy-Gaussian model . . . . 73

3.4 The general result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 The double exponential-double exponential model . . . . . . . . . . . . . . . 76

4 General non-centered parameterisations and state space expansion 79

4.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1 General non-centered parameterisations . . . . . . . . . . . . . . . . . . . . . 80

4.2 NCPs for gamma random effect models by expanding the state space . . . . 83

4.2.1 Non-centering for infinitely divisible and related distributions . . . . . 86

4.3 Comparison of different non-centering schemes . . . . . . . . . . . . . . . . . 87

4.3.1 The stable family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.2 Gaussian latent distribution . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.3 Cauchy latent distribution . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Non-centered parameterisations for Poisson processes 94

5.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 Poisson processes: review of basic definitions and properties . . . . . . . . . 95

5.1.1 Restriction, superposition and mapping properties . . . . . . . . . . . 96

5.1.2 Sums over Poisson processes . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.3 Marked Poisson processes . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1.4 Likelihood functions for Poisson and Gibbs processes . . . . . . . . . 99

5.1.5 Birth-death-displacement MCMC algorithms for simulating Gibbs pro-

cesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 NCPs for Poisson processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3 NCP by thinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

ii



5.3.1 THIN-NCA for homogeneous Poisson processes on a bounded state

space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3.2 THIN-NCA for finite Poisson processes . . . . . . . . . . . . . . . . . 113

5.4 NCP by the inverse CDF method . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5 NCPs for marked Poisson processes . . . . . . . . . . . . . . . . . . . . . . . 118

5.5.1 An illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.6 Completely random measures and subordinators . . . . . . . . . . . . . . . . 124

5.7 Completely random measures . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.8 Positive independent increments processes, subordinators and representations 127

5.8.1 The Ferguson-Klass representation and approximations . . . . . . . . 129

5.8.2 Applications to Bayesian non-parametrics . . . . . . . . . . . . . . . 132

6 Inference for Non-Gaussian OU models 133

6.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.1 Financial markets and stylised facts . . . . . . . . . . . . . . . . . . . . . . . 133

6.2 Stochastic volatility modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3 The Barndorff-Nielsen and Shephard model . . . . . . . . . . . . . . . . . . 140

6.3.1 Construction of the model . . . . . . . . . . . . . . . . . . . . . . . . 140

6.3.2 Integrated volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.3.3 Aggregation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.3.4 Superposition of OU processes . . . . . . . . . . . . . . . . . . . . . . 147

6.3.5 Existing estimation methods . . . . . . . . . . . . . . . . . . . . . . . 148

6.4 OU models with compound Poisson BDLP . . . . . . . . . . . . . . . . . . . 151

6.4.1 Superposition of OU models with compound Poisson BDLP . . . . . 153

6.5 Bayesian inference for the gamma-OU model . . . . . . . . . . . . . . . . . . 154

6.5.1 Superposition of gamma-OU processes . . . . . . . . . . . . . . . . . 154

6.5.2 Prior specification and posterior inference . . . . . . . . . . . . . . . 155

6.6 Augmentation based on marked Poisson processes . . . . . . . . . . . . . . . 156

6.7 A centered parameterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.7.1 MCMC implementation . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.8 Alternatives to the centered parameterisation . . . . . . . . . . . . . . . . . 163

6.9 Non-centering for the the gamma-OU model . . . . . . . . . . . . . . . . . . 164

6.10 MPP-THIN-NCP for the gamma-OU model . . . . . . . . . . . . . . . . . . 165

6.11 Alternative non-centered parameterisations . . . . . . . . . . . . . . . . . . . 168

6.11.1 MCMC implementation . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.12 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.12.1 Comparison of CA vs NCA . . . . . . . . . . . . . . . . . . . . . . . 170

6.12.2 Comparison of the different NCPs . . . . . . . . . . . . . . . . . . . . 174

iii



6.13 Augmentation and non-centered parameterisation for the superposition of OU

processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.13.1 Examples using simulated data . . . . . . . . . . . . . . . . . . . . . 184

6.14 Posterior inference and sensitivity analysis . . . . . . . . . . . . . . . . . . . 185

6.15 Model diagnostic tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.16 A real data example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.17 Extensions and further work . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.17.1 Drift and risk premium . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.17.2 Leverage effect and non-integrable Lévy measures . . . . . . . . . . . 198
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Chapter 1

Introduction

1.0 Motivation

The last 15 years have seen the wide spread of sampling-based methods for performing

Bayesian statistical inference. The adoption of these methods is particularly appropriate

within this paradigm, see for example Smith and Roberts (1993), where most inferential prob-

lems typically involve multidimensional analytically intractable integrations, which however

can be easily managed using Monte Carlo methods. Therefore, the computational challenge

usually faced within a Bayesian analysis is, given a distribution π on some (arbitrary) state

space Z, to obtain samples Z0, Z1, . . . ∼ π. Then, use the samples to approximate for a real

function f on Z with finite mean under π,

∫
Z

f(z)π(dz) ≈ 1

n

n∑
i=0

f(Zi). (1.1)

Techniques which attempt to draw values directly from π have been shown to have

limited scope and applicability. Instead, a collection of very powerful, general and easy to

implement, iterative computational methods, known as Markov chain Monte Carlo (MCMC),

have found a huge success within the statistical community since the beginning of the 1990’s.

The main idea can be traced at least as far back as Metropolis et al. (1953) in the physics

context, and Hastings (1970) in the statistical context. MCMC methods had been used in

the computer science and operational research (see for example Kirkpatrick et al. (1983))

and image analysis (see for example Geman and Geman (1984)) but it was much later with

Gelfand and Smith (1990) that the broad statistical audience became aware of the potential

of MCMC for Bayesian inference.

The idea behind MCMC is simple: for a given distribution π on Z construct a Markov

chain with state space Z whose stationary distribution is π. Then under mild conditions a

Markov chain sample path {Z0, Z1, . . .} is an approximate and dependent random sample
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from π and well known asymptotic results ensure, for example, distributional convergence

of the realisations

Zn
d→Z, Z ∼ π

and consistency of the ergodic averages, for any integrable scalar function f ,

1

n

n∑
i=0

f(Zi) →
∫
Z

f(z)π(dz), as n → ∞, almost surely; (1.2)

this type of results are more thoroughly presented in Section 1.5.1 and Section 3.1.

The dependence among the simulated values is of serious concern for assessing the effi-

ciency of an MCMC algorithm. The ergodic average estimators (1.2) can have very unstable

behaviour and converge (in an appropriate norm) very slowly to their strong law limiting

values, in the presence of high serial dependence in the {Zn} series. In worst cases it might

be even impossible to assess the error of the estimator for a finite value of n in (1.2) (using

for a example a central limit theorem) since the estimator might have infinite asymptotic

variance. In such cases it is important to redesign the sampler in order to reduce serial

dependence and obtain much more reliable results.

It is often the case that the random variable Z, whose distribution π we want to sample

from, admits a natural partition Z = (Z(1), . . . , Z(k)). A popular MCMC variant samples

from π by iteratively sampling (either directly or using an approximate MCMC step) from

the full conditional distributions of each Z(i) given the current values of the other components

Z(j), j 	= i. An important special case, which arises in the Bayesian analysis of hierarchical

models (see Section 1.3) takes k = 2. High dependence (under π) between the updated

components Z(1) and Z(2) results in high serial dependence in the MCMC draws {Zn} =

{(Z(1)
n , Z

(2)
n )}, thus in an inefficient sampler, as it was argued in the previous paragraph.

Algorithmic performance can be significantly improved by finding a reparameterisation of

the Z = (Z(1), Z(2)) vector, under which the two components are mildly dependent under π.

Then, the MCMC successive draws are also mildly serially dependent.

The motivation behind this thesis is to develop a general methodology for constructing

such reparameterisations and, thus, improve the performance of componentwise-updating

MCMC algorithms.

1.1 Outline of the thesis

The unifying theme of this thesis is the construction and analysis of non-centered parame-

terisations for data augmentation and hierarchical models. This class of parameterisations

is proposed as a general purpose method to improve the speed of convergence of the Gibbs

sampler and related component-wise updating MCMC algorithms. We look at the problem
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of non-centering from various perspectives:

• Characterising the rate of convergence of the Gibbs sampler on linear hierarchical

models under this parameterisation (Chapter 2 and Chapter 3).

• Developing methods which can be used in order to construct non-centered parame-

terisations for various hierarchical models with latent random variables and stochastic

processes, as well as exposing how the corresponding MCMC algorithms are imple-

mented (Chapter 4 and Chapter 5).

• Linking the ideas of reparameterisation to probabilistic representations of stochastic

processes (Chapter 5).

• Applying non-centered algorithms to make Bayesian inference about a new class of

stochastic models in financial econometrics (Chapter 6).

• Using non-centered techniques as a hierarchical model diagnostic tool (Chapter 6).

• Constructing a continuum of parameterisations which lie in the between of the centered

and the non-centered (Chapter 7).

For expositional reasons we have chosen to blend in the new results of the thesis together

with review of existing work in the sense that every chapter contains both review and original

work. This choice makes each chapter relatively self-contained. Moreover, the introduction

of technical details is avoided until they become necessary. The review material contained

in Chapter 1 is relevant to all the subsequent chapters. This section serves to clarify which

are the main innovations of the thesis and which existing results are reviewed.

The main innovations of this thesis are summarised below, where we also give references

to the specific sections where they can be traced.

1. We discuss general issues related with non-centered parameterisations of hierarchical

models. In particular:

(a) We formalise the notions of centered and non-centered parameterisations for three-

stage hierarchical models; see Section 1.7, Section 2.2 and Section 4.1.

(b) We describe the MCMC algorithms under these parameterisations; see Section 4.1.

(c) Based on analytic results, intuitive arguments and simulation studies we advocate

the employment of non-centered methods for certain models and types of data;

see Section 1.7, Section 2.3, Section 2.5, Section 3.4, Section 4.1 and Section 6.8.

(d) We compare empirically different types of non-centered parameterisations and

make some conjectures regarding their observed variability; see Section 6.12.2

and Section 4.3.
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2. We derive the analytic geometric convergence rate of the Gibbs sampler under the cen-

tered and the non-centered parameterisation for a general normal hierarchical model;

see Section 2.4. As a special case we study the simple state-space model; see Section 2.5.

3. We express the normal hierarchical model in terms of Brownian motion, which helps us

gain intuition about some results concerning the convergence rate of the Gibbs sampler

on this model; see Section 2.3.1.

4. We state and prove results concerning the type of convergence of the Gibbs sampler

under the centered and the non-centered parameterisation for linear non-Gaussian

hierarchical models; see Chapter 3. In particular:

(a) We prove that when the observation error is Gaussian and the latent error is

Cauchy the Gibbs sampler under a non-centered parameterisation is uniformly

ergodic, while under a centered it fails to be geometrically ergodic; see Section 3.3.

(b) We establish a connection between the convergence rates results and a well studied

problem in Bayesian robustness; see Section 3.2.1.

(c) This connection is exploited to provide two conditions on the tails of the obser-

vation and latent error distributions which generalise the convergence results for

the Cauchy-normal to arbitrary linear hierarchical models; see Section 3.2.1 for a

description of the conditions and Section 3.4 for a statement of the general result.

(d) We prove geometric ergodicity for the Gibbs sampler under both the centered

and the non-centered parameterisation for linear hierarchical models with dou-

ble exponential error distributions for the observation and latent equations; see

Section 3.5.

5. We provide an alternative proof of the main result of Dawid (1973), concerning the

dominance of the prior over the likelihood in the presence of outliers for models with

location structure, where we show that one of his conditions is actually not necessary;

see Section 3.2.1.

6. We develop a technique for non-centering random variables with infinitely divisible

distributions, which is based on an expansion of the state space; see Section 4.2.1. The

implementation of the MCMC algorithm under this parameterisation is illustrated

using a gamma random effects model as an example; see Section 4.2.

7. We consider non-centered parameterisations for latent Poisson processes; see Chapter 5.

In particular:

(a) We introduce two different non-centered parameterisations for Poisson processes;

see Section 5.3 and Section 5.4.
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(b) We describe the implementation of the corresponding MCMC algorithms for a

variety of cases; see Section 5.3.1, Section 5.3.2 and Section 5.8.1.

(c) We extend our results to marked Poisson processes; see Section 5.5 and Sec-

tion 5.5.1.

(d) We establish a connection between these parameterisations and probabilistic rep-

resentations of positive Lévy processes; see Section 5.8.1.

8. We develop MCMC methodology for performing Bayesian inference for non-Gaussian

Ornstein-Uhlenbeck stochastic volatility models; see Chapter 6. In particular:

(a) We propose a data augmentation scheme based on marked Poisson processes; see

Section 6.6.

(b) We design centered and various non-centered MCMC algorithms for sampling

from the posterior distribution of the parameters and the missing data in the

model; see Section 6.7, Section 6.7.1, Section 6.9, Section 6.10 and Section 6.11.

(c) We carry out an extensive simulation study to compare the performance of the

MCMC algorithms; see Section 6.12.

(d) We extend our methods to models constructed by superpositioning Ornstein-

Uhlenbeck processes; see Section 6.13. We also discuss possible extensions of

our methodology to more general models which include drift, risk premium and

leverage terms; see Section 6.17.

(e) We investigate prior elicitation and sensitivity for the model parameters, as well

as identifiability of the latent structure; see Section 6.14.

(f) We fit the models to a series of US dollar (US$) - Deutsch Mark (DM) daily

exchange rates that spans the period from 01/01/1986 to 01/01/1996. We com-

pare our results with those obtained by Barndorff-Nielsen and Shephard (2002a),

which used second order methods to fit these models to the same financial series

but sampled at higher frequencies; see Section 6.16.

9. We introduce a model diagnostic tool for hierarchical models and apply it to the

stochastic volatility models of Chapter 6; see Section 6.15.

10. We introduce the partially non-centered parameterisation, which includes the centered

and the non-centered as special cases; see Chapter 7. In particular:

(a) We describe the parameterisation for the simple normal-hierarchical model and

we calculate the rate of convergence of the Gibbs sampler under this parameteri-

sation; see Section 7.2.
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(b) We extend our results to the general normal hierarchical model and to models

outside the Gaussian family; see Section 7.3, Section 7.5 and Section 7.6.

(c) We introduce a technique which is helpful in finding data-dependent partially

non-centered parameterisations which outperform (in terms of the corresponding

Gibbs sampler convergence rate) both the centered and the non-centered; see

Section 7.10.

(d) We discuss how this methodology relates with the marginal and conditional aug-

mentation but also with parameterisations which are based on posterior correla-

tion analysis; see Section 7.9.1, Section 7.9.2 and Section 7.7.

(e) We apply our methods to improve the convergence rate of MCMC for a non-

Gaussian geostatistical model; see Section 7.11.

11. We propose a class of parameterisations for generalised linear hierarchical models.

We use simulations to investigate the performance of the Gibbs sampler and related

component-wise updating techniques under this parameterisation and compare it with

the centered and non-centered; see Section 7.8.

In addition to the original work contained in this thesis, certain key existing results are

reviewed in various places. In particular we review

i basic principles of hierarchical modelling and Bayesian analysis of missing data prob-

lems; see Section 1.3 and Section 1.6

ii the basic MCMC algorithms in Section 1.5.2 and a specific MCMC algorithm for

simulating Gibbs processes in Section 5.1.5

iii theory concerning ergodicity and convergence rates of Markov chains on arbitrary state

spaces; see Section 1.5.1, Section 2.1 and Section 3.1

iv convergence rate analysis of the simple normal hierarchical model under the centered

and the non-centered parameterisation; see Section 2.3

v marginal and conditional data augmentation methods; see Section 7.9.1 and Sec-

tion 7.9.2

vi theory regarding the properties and representations of independend increment pro-

cesses and Lévy processes; see Section 1.8, Section 5.7, Section 5.8 and Section 5.8.1

vii basic properties of, and likelihood-based inference for Poisson and marked Poisson

processes; see Section 5.1.

viii stochastic volatility modelling of financial time series; see Section 6.1 and Section 6.2
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ix the properties and existing estimation methods of the stochastic volatility model in-

troduced by Barndorff-Nielsen and Shephard (2001); see Section 6.3

x work on Bayesian robustness; see Section 3.2

xi basic results about the natural exponential family; see Section 7.8.1

Table 1.1 associates each review area with the research work for which it is suited.

Innovation Review area

1 i, ii, iv

2 iii, iv,

3 iv, vi

4 iii, x

5 x

6 ii, vi

7 ii, vi, vii

8 ii, vi, vii, ix

9 i, vii

10 ii, iv, v, vi, xi

11 ii, iv, xi

Table 1.1: Relevance of the review areas of the thesis to the main innovations.

1.2 Notation

This section provides some guidelines about the notation and terminology we have employed

in this thesis.

For a random variable X we use both πX(x) and π(X) to denote its density function.

The former is mathematically more sound, and where such notational precision is important

(for example in Chapter 3) we adhere to this form. Otherwise we use the less formal π(X).

A similar rule holds for conditional densities. With an abuse of notation, we use π to refer to

probability measures as well, with the exception of Chapter 3 where the separation between

a measure and its density is important and we use Π to refer to the former. “⇒” denotes

weak convergence of probability measures, “
d
=” equality in distribution between two random

variables and
d→ convergence of random variables in distribution.
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In the greatest part of this thesis Y stands for the observed data, X the missing data

and Θ the parameters in a three-stage hierarchical model. This generic notation is violated

in Chapter 6 to keep consistency with Roberts et al. (2003).

The transition kernel of a Markov chain is denoted by P and its density (if it exists with

respect to some reference measure) by p. Proposal kernels of Metropolis-Hastings chains are

denoted by Q. Without confusion, the same letter is used to refer to the precision matrix of

a multivariate Gaussian distribution.

The indicator function is denoted by 1l, for example 1l[x ∈ A] is one, if x ∈ A and zero

otherwise. Ip denotes the p× p identity matrix, 1 a vector of 1s, 0r1×r2 an r1 × r2 matrix of

0s, where sometimes we omit the subscripts if the dimensions are obvious from the context.

The transpose of a matrix A is denoted by At.

We have followed Bernardo and Smith (1994) to denote distributions: Bi(n, p) is the

binomial distribution with mean np, Pn(λ) the Poisson with mean λ, N(μ, σ2) the Gaussian

distribution with mean μ and variance σ2, Ga(α, β) the gamma with mean α/β and variance

α/β2, Ig(α, β) the inverse gamma with parameters α, β (defined such that the change of

variables x → 1/x leads to a Ga(α, β)), Ex(β) the exponential with mean 1/β, DEx(μ, β)

the double exponential with location μ and scale β, Be(α, β) the beta with mean α/(α +β),

Un[α, β] the uniform in [α, β], Ca(μ, σ) the Cauchy with location μ and scale σ.

We denote the centered parameterisation by CP and the non-centered by NCP, while

the corresponding MCMC algorithms are denoted by CA (centered algorithm) and NCA

(non-centered algorithm) respectively.

We use directed acyclic graphs to represent hierarchical models and employ the stan-

dard notation (see for example Whittaker (1990), where observed variables are included in

square nodes, unobserved variables are included in round nodes, and dashed arrows represent

deterministic relationship.

1.3 Bayesian inference for missing data problems

The statistical models considered in this thesis share a common structure: the distribution

of (Y,X) is specified and depends on the parameters Θ. However, only Y is observed,

and therefore X is treated as missing data. Section 1.6 discusses a variety of such models

and how they appear in statistical modelling; many more examples can be found in the

following chapters. The pair (Y,X) is often termed the augmented or complete data. The

term “missing data” should not necessarily be interpreted as data which for some reason

we failed to collect, rather as data which are not available to us. In many cases, especially

in models with latent variables, random effects or hidden stochastic processes, it is likely

that we would never be able to observe X, which could for example represent a collection of

unobserved and unknown covariates which are used to explain the variation of the observed
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data Y .

Adopting the Bayesian perspective, a prior distribution is assigned to Θ and we are

typically interested in deriving or sampling from the posterior distribution of Θ, i.e the

conditional distribution of Θ given the observed data Y . Assuming the existence of densities

with respect to the Lebesgue measure for simplicity, the latter is given up to proportionality

by

πΘ|Y (θ | y) ∝
∫

πY,X|Θ(y, x | θ)dx πΘ(θ) (1.3)

where πΘ(θ) is the prior on Θ. (1.3) can be easily generalised for arbitrary measures and

expresses the fact that in order to perform posterior inference for Θ we need to find the

marginal distribution of the observed data given the parameters. In many complex statis-

tical models used now-days (as for example in geostatistics, econometrics, engineering), the

integration in (1.3) is neither analytically nor numerically feasible. On the contrary, statis-

tical analysis of the so-called complete data is typically much more straightforward; this for

example, is the case in the hierarchical models introduced in Section 1.6.

However, powerful iterative sampling schemes have been developed that sample from the

joint posterior distribution of (Θ, X) by exploiting the tractability of the two conditionals

X | Y, Θ and Θ | X,Y . This methodology, known as the data augmentation (Tanner and

Wong (1987)), is described in Section 1.5.2. Once samples have been obtained from this

joint distribution, sampling based posterior inference can be easily performed for Θ (or X)

using Monte Carlo methods, for example Ripley (1987) and especially Section 2 of Gelfand

and Smith (1990) and Section 4 of Smith and Roberts (1993) for accounts of Bayesian

inference using sample-based methods. In some cases, even when the integration in (1.3)

is manageable, it might still be computationally more efficient to resort to the iterative

methods of Section 1.5.

1.4 Graphical models and conditional independence

We say that two variables X and Θ are independent, and we write X ⊥⊥ Θ, when the

distribution of X is the same for all values of Θ, see Dawid (1979). Notice that this definition

incorporates the possibility that the distribution of Θ is concentrated at a single value (i.e

it is known) or even that this distribution is improper.

The notion of conditional independence is fundamental in this thesis; it is used to con-

struct hierarchical models, for example in Section 6.7; our centered and non-centered pa-

rameterisations for a hierarchical model are actually defined in terms of the conditional

independence structure they impose between the missing data and the parameters, see for

example Section 2.2 and Section 4.1; it is exploited to simplify the implementation of our
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state-space expanded MCMC algorithms, as for example in Section 4.2 and Section 5.3.1.

Dawid (1979) builds up (rather heuristically) the theory of conditional independence in a

statistical context and we refer to this for the main definitions and properties. In a nutshell,

the random variables Y and Θ are said to be conditionally independent given another variable

X, and we write

Y ⊥⊥ Θ|X,

when they are independent in their joint distribution given X = x, for any value of x.

Informally, this implies that X contains all the information which is necessary to predict

Y , thus when it is known Θ becomes irrelevant. Marginally though, when X is unknown,

Y and Θ could be dependent; we will come across several such examples in Chapter 2 and

Chapter 6. The conditional independence is often expressed in terms of a factorisation of the

joint density of X,Y, Θ, see for example Section 3.1 of Dawid (1979) and Proposition 2.2.3

of Whittaker (1990). This approach is convenient when working with variables which take

values in Euclidean spaces but it becomes less attractive when considering more arbitrary

random objects. For example, in Section 5.3.1 we want to express that a Poisson process X

is independent of some data Y conditionally on a parameter Θ. Therefore, it is much more

natural to work with the general and more abstract principles of conditional independence

developed in Dawid (1979).

A compact and illustrative way of expressing conditional independence statements is by

means of graphical models and we adopt this approach in this thesis. We refer to Whittaker

(1990) for an introduction to graphical modelling and to Section 1.2 for some notational

conventions which help the interpretation of the graphs.

1.5 Markov chain Monte Carlo methods

Markov chain Monte Carlo (MCMC) methods are employed to (approximately) draw samples

from a specific distribution, π say, which is usually termed the target distribution. π is

typically multi-dimensional and often has support on non-Euclidean spaces, for example it

can be the distribution of a Gibbs point process as in Section 5.1.4. In our applications π

is the joint posterior distribution of the parameters and the missing data in a hierarchical

model. Before presenting the main idea and reviewing some well known MCMC algorithms,

we give a short introduction to Markov chains on general state-spaces.

1.5.1 Basic Markov chain theory

This section reviews some basic theory for Markov chains on general state spaces; important

references for the development of this theory include Meyn and Tweedie (1993) and Roberts

and Tweedie (2004); the former is more broadly concerned with Markov chains whereas the
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latter is focused on Markov chain theory relevant to MCMC. More specialised results and

definitions appear when they become necessary in Section 2.1 and Chapter 3.

Let Z be a general set and B(Z) denote a countably generated σ-algebra on Z. Often

Z ⊂ IRd, for some d ≥ 1 and B(Z) is the Borel σ-algebra, although many applications of

this thesis involve the construction of Markov chains which live on non-Euclidean spaces,

see for example Section 5.1.5. The sample path space is defined as the countable product

Ω =
∏∞

i=0 Z(i), where each Z(i) is a copy of Z, and F is the corresponding σ-algebra.

The Markov chain

{Z0, Z1, Z2, . . .} =: {Zn}

as a stochastic process in discrete time, can be constructed by starting from the transition

probabilities (see Chapter 3 of Meyn and Tweedie (1993) for an alternative but equivalent

construction).

Definition 1.5.1. The transition probability kernel P is a function from Z ×B(Z) to [0, 1],

such that

1 for each A ∈ B(Z), P (·, A) is a measurable function on Z

2 for each z ∈ Z, P (z, ·) is a probability measure on (Z,B(Z)).

For any initial measure μ on (Z,B(Z)) and any transition probability kernel P , it can be

shown (see Section 3.4 of Meyn and Tweedie (1993)) that there exists a stochastic process

{Zn} on Ω, measurable with respect to F , and a probability measure Pμ on (Ω,F), such

that for measurable Ai ⊂ Z(i), i = 0, . . . , n and any n, Pμ exhibits the following conditional

independence structure

Pμ(Z0 ∈ A0, Z1 ∈ A1, . . . , Zn ∈ An) =

∫
A0

. . .

∫
An−1

μ(dy0)P (y0, dy1) · · ·P (yn−1, An). (1.4)

Pμ(B) is the probability of the event that the Markov chain sample path belongs in the set of

sample paths B, for B ∈ F . A stochastic process Z on (Ω,F) is called a time-homogeneous

Markov chain with transition probability kernel P (z, A) and initial distribution μ if its finite

dimensional distributions satisfy (1.4) for every n. The conditional independence in (1.4)

is known as the Markov property. Notice that μ can be concentrated on a single point

z ∈ Z, in which case we write Pz for the probability measure of the Markov chain. Similarly,

expectations under the Pz measure are denoted by Ez. The n-step transition probabilities

P n(z, A) can be defined inductively as

P n(z, A) =

∫
Z

P (z, dy)P n−1(y,A), z ∈ Z, A ∈ B(Z)

and clearly P n(z, A) = Pz(Zn ∈ A).
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A σ-finite measure π on (Z,B(Z)) with the property

π(A) =

∫
Z

π(dz)P (z, A) (1.5)

for all A ∈ B(Z) is called invariant. The Markov chain Z with initial distribution π is said

to be reversible with respect to π if and only if the detailed balance relation holds

π(dx)P (x, dy) = π(dy)P (y, dx). (1.6)

This is understood as an equality of two measures on the product space (Z×Z,B(Z)⊗B(Z)).

It follows that π is an invariant measure for Z.

1.5.2 MCMC algorithms

There is already a vast literature about the methodology, theory, implementation and appli-

cations of MCMC. Within the statistics community, currently available texts on the subject

include, for example, Gilks et al. (1996), Tanner (1996), Gammerman (1997), Robert and

Casella (1999), Liu (2001) and Roberts and Tweedie (2004). The following paragraphs de-

scribe briefly some of the MCMC algorithms most relevant to our purposes and we refer

to the aforementioned books for more details. Nevertheless, much more specialised results

about certain algorithms appear later on in this thesis, as for example in Section 2.1 and

Chapter 3.

For a given target distribution π, MCMC methods construct a Markov chain {Zn} which

has π as its invariant distribution. Rather mild conditions ensure that π is also a limiting

distribution of the chain, whatever the initial value Z0; the main result together with the

necessary conditions can be found in Chapter 3. Such Markov chains are called ergodic.

Most of the MCMC algorithms used in practice, and certainly all those considered in this

thesis, satisfy the conditions which ensure convergence (in an appropriately defined norm)

to the invariant distribution π. Thus, the main challenge in designing an MCMC algorithm

is to ensure that π is invariant, which is most easily achieved using the idea of reversibility.

From a statistical perspective, the convergence in distribution of the Markov chain to π

is exploited to estimate expectations under the invariant measure. Suppose that f : Z → IR,

then we define,

πf :=

∫
Z

f(x)π(dx) (1.7)

and

L1 := {f : Z → IR such that π|f | < ∞}.
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Similarly, we define

L2 := {f : πf 2 < ∞}

and

L2
0 := {f ∈ L2 : πf = 0}.

The ergodicity of {Zn} implies that

lim
n→∞

1

n

n∑
i=1

f(Zi) = πf for all f ∈ L1 (1.8)

and

Zn
d→Z, where Z ∼ π

for almost surely all starting points Z0 = z, where “
d→” denotes convergence in distribution

of random variables (see Section 1.2). More details about this sort of convergence results

can be found in Chapter 8 of Roberts and Tweedie (2004).

These results facilitate sampling based inference about π, see for example Section 2

of Gelfand and Smith (1990). In Bayesian analysis, π is a posterior distribution and most

posterior inference problems come down to calculating posterior expectations, see for example

Gelfand and Smith (1990), thus MCMC is a very powerful tool for posterior inference,

although it has also found numerous applications outside Bayesian statistics.

Since the conditions which ensure ergodicity are usually met, an important issue is the

speed at which an MCMC algorithm “converges to stationarity”. This practically determines

how much time we should “run” the chain before treating the simulated values as draws

from π. A related, but not identical, concern is the dependence among the simulated values.

Even if we start in stationarity, by sampling Z0 ∼ π, the Markov chain generates exact

but dependent samples from π. High dependence among the sample can result in very

slow convergence of the ergodic average estimates (1.8) to the expectations under π. The

former problem is investigated qualitatively in Chapter 3, where the notions of geometric

and uniform ergodicity are introduced. The latter is quantitatively answered in Section 2.1,

where exact convergence rates are obtained for a particular class of MCMC algorithms, the

Gibbs sampler. We now proceed to describe the general forms of the MCMC algorithms

used in this thesis.

In the following we assume that we wish to simulate variates from a multi-dimensional

distribution π which has support on Z and we denote a random variable distributed according

to π as Z, Z ∼ π.
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The Gibbs sampler

The Gibbs sampler decomposes the state space Z as Z1 ×Z2 · · · ×Zk, k > 1 and simplifies

a complicated multi-dimensional simulation into a collection of k smaller dimensional and

often more manageable ones. Often, Z = IRd, Z i = IRri and
∑

i ri = d, but this thesis

will be mostly concerned with more general state spaces. The factorisation of the space is

usually naturally suggested by the statistical model under consideration, see for example the

discussion about the two-component Gibbs sampler for missing data problems later in this

section.

We write z = (z(1), . . . , z(k)) for an element of Z where z(i) ∈ Z i for all 1 ≤ i ≤ k. We

also write z(−i) for any vector produced by omitting the ith component,

z(−i) = (z(1), . . . , z(i−1), z(i+1), . . . , z(k))

from the vector z. We also follow the same notational conventions for the random variable

Z ∼ π.

Avoiding technical details we assume the existence of the conditional distributions Z(i) |
Z(−i) = z(−i) for all i = 1, . . . , k, which we denote by

πi(dz(i) | z(−i)). (1.9)

The Gibbs sampler which samples from π is implemented as described below.

The Gibbs sampler

Choose Z0

Set n = 0
Iterate the following steps
{

Set i = 1
While i < k + 1
{

Sample Z
(i)
n+1 ∼ πi(· | z(−i)), where

z(−i) = (Z
(1)
n+1, . . . , Z

(i−1)
n+1 , Z

(i+1)
n , . . . , Z

(k)
n )

i = i + 1

}
n = n + 1

}
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The above scheme is also referred to as the deterministic scan Gibbs sampler due to the

way the algorithm visits each of the k components. It creates a Markov chain on Z with

transition kernel P which is the composition of k transition kernels P (i), i = 1, . . . , k. In

particular, if z, w ∈ Z we define

P (i)(z, dw) =

⎧⎪⎨
⎪⎩

πi(dw(i) | z(−i)), for w(−i) = z(−i)

0, otherwise

and P = P (k)P (k−1) · · ·P (1). There are alternative updating schemes of the Gibbs sampler

(see Roberts and Sahu (1997)) of which the most relevant in this thesis is the random

scan Gibbs sampler. This algorithm at each iteration picks one of the k components, i say,

uniformly at random and updates it according to P (i). The transition kernel of the associated

Markov chain has the mixture form (P (1) + · · · + P (k))/k.

It can be checked (see for example Theorem 3.4.2 of Roberts and Tweedie (2004)) that

each P (i) is reversible with respect to π, from which easily follows that π is invariant for

either the composition, as in the deterministic scan, or the mixture, as in the random scan

Gibbs sampler, of the P (i)s; see for example Proposition 3.3.3 of Roberts and Tweedie (2004).

Notice that the probabilistic behaviour of the algorithm (for example the convergence

rate, see Section 2.1) is not affected by componentwise one-to-one transformations.

Two-component Gibbs sampler (data augmentation)

The data augmentation was originally developed by Tanner and Wong (1987) for finding

fixed point solutions to integral equations which appear in statistical inference, and it can

be viewed as the stochastic analogue to the well known EM algorithm (see Dempster et al.

(1977)). It is most often used to obtain samples from the joint distribution a of random

vector, Z = (Z(1), Z(2)) say, by sampling from the two conditional distributions. This scheme

shares a lot in common with the Gibbs sampler, but Gelfand and Smith (1990) showed that

the latter is at least as efficient as the former. It is a standard practice in the literature (see

for example Liu et al. (1994), Liu and Wu (1999), Meng and van Dyk (2001)) to identify the

data augmentation with the two-component Gibbs sampler and this thesis conforms to this

convention.

Although the data augmentation is considered as a special case of the Gibbs sampler, we

treat it separately because of its importance in tackling missing data problems. Moreover,

it has some special properties that the more general Gibbs sampler does not possess. The

conditional independence structure of the two-component Gibbs sampling Markov chain is

depicted in the graphical model in Figure 1.1. From this it can be shown that the marginal
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Figure 1.1: The conditional independence graph of the two-component Gibbs sampler.

chains {Z(i)
n }, i = 1, 2 are Markov, a feature not shared by the k-component Gibbs sampler.

Actually, by directly checking the detailed balance condition, it can be shown that each chain

is reversible with respect to the appropriate marginal distribution (see for example Lemma

3.1 of Liu et al. (1994)). These results simplify the theoretical analysis of the algorithm, as

for example in Chapter 3. Furthermore, a complete analysis of the covariance structure of

the two-component Gibbs sampler is feasible, which leads to a characterisation of its L2 rate

of convergence; see Section 2.1 for a detailed exposition and references.

A rather intuitive property, which however demands considerable effort to be proved

in full generality, is that the convergence rate of the Gibbs sampler (either in L2 norm as

in Section 2.1 or in total variation distance as in Chapter 3) is not affected by the order

in which components Z(1) and Z(2) are updated. Actually, the result for geometrically

converging chains in L2 norm follows directly from Theorem 3.2 of Liu et al. (1994), see also

Section 2.1. The most general statement is much harder to be shown, nevertheless we will

assume that this it is true throughout this thesis. This property only becomes relevant in

Chapter 3.

Data augmentation is by far the most widely adopted computational method for perform-

ing Bayesian analysis of missing data problems. The target distribution is the joint posterior

distribution of the missing data X and the parameters Θ (see Section 1.3 for definitions). By

construction, simulation from the conditional distributions πΘ|X,Y and πX|Θ,Y is manageable,

certainly much more feasible than simulation from the marginal of interest πΘ|Y , which in

many cases is not even available in closed form due to the integration in (1.3). Therefore,

we use the two-component Gibbs sampler (or the more general Hastings-within-Gibbs to be

introduced later in this section) which updates X and Θ, to obtain samples from πΘ,X|Y and

consequently from πΘ|Y .
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Adaptive rejection sampling

Adaptive rejection sampling is not an MCMC method, instead it is a rejection sampling

algorithm for simulating from log-concave one-dimensional densities; see Ripley (1987) for

an introduction to rejection sampling and Wild and Gilks (1993) for a description of the

algorithm. The main idea is that when the log-density is concave it can be easily bounded

above by its tangents at either side of its (unique) mode. Thus, rejection sampling can be

used to sample from the density using piecewise exponential functions as the envelope. Wild

and Gilks (1993) propose an adaptive method to build up the envelope, by using proposals

from the current version of the envelope which have been rejected as draws from the target

density.

This algorithm has been used in numerous applications as a companion to the Gibbs

sampler. This is due to the fact that the full conditional densities which are derived from

commonly used statistical models are log-concave, see for example Dellaportas and Smith

(1993) and Gilks et al. (1994). We will occasionally use this algorithm in this thesis. We use

the publicly available (from the web page of W. Gilks) FORTRAN code, which however we

have modified in order to correct certain mistakes and numerical instabilities of the original

code.

The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is a method for constructing a reversible Markov chain

{Zn} on a measurable space (Z,B(Z)) with a specified invariant distribution π. A suitable

reference for a description of the algorithm for general state spaces is Tierney (1998), which

we follow closely.

The algorithm requires a proposal kernel Q(z, dw) and a measurable function α(z, w) :

Z × Z → [0, 1]. When the chain is at state z, a candidate value, w say, for the next state

is generated by Q(z, ·) and it is then accepted with probability α(z, w). If it is rejected, the

next state of the chain is z. Therefore, the transition kernel is

P (z, dw) = Q(z, dw)α(z, w) + δz(dw)

∫
(1 − α(z, u))Q(z, du),

where δz(·) is the Dirac-delta measure centered at z. The steps of the algorithm are described

below.
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The Metropolis-Hastings algorithm

Choose Z0

Set n = 0
Iterate the following steps
{

Sample Un+1 ∼ Un[0, 1]
Sample Wn+1 ∼ Q(Zn, ·)
If Un+1 ≤ α(Zn,Wn+1) then

set Zn+1 = Wn+1

Else
set Zn+1 = Zn

n = n + 1

}

For a given proposal kernel Q the aim is to find the acceptance probability α which ensures

reversibility of the chain. The first thing to notice is that for reversibility the diagonal

component does not matter, that is the Metropolis-Hastings kernel P is reversible with

respect to π if and only if

π(dz)Q(z, dw)α(z, w) = π(dw)Q(w, dz)α(w, z) (1.10)

which expresses an equality of two measures on the product space Z × Z. Let R be the

set of all pairs (z, w) for which transitions from z to w and from w to z are both possible

for a Markov chain with initial distribution π and transition kernel Q. For the chain to be

reversible, we have to ensure that for all z ∈ Z, we only allow moves to w ∈ Z such that

(z, w) ∈ R. We also define μ(dz, dw) = π(dz)Q(z, dw) and μT (dz, dw) = μ(dw, dz). Inside

R, μ and μT are mutually absolutely continuous and we define their density

r(z, w) :=
μ(dz, dw)

μT (dz, dw)
.

The Metropolis-Hastings acceptance probability can then be written as

α(z, w) =

⎧⎪⎨
⎪⎩

min{1, r(w, z)}, if (z, w) ∈ R

0, otherwise
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It has to be said that this α is not the unique valid solution to (1.10), but it is optimal under

the Peskun ordering, see Section 2 of Tierney (1998) for details. Notice, that α does not

require knowledge of the normalising constant of π, since r does not.

Under further assumptions, the derivation of α can be greatly simplified. For instance

if π(dz) = π(z)ν(dz) and Q(z, dw) = q(z, w)ν(dw) for some measure ν on (Z,B(Z)) then

R = {(z, w) : π(z)q(z, w) > 0 and π(w)q(w, z) > 0}, and

r(z, w) =
π(z)q(z, w)

π(w)q(w, z)
.

Once α has been found, rather mild conditions ensure ergodicity of the Metropolis-

Hastings algorithm, see for example Chapter 7 of Roberts and Tweedie (2004).

There is flexibility in the choice of the proposal kernel Q, and there is a sense in which all

currently employed MCMC algorithms can be thought of as a special case of the Metropolis-

Hastings algorithm under a particular choice of Q; see Section 2.5 of Roberts and Tweedie

(2004). A very popular algorithm when Z is a metric space, is the random-walk Metropolis,

for which the proposal kernel has a density q(z, w) = q(|z − w|) which is a function only of

the distance between z and w. Typically, when Z = IRd for some d, q is the multivariate

Gaussian density with mean a vector of 0s and covariance matrix σ2Id. The scaling factor σ2

can be chosen by the user to optimise algorithmic performance, see Roberts et al. (1997) for

a thorough investigation of the optimal scaling of the random-walk Metropolis algorithm.

When Z is the positive half-line an attractive alternative is the so-called multiplicative

random walk algorithm, for which the proposal kernel is described by the following random

function of the current value z, W = z exp{U}, U ∼ N(0, σ2). It can be easily seen that this

algorithm is equivalent to the random-walk Metropolis with N(0, σ2) proposal distribution

and target distribution obtained after a logarithmic transformation of the original target.

Hastings-within-Gibbs (component-wise updating algorithm)

The Hastings-within-Gibbs, also known as component-wise updating algorithm, is a hybrid

of the Gibbs sampler and the Metropolis-Hastings algorithm, and it is used extensively in

this thesis. Suppose that the state space has been factorised as Z = Z1 × Z2 and we want

to use the Gibbs sampler to obtain samples from the target distribution π. Nevertheless, it

is often the case that either or both of the conditional distributions πi, i = 1, 2 in (1.9) do

not admit simple forms that we can easily simulate from. The Hastings-within-Gibbs algo-

rithm replaces the direct simulation by a Metropolis-Hastings updating step which has πi as

the invariant distribution. The conditional independence structure of the resulting Markov

chain {(Z(1)
n , Z

(2)
n )} is described by the graphical model in Figure 1.2, and it is interesting

to contrast it with Figure 1.1. Notice that the marginal chains are not Markov anymore, al-

though when one of the conditionals can be sampled from directly, one of the marginal chains
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Figure 1.2: The conditional independence graph of the two-component Hastings-within-
Gibbs sampler, when only one (left) and when both (right) conditionals are not sampled
from directly.

({Z(1)
n } in the left panel of Figure 1.2) will still be Markov. In most cases, it is reasonable

to assume that the ease in the implementation of the Hastings-within-Gibbs over the Gibbs

sampler comes at the expense of speed of convergence. This will be the case in most of the

examples in this thesis, where we employ the Hastings-within-Gibbs when direct simulations

are not feasible, but in theory we would prefer to use a “pure” Gibbs sampler. Actually, the

introduction of Metropolis steps can have serious negative impact on the convergence rate of

the algorithm, see for example the discussion in Section 4.3 and Section 6.12.2. Nevertheless,

there are Hastings-within-Gibbs samplers with better performance than the “pure” Gibbs,

exploting for example antithetic simulation, see examples and references in Section 2.7 of

Roberts and Tweedie (2004).

The Hastings-within-Gibbs becomes very relevant when considering missing data prob-

lems. The factorisation of the space is natural in terms of the parameters Θ and the missing

data X. Moreover, we prefer to work with the two conditional rather than the joint dis-

tribution, mainly because X usually lives on a very different space than Θ, thus designing

Metropolis-Hastings proposals for the pair (X, Θ) is not straightforward. However, in many

complex models the conditionals are not possible to simulate from directly, thus we resort

to the Hastings-within-Gibbs sampler.

Clearly, the algorithm described above can be generalised to the case where Z = Z1 ×
· · · × Zk, k > 2; we describe its steps below.
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The Hastings-within-Gibbs sampler

Choose Z0

Set n = 0
Iterate the following steps
{

Set i = 1
While i < k + 1
{

Update Z
(i)
n+1 according to πi(· | z(−i)), where

z(−i) = (Z
(1)
n+1, . . . , Z

(i−1)
n+1 , Z

(i+1)
n , . . . , Z

(k)
n )

i = i + 1

}
n = n + 1

}

Notice that when the Hastings proposal kernels used at each step i are actually πi, i =

1, . . . , k, the Hastings-within-Gibbs collapses to the Gibbs sampler.

1.6 Hierarchical models

Essentially all Bayesian models can be viewed as hierarchical models, since we typically

assume that the distribution of the observed data Y depends on some unobserved random

quantities X, which can live on arbitrary finite or infinite dimensional spaces, whose dis-

tribution depends on other random quantities Θ. The distribution of Θ depends on other

quantities, which can be assumed either random, thus adding another stage in the hierarchy,

or known. We often adopt the second approach and the resulting model is a three-stage hi-

erarchical model. An important aspect of this model, as described above, is the conditional

independence between Y and Θ given X and this is illustrated in Figure 1.3.

Some justification of hierarchical modelling as a means to constructing a predictive model

for the observables Y (which is the main objective in Bayesian modelling, see for example

the discussion in Chapter 4 of Bernardo and Smith (1994)) is provided by the idea of ex-

changeability and partial exchangeability.

Definition 1.6.1. The random variables Y1, . . . , Yn are said to be finitely exchangeable if

their joint distribution is invariant under permutations of the index set {1, . . . , n}. An
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Figure 1.3: The graphical model of the centered parameterisation.

infinite sequence Y1, Y2, . . . is said to be exchangeable if every finite subsequence is finitely

exchangeable.

Under the assumption of exchangeability for an infinite sequence of random variables

Y1, Y2, . . . ∈ {0, 1}, de Finetti proved a fundamental representation theorem. He showed

that any probability measure P specifying the joint distribution for any subset of Y1, Y2, . . .

can be represented in the following hierarchical form

Yi | X ∼ Bi(1, X) i = 1, 2, . . .

X ∼ Q(·) (1.11)

where X = limn→∞
∑n

i=1 Yi/n and the distribution Q expresses one’s prior belief about

where X will lie, that is Q(x) = limn→∞ P [
∑n

i=1 Yi/n ≤ x]. Therefore, conditionally on X,

which is the unobserved limiting frequency of 1s, the Yis are independent Bernoulli random

variables, while Q is quantifying one’s beliefs about this limiting frequency. We often take

Q to be of some known parametric form depending on some unknown parameters Θ, which

then produces a three-stage hierarchical model as described above.

This theorem has been generalised in various directions. For example when the Yis live on

a Euclidean space, there exists some random distribution function, say F , and a probability

measure on the space of all distribution functions, say Q, such that conditional on F the Yis

are independent and identically distributed according to F , while Q expresses our beliefs on

how the empirical distribution from a large sample of Yis would look like (see Proposition 4.3

of Bernardo and Smith (1994)). Bayesian inference for random distribution functions forms

the core of the so-called Bayesian non-parametric analysis, see Chapter 5 for more details.

By making more assumptions about the probabilistic structure of the Yis (e.g invariance

under some transformations or the existence of fixed dimensional sufficient statistics) we can

derive much more specific and easier to handle models. These considerations often lead to

models where F is some finite-dimensional distribution with parameters X. Similarly the
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prior distribution Q is in some parametric family indexed by the hyperparameters Θ, which

in turn are considered unknown and distributed according to some parametric model with

typically known parameters. This is an example of a three-stage hierarchical model. For the

model described above the corresponding graphical model is given in Figure 1.4.

X

· · ·Y1 Y2 Ym

Θ

Figure 1.4: Graphical model of an exchangeable model

When modelling a sequence of random variables, exchangeability might be judged too

severe an assumption, although we might be prepared to accept it when controlling for some

other factors. Suppose for example (as considered in Lindley and Smith (1972)) that Yij

are independent observations on the ith variety in a field trial, of average yield Xi. We

might believe that the observations on a given variety are exchangeable although obser-

vations on different varieties might have substantial differences. If a priori all varieties

seem indistinguishable in their performance, it seems reasonable to treat the Xis as an ex-

changeable sequence with common hyperparameters Θ. Therefore, a reasonable model for

the Yijs is the three-stage hierarchical model described by Figure 1.5, where for simplicity

of exposition we take only one observation from each variety. This hierarchical model fits

X1 X2 Xm

Y1 Y2 Ym· · ·

Θ

Figure 1.5: Graphical model of a partially exchangeable model

in the general framework describe by Figure 1.3 by setting Y = (Y11, . . . , Y1n, Y2n, . . .) and

X = (X1, . . . , Xm).
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A popular example of a partially exchangeable model, which we use for expositional

purposes in Chapter 2 is the so-called Gaussian random effects model (see for example

Diggle et al. (1994) and references therein), which in its simplest form writes as

Yij = Xi + σyεij, j = 1, . . . , n

Xi = Θ + σxzi, i = 1, . . . ,m . (1.12)

where εij and zi are independent standard normal random variables. This model can be

derived by the assumption of partial exchangeability and spherical symmetry on the Yijs (see

Section 4.4.1 of Bernardo and Smith (1994)) and exchangeability on the unobserved Xis. In

this context Xi is the limiting average of the sequence of Yi1, Yi2, . . .. In many applications,

for example in longitudinal studies, i indexes individuals and j measurements on the same

individual. Therefore, (1.12) allows sharing of information among different individuals for

estimating the individual means Xi, see Section 2.3 for more details. Random effects models

can be constructed outside the Gaussian family as well, see for example Diggle et al. (1994)

and Lee and Nelder (1996), and are a very a useful tool for modelling a wide variety of features

observed in many data sets: clustering (discrete mixture models), complicated marginal

distribution (continuous mixture models), heterogeneity among individuals in longitudinal-

type studies, over-dispersion with respect to standard sampling distributions.

This thesis is primarily concerned with hierarchical models where X corresponds to a

stochastic process. Such models are currently heavily studied in the literature and arise

in many areas of science, for example in engineering, geostatistics, stochastic epidemics

and econometrics. A slightly more complicated model than (1.12) is the Gaussian state-

space model, which is discussed in Section 2.5 and allows for dependence among the Xis

conditionally upon Θ. On the other hand, the models considered in Chapter 5 and Chapter 6

are much more complicated, where X is a Poisson process.

We treat hierarchical models, represented by the conditional independence graph Fig-

ure 1.3 as missing data problems, and identify X with the missing data.

1.7 Centering and non-centering

Section 1.6 described the general model where Y ⊥⊥ Θ | X, a conditional independence

depicted in Figure 1.3. We term the parameterisation in terms of X and Θ the centered

parameterisation (CP), due to the fact that the missing data are centered between the

observed data and the parameters. Suppose, instead, that we can find X̃ and some function

(not necessarily invertible) h such that X = h(X̃, Θ) and X̃ is a priori independent of Θ.

We term (X̃, Θ) the non-centered parameterisation (NCP) and its graphical model is given

in Figure 1.6.

24



Θ

X

X̃

Y

Figure 1.6: The graphical model of the non-centered parameterisation. The dashed arrows
correspond to a deterministic link, that is X is a deterministic function of X̃ and Θ.

We intend to use the two-component Hastings-within-Gibbs algorithm to obtain samples

from the joint distribution of (X, Θ) and this thesis shows that the parameterisation adopted,

either the centered or the non-centered, has a crucial impact on the convergence of the

algorithm. This is the motivation behind the NCP: a general purpose reparameterisation

to improve the performance of the Hastings-within-Gibbs algorithm when it is slow under a

CP; see Section 2.2 and Section 4.1 for an extensive discussion of these issues.

This thesis is concerned with constructing (Chapter 4, Chapter 5) analysing (Chapter 2,

Chapter 3), implementing on challenging models (Chapter 6) and improving (Chapter 7)

non-centered parameterisations.

1.8 Basics of Lévy processes and infinite divisibility

Lévy processes play an important role in this thesis, either as components of a hierarchical

model, as in the Bayesian non-parametric models of Chapter 5 and the stochastic volatility

models of Chapter 6, or as tools for constructing non-centered parameterisations, as in

Chapter 4. Therefore, it is convenient to introduce, rather informally, some basic concepts

and definitions at this early stage. More comprehensive treatment is given in Section 5.7

and Section 5.8.

A stochastic process in time z(t), t ≥ 0 where z(0) := 0 almost surely, is called a

Lévy process if it has independent and stationary increments, that is z(t + s) − z(t), t, s >

0, is independent of the history of the process up to time t and its distribution depends

only on the separation s (see for example Sato (1999), Barndorff-Nielsen and Shephard

(2004)). We take a version of the process which has cadlag (continuous from the right,

limits from the left) sample paths. Notice however, that the term Lévy process is used

occasionaly in the (Bayesian non-parametric) literature (see for example Walker et al. (1999))

to refer to processes with independent but non-stationary increments. In this thesis the
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term Lévy process will be used to refer to a stationary increments process, and the term

independent increments process to a process with independent but possibly non-stationary

increments.

A concept closely linked to the Lévy processes is that of infinite divisibility. The following

definition is taken from Feller (1971) (p.176):

Definition 1.8.1. A distribution function F is infinitely divisible if for every n there exists

a distribution Fn such that F is the n-fold convolution of Fn. In other words, F is infinitely

divisible if and only if for each n it can be represented as the distribution of the sum Sn =

X1,n + · · ·Xn,n of n independent random variables with common distribution Fn.

This definition can be extended to higher dimensions but such a generalisation escapes the

scope of this thesis. Many of the most commonly used distributions are infinitely divisible,

the Gaussian, the Poisson, the gamma, the inverse gamma, the inverse Gaussian, the stable

family but also the log-normal are a few examples. It turns out (see Barndorff-Nielsen and

Shephard (2004)) that the marginal distributions of a Lévy process are infinitely divisible;

see Section 5.7 for a discussion of this property and how it can be exploited to provide

representations of Lévy processes. It can be shown that a Lévy process is characterised by

its distribution at time 1. For example, we call z(·) a gamma process with parameters α, β

when z(1) ∼ Ga(α, β). We occasionally use the term standard gamma process to refer to

the case where z(1) ∼ Ga(1, 1). A rigorous way to characterise the distribution at time 1 is

by means of its cumulant function.

Definition 1.8.2. The cumulant function of a random variable X is defined as the logarithm

of the characteristic function of X,

C(u; X) := log{E[exp{iuX}]}, u > 0, i =
√−1.

For simplicity, especially when dealing with positive random variables, we work with the

logarithm of the moment generating function, which we also call cumulant but denote as

K(u; X) := log{E[exp{−uX}]}, u > 0.

These are standard concepts in probability theory, see for example Barndorff-Nielsen and

Shephard (2004) for more details.

It is not hard to show, using the independent increments property, that for a Lévy process

the following is true

C(u; z(t)) = tC(u; z(1)), for all t > 0,

which explains why these processes allow great deal of analytic tractability and why it is

enough to specify their distribution at time 1 in order to characterise the whole process.
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For more independent increments processes we need a family of measures, the so-called

Lévy measures for the same purpose, see for example Section 5.8.

We close this introductory section by giving three characteristic examples of Lévy processes.

The first is the well known Brownian motion. In its standard form z(1) ∼ N(0, 1), but more

generally we can have z(1) ∼ N(0, σ2). The increments of this process are Gaussian

z(t + s) − z(t) ∼ N(0, σ2s),

a property which can be used to simulate values from this process; for example Figure 1.7

shows a standard Brownian motion path on [0, 1] which has been simulated by splitting time

in small intervals and simulating from the corresponding increments. There is a good reason
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Figure 1.7: A path in [0, 1] of a standard Brownian motion. It has been simulated by
discretising time in intervals of length 10−3 and simulating from the corresponding increments
of the process.

why we chose to plot the path using a continuous line, although we actually simulate only

a discrete skeleton of the process. It can be shown (see for example Feller (1971)) that the

Brownian motion is the only Lévy process with almost surely continuous sample path.

Our second example is the gamma process, specified by asking that z(1) ∼ Ga(α, β).

The increments of the process are also gamma distributed

z(t + s) − z(t) ∼ Ga(αs, β)

and a simulated path is shown in Figure 1.8. This is a pure jump process, a feature shared

by all Lévy processes with positive increments. Actually, the gamma process has an infinite

number of jumps in any bounded interval of time, but only a finite number of them are of

non-negligible size; see Section 5.8 for more details.
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Figure 1.8: A path in [0, 1] of a Ga(10, 1) Lévy process. It has been simulated by discretising
time in intervals of length 10−3 and simulating from the corresponding increments of the
process.

The third example is the compound Poisson process, which turns out to play a funda-

mental role as a building block of the Lévy processes. It can be represented as

z(t) =

N(t)∑
j=1

Ej, z(0) := 0 (1.13)

where N(t) is the number of arrivals of a Poisson process with finite rate, λ say, in [0, t]

and the Ejs are IID random variables and also independent from the Poisson process. This

representation provides an explicit way to simulate paths from this process without any

discretisation error, for example Figure 1.9 shows a realisation of the process when Ej ∼
Ex(Θ). The compound Poisson process has only a finite number of jumps at any bounded

interval of time, and it is the only Lévy process with this property. This feature is depicted

in the example of Figure 1.9.

For the Brownian motion and the gamma processes, we will be interested (in Section 2.3.1

and Section 4.2 respectively) in the stochastic process z(t), t ∈ [0, 1] which is constrained to

hit a specific value z1 at time 1, z(1) = z1 almost surely. The conditioned Brownian motion is

known as the Brownian bridge, we will denote it by B(t), t ∈ [0, 1], by construction B(1) = z1

and B(0) = 0 almost surely, and it is a Gaussian process (see for example p.64 of Rogers and

Williams (1994)). A useful representation of B in terms of z1 and an independent Brownian

motion w, which can exploited to simulate the process, is

B(t) = w(t) − t(w(1) − z1), t ∈ [0, 1].
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Figure 1.9: A path in [0, 1] of a compound Poisson process with finite rate λ = 10 and
Ej ∼ Ex(1). The path has been simulated without any discretisation error by explicitly
simulating the jump times and corresponding sizes from the appropriate distributions.

The conditioned gamma process is known as the beta process. In particular it easy to show

that
z(t)

z(1)
| z(1) ∼ Be(t, 1 − t), t ∈ [0, 1].

It can be shown that, at any bounded interval of time, a sample path of the Brownian

motion with scale parameter σ2 contains infinite information (measured for example by

Fisher’s information) about σ2. In particular, σ2 can be obtained as a specific functional of

the sample path by the so-called quadratic variation identity (see Section 6.3.5). Similarly,

a sample path at any bounded interval of time of a gamma process with shape parameter

α contains infinite information about α. There are important computational implications of

these probabilistic results, see for example Section 5.8.2 and Section 7.6.
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Chapter 2

Convergence rates and

reparameterisations for the Gibbs

sampler on normal hierarchical

models

2.0 Introduction

This chapter reviews the existing theory for characterising and computing the rate of conver-

gence of the Gibbs sampler. We revisit centered and non-centered parameterisation strategies

that have been proposed for hierarchical Gaussian models and discuss the optimal choice

between them in terms of their convergence rates. These parameterisation schemes are also

considered in the context of some linear non-Gaussian models although this problem is con-

sidered in full detail in Chapter 3. This chapter is based and expands on the material

contained in sections 1-3 of Papaspiliopoulos et al. (2003).

2.1 Rates of convergence of the Gibbs sampler

This section gives an overview of the existing theory for characterising and computing the

rate of convergence of the Markov chain induced by the Gibbs sampler, which was introduced

in Section 1.5.2. Based on the corresponding rates, different implementations of the Gibbs

sampler for the same target distribution can be compared. In particular, we can decide

on the updating and blocking strategies to be employed, but we can also contrast different

augmentation schemes. We will be interested in comparing the centered and the non-centered

parameterisation schemes on the basis of the convergence rates of the associated Gibbs

sampling Markov chains.
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There are many techniques in Markov chain theory for obtaining theoretical bounds on

rates of convergence, Roberts and Tweedie (1996b), Amit and Grenander (1991), Tierney

(1994) are just a few references while Chapter 11 of Roberts and Tweedie (2004) gives a de-

tailed account of the area. However, these bounds are typically very conservative, especially

in high dimensions. On the other hand, exact rates for the Gibbs sampler can be obtained

when the target distribution is multivariate Gaussian. The methodology for computing such

rates, developed by Roberts and Sahu (1997), is briefly outlined in Section 2.1.1.

Due to a very elegant observation by Amit (1991), a particularly insightful, although not

very practically useful, characterisation of the rate convergence of the two-component Gibbs

sampler exists, which we will now describe.

Section 1.5.1 gave some basic definitions and properties of Markov chains on arbitrary

state spaces. There we defined L2 as the space of all real functions which are measurable

and square integrable with respect to π. This is a Hilbert space, where the inner product

< ·, · > is given by the covariance and the norm ‖ · ‖ by the standard deviation with respect

to π. The notions of a projection and the angle between subspaces are well understood for

Hilbert spaces, and this is why L2 turns out to be the natural space to describe the Gibbs

sampler. We will actually restrict attention to the subspace L2
0 (see Section 1.5.2); see Liu

et al. (1994) for details on this choice.

Recall from Section 1.5.2 that the Markov chain induced by the two-component Gibbs

sampler is denoted as {Zn} where each Zn is partitioned as Zn = (Z
(1)
n , Z

(2)
n ). The marginal

chains {Z(i)
n }, i = 1, 2 are also Markov. The invariant distribution of the chain, which is the

limiting distribution as well under mild conditions (see Section 1.5.1 and Section 1.5.2), is

π. The results of this section are based on the assumption that Z0 ∼ π.

In the sequel, indexing of expectations with π implies that they are taken with respect

to the stationary measure, otherwise with respect to transition kernel P (·, ·) of the Markov

chain. The latter is defined in Definition 1.5.1. The transition kernels corresponding to the

marginal Markov chains {Z(1)
n } and {Z(2)

n } are denoted by P1 and P2 respectively.

The transition kernel P of a Markov chain acts as an operator on L2
0,

Pf(x) := E[f(Z1) | Z0 = x], f ∈ L2
0.

The L2 rate of convergence is understood as the rate at which expectations P nf of arbitrary

square-integrable functions f ∈ L2
0 converge to their stationary values πf (defined in Sec-

tion 1.5.2) as n → ∞ according to the L2 norm. This type of convergence is considered in

Roberts and Sahu (1997), Amit (1991), Goodman and Sokal (1989) among others.

P is a linear continuous operator (see Section 5 of Rynne and Youngson (2000) for an

introduction to operator theory), therefore we can define its norm ‖P‖ = sup Var
1/2
π [Pf(X)],

where the supremum is taken over all f ∈ L2
0 with unit variance. We can also define the
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spectrum of P , which is the set of all complex numbers λ such that P − λI is not invertible,

where I is the identity operator. The spectral radius of P is the maximum modulus λ in

its spectrum, and will be denoted here as spec(P ). Since we defined ‖P‖ as a supremum

over unit-variance functions, it is easy to see that ‖P‖ ≤ 1. We define the spectral gap for

P as 1 − spec(P ). The L2 rate of convergence is given by the spectral radius of P , see for

example Roberts (1996) for a discussion on this result for discrete state-spaces. When P

is self-adjoint, its spectrum is simply the set of its eigenvalues, the corresponding Markov

chain is reversible and spec(P ) = ‖P‖. For non-self-adjoint kernels the following identity

links the two quantities

spec(P ) = lim
n→∞

‖P n‖1/n (2.1)

from which follows (as an effect of the triangle inequality) that spec(P ) ≤ ‖P‖.
In the Gibbs sampler, P is a product of the component-updating kernels, P = PkPk−1 · · ·P1,

see Section 1.5.2. Amit (1991) observed that Pi as an operator in L2
0, is actually an orthog-

onal projection onto the space

V−i = {f ∈ L2
0 : f(X) = f(Y ) if X(−i) = Y (−i)}, i = 1, . . . , k (2.2)

that is, the space of L2
0 functions constant with respect to their ith argument.

Assuming that k = 2, the angle φ between V−1 and V−2, which are closed subspaces of a

Hilbert space, is defined (see expression (4) of Amit (1991)) in any of the following equivalent

ways

cos(φ) = sup{Corrπ{f(X), g(X)}, f ∈ V−1, g ∈ V−2} (2.3)

= sup{Var 1/2
π [P1f(X)], f ∈ V−1} (2.4)

Lemma 1 of Amit (1991) shows that

(spec(P ))1/2 = cos(φ) = sup{Corrπ{h(Z(1)), g(Z(2))}, h, g ∈ L2
0}

= sup
h:Var π [h(Z

(1)
0 )]=1

Var 1/2
π [E[h(Z

(1)
0 ) | Z

(2)
0 ]]. (2.5)

Therefore, for the two-component Gibbs sampler (2.5) directly links the convergence rate

with the correlation structure of the target distribution π. Amit (1991) also provides some

bounds on the convergence rate of the Gibbs sampler when k > 2 using the angles between

the relevant subspaces.

Liu et al. (1995) study the covariance structure of the two-component Gibbs sampler

with a view to comparing different estimators and augmentation schemes and link the result
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of Amit (1991) with the notion of maximal correlation. The maximal correlation between

two random variables W, V is defined as

γ(W,V ) = sup
h,g∈L2

0

Corr{h(W ), g(V )}. (2.6)

There is also an alternative expression

γ(W,V ) = sup
h:Var[h(W )]=1

Var 1/2[E[h(W ) | V ]], (2.7)

which is much more convenient to handle than (2.6) and it is in this form that the maximal

correlation has been found to be useful in the literature, see for example Liu and Wu (1999),

Meng and van Dyk (1999) and Meng and van Dyk (2001). The equivalence of (2.6) and

(2.7) follows essentially from the corresponding definitions of the angle between two closed

subspaces of a Hilbert space, given in (2.3) and (2.4).

The maximal correlation has been used as a general measure of dependence (see for exam-

ple Breiman and Friedman (1985); Lancaster (1958)) and it has three important properties

(see Breiman and Friedman (1985))

1 0 ≤ γ(W,V ) ≤ 1.

2 γ(W,V ) = 0 if and only if W and V are independent.

3 If there exist measurable functions h, g, with Var [h(W )] > 0, such that h(W ) = g(V )

then γ(W,V ) = 1.

In the context of the two-component Gibbs sampler, Theorem 3.2 of Liu et al. (1995)

shows that, when the algorithm is started in stationarity, the maximal one-lag autocorre-

lation of the Markov chain γ(Z0, Z1) is the same as the maximal correlation between the

updated variables under the stationary measure γ(Z
(1)
0 , Z

(2)
0 ). They also give a probabilistic

proof of the result by Amit (1991) that the rate of convergence is given by {γ(Z
(1)
0 , Z

(2)
0 )}2,

which is based on the interleaving Markov property. For reasons of completeness, the theo-

rem is stated below.

Theorem 2.1.1. (Liu et al. (1995)) Assuming that Z0 = (Z
(1)
0 , Z

(2)
0 ) ∼ π then

γ(Z0, Z1) = γ(Z
(1)
0 , Z

(2)
0 )

and

γ(Z
(1)
0 , Z

(1)
1 ) = γ(Z

(2)
0 , Z

(2)
1 ) = {γ(Z

(1)
0 , Z

(2)
0 )}2.

Hence ‖P‖2 = ‖P1‖ = ‖P2‖. However, the spectral radii of P, P1, P2 are all the same and

equal to {γ(Z
(1)
0 , Z

(2)
0 )}2.
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It has long been recognised that the correlation structure of the target distribution de-

termines the convergence behaviour of the corresponding Gibbs sampler, see Hills and Smith

(1992), Gelfand et al. (1995); (2.5) makes this connection precise. However, the characteri-

sation given in (2.5) is of little practical use since in general it will be impossible to evaluate

the supremum over all functions h ∈ L2
0. We can however restrict the space of functions over

which the supremum in (2.7) or in (2.5) is taken by making use of the following important

results. When the joint distribution of (W,V ) is bivariate Gaussian it has been shown (for

example in Lancaster (1958)) that the maximal correlation coincides with the absolute value

of the correlation coefficient. When (W,V ) has a multivariate Gaussian distribution then

the function f leading to maximal correlation must be linear, that is if W = (W1, . . . ,Wn)

then h(W ) =
∑

αiWi for some real coefficients αi. This result was originally proved by

Kolmogorov, see Breiman and Friedman (1985) for some references. Notice also that if t(V )

is a sufficient statistic for the conditional distribution of W | V then γ(W,V ) = γ(W, t(V )).

Another important application of the characterisation in (2.5) is in comparing different data

augmentation schemes, see for example Meng and van Dyk (1999), Liu and Wu (1999) and

Section 7.9.2 of this thesis.

2.1.1 Gibbs sampler on Gaussian target distributions

Explicit convergence rates can be obtained when the target distribution of the Gibbs sampler

is multivariate Gaussian. This case is studied thoroughly in Roberts and Sahu (1997), where

different updating schemes, blocking strategies and parameterisation issues are investigated.

The results for the Gaussian target distributions hold asymptotically for other targets (see

Roberts and Sahu (2001)) and therefore provide useful intuition on how the Gibbs sampler

might work in a variety of models. The following sections rely on these results to compare

different parameterisations of Gaussian hierarchical models.

Assume that the state space Z = IRd is decomposed in k components IRri , for 1 ≤ i ≤ k

with
∑k

i=1 ri = d. Let π correspond to the multivariate Gaussian density, where without loss

of generality, we can take its mean to be 0× 1 (1 is a k × 1 vector of ones here), since as we

mentioned in Section 1.5.2 component-wise transformations do not affect the probabilistic

behaviour of the Gibbs sampler. Therefore, under this decomposition of Z the Gibbs sampler

on π induces a k-dimensional Markov chain Z = {Zn}, where Zn = (Z
(1)
n , . . . , Z

(k)
n ) and the

dimensionality of the random vector Z
(i)
n is ri. We denote the inverse covariance matrix for
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π by Q, and partition it accordingly as

Q =

⎛
⎜⎜⎜⎜⎜⎝

Q11 . . . Q1k

...
...

Qk1 . . . Qkk

⎞
⎟⎟⎟⎟⎟⎠ (2.8)

where each Qij is an ri × rj matrix. Roberts and Sahu (1997) (Lemma 1) notice that the

Markov chain induced by the Gibbs sampler on the Gaussian target π, has a Gaussian

transition density with mean

E[Z1 | Z0] = BZ0

and variance matrix Q−1 − BQ−1Bt, where the matrix B is derived below.

We write diag(Q−1
11 , . . . , Q−1

kk ) for the matrix

⎛
⎜⎜⎜⎜⎜⎝

Q−1
11 0r1×r2 . . . 0r1×rk

...
. . .

...

0rk×r1 . . . . . . Q−1
kk

⎞
⎟⎟⎟⎟⎟⎠

and set

A = I − diag(Q−1
11 , . . . , Q−1

kk )Q . (2.9)

Next we need to consider the decomposition of A into its upper and lower-triangular matrices.

Partitioning A in k2 sub-matrices as in the partition of Q, we define the lower triangular

matrix L by

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . . . . 0

A21
. . .

...

. . . . . . . . .
...

Ak1 . . . Ak,k−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.10)

and set U to be the upper triangular matrix, U = A − L. Then, B = (I − L)−1U .

Theorem 1 of Roberts and Sahu (1997) stated below describes how we can use the B

matrix constructed above to calculate the rate of convergence of the Gibbs sampler on a

Gaussian target distribution:

Theorem 2.1.2. (Roberts and Sahu (1997)) The Gibbs sampler on π produces a multivariate
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Gaussian AR(1) process and its L2 rate of convergence ρ, can be characterised as

ρ = spec(B), (2.11)

therefore ρ is the maximum modulus eigenvalue of B.

2.1.2 Measures of efficiency

When the L2 rate of convergence ρ of an ergodic Markov chain is available, some informative

measures of its efficiency can be calculated. Some of these measures will appear later in

this chapter, especially in Section 2.5.

The spectral theory of bounded self-adjoint operators on a Hilbert space provides some

powerful representations which can be used to assess the efficiency of reversible Markov chain

Monte Carlo methods. Suppose that {Zn, n = 1, 2, . . .} is an ergodic Markov chain (see

Section 1.5.1 and Section 3.1.3) with stationary distribution π, and f is a square integrable

function with respect to π. The transition operator is denoted by P , as in Section 2.1 and

ρ = spec(P ). We also assume that the chain starts in stationarity, Z0 ∼ π, and that P is

a self-adjoint operator, therefore the Markov chain is reversible. Ergodic average estimators

of the form

SN =
1

N

N∑
i=1

f(Zi)

were shown to converge to πf in Section 1.5.1 under mild conditions. The error of the

estimator can be assessed by its variance Var (SN). It can be shown (see for example Theorem

3.2 of Roberts (1996) and Theorem 2.1 of Geyer (1992)) that as N → ∞

NVar (SN) → σ2
f := Var π[f(Z0)] + 2

∞∑
i=1

Cov{f(Z0), f(Zi)};

if σ2
f < ∞ we have a central limit theorem (Theorem 2.1 of Geyer (1992))

√
n(SN − πf)

d→S, S ∼ N(0, σ2
f ).

Moreover, the autocovariance function admits the spectral representation (see for example

Section 2 of Geyer (1992))

Cov{f(Z0), f(Zi)} =

∫ 1

−1

λidEf (λ)

where Ef is the spectral measure on [−1, 1] associated with f . If ρ < 1 (which is true when
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the chain is geometrically ergodic; see Section 3.1.5) then, since (1 +λ)/(1−λ) is increasing

in λ and |λ| ≤ ρ for all λ in the spectrum of P by definition, it follows that

σ2
f =

∫ 1

−1

1 + λ

1 − λ
dEf (λ) ≤ 1 + ρ

1 − ρ
Var π[f(Z0)]. (2.12)

Let

τf :=
σ2

f

Var π[f(Z0)]
≤ 1 + ρ

1 − ρ
, (2.13)

in the literature τf is called the integrated autocorrelation time of the Markov chain corre-

sponding to the function f . By definition of σf and due to (2.13) it follows that 1 ≤ τf ≤
(1 + ρ)/(1 − ρ). The upper bound of this inequality corresponds to the asymptotic error of

the ergodic averages in estimating the “worst” functions, although many other interesting

functions might be mixing much faster and having much smaller asymptotic errors.

Actually, when the chain is a Gaussian vector autoregressive process of order one, then

it can be shown (see for example Pitt and Shephard (1999)) that τf = (1 + ρ)/(1 − ρ) and

τf measures approximately for large N , the sample size that we should require from our

Markov chain to estimate πf to the same accuracy as N independent draws from π, where

f is some linear function. Similarly a natural way to compare the relative efficiency of two

Markov chains with the same stationary distribution π but with different convergence rates,

ρc, ρnc say, is by calculating (1 + ρnc)(1 − ρc)/[(1 − ρnc)(1 + ρc)].

This thesis is primarily interested in the Gibbs sampler and its variants, therefore the

transition operator P of the associated Markov chains is not self-adjoint and the spectral

theory results presented above do not hold. However, notice that for the two-component

Gibbs sampler each of the marginal chains is reversible, which is proved for example in

Lemma 3.1 of Liu et al. (1994). Therefore, these measures can be used to assess efficiency

of the sampler in estimating marginal expectations.

Another quantity that contains valuable information about the efficiency of the Markov

chain is −1/ log{ρ}. This is proportional to the number of iterations needed for P nf to be

within a given accuracy close to πf , and it is used in Section 2.5.

A more informal way of assessing the efficiency of a Markov chain {Zn} in estimating

expectations under the invariant measure is looking at sample-based estimates r̂(n) of the

theoretical autocorrelations

r(n) = Corr{f(Z0), f(Zn)}, n = 0, 1, . . .

where f is the function whose expectation we want to estimate. This summary is easy to

produce and is informative about the error of ergodic averages in estimating expectations

of interest. The r̂(n) are computed using standard time series techniques (for example by

dividing appropriate sample means), after discarding a number of initial iterations which are
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believed to belong to the transient phase of the chain.

Clearly, determination of this number of iterations is not straightforward and there are

various diagnostic tools which have been developed to this end, see for example Brooks and

Roberts (1999), Cowles et al. (1996) and references therein as well as the web page

http : //www.statslab.cam.ac.uk/mcmc/pages/links.html

for some useful related links. There is also the BUGS software package, operating within

the S-PLUS and R environment, for performing convergence diagnostics analysis for Gibbs

sampler output, see Gilks et al. (1994). Diagnostic tools convey important information about

the behaviour of the Markov chain, however they do not prove convergence. In this thesis

we don’t use any of this technology, instead we shall largely look at trace plots in order

to assess the required number of iterations to be discarded. We are primarily interested

in the covariance structure of the Gibbs sampler and how this can be improved using non-

centered parameterisations, thus convergence of the algorithm from different starting values

is somewhat tangential to our considerations. This is why we employ this rather informal

method, which however is widely accepted within the MCMC community.

When the autocorrelations remain non-negligible for large number of iterations this is

an indication of a slowly mixing chain, which will produce estimates of πf with substantial

Monte Carlo error. Actually, if the chain is reversible Geyer (1992) shows that the theoretical

autocorrelations under stationarity are non-negative for all lags, therefore it is of interest

to plot the estimated autocorrelations for as many lags as they are clearly positive, since

negative values are due to the sample variation.

In models as those in Chapter 4, Chapter 6 and Chapter 7 where we cannot calculate

analytic convergence rates, we compare different algorithms in terms of these estimated

autocorrelations. This is a very rough comparison necessitated by the difficulty in obtaining

analytic rates for complex models, whereas the bounds on these rates which some methods

provide (see for example Chapter 11 of Roberts and Tweedie (2004)) are typically extremely

conservative and very hard to obtain. For the two-component Gibbs sampler the maximal

lag-one autocorrelation of the marginal chains coincides with the L2 rate of convergence, but

it is not possible to find which function maximises this autocorrelation unless the target is

Gaussian. Nevertheless, this assessment is still useful since it gives an idea of the relative

efficiency of different MCMC algorithms with the same target in estimating the expectation

of a function of interest. We use such comparison techniques in the following chapters and

some more discussion is given in Section 6.12.1, in the specific context of the application

considered there.
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2.2 Parameterisations of hierarchical models

Section 1.7 introduced the two types of parameterisations of hierarchical models that we will

consider in this thesis: the centered (CP), with the conditional independence graph shown

in Figure 1.3, and the non-centered (NCP), with corresponding graph shown in Figure 1.6.

The two-component Gibbs sampler (see Section 1.5.2) under the centered parameteri-

sation, simulates iteratively from the conditional distribution of X given Θ and Y , and Θ

given X. We call this the centered algorithm (CA). Alternatively, the Gibbs sampler under

the non-centered parameterisation simulates iteratively from the conditional distribution of

X̃ given Θ and Y , and Θ given X̃ and Y . We call this the non-centered algorithm (NCA).

The rest of this chapter is devoted to the calculation and comparison of the L2 convergence

rate of the CA and the NCA for different Gaussian three-stage hierarchical models.

For non-Gaussian models analytic calculation of convergence rates for the Gibbs sampler

under any of the suggested parameterisations is typically impossible. Moreover, it might

not even be possible to implement a “pure” Gibbs sampler, instead we need to resort to

the more general componentwise-updating algorithms like the Hastings-within-Gibbs (see

Section 1.5.2). Section 4.1 defines carefully the centered and non-centered parameterisation

for arbitrary hierarchical models and exposes how the corresponding Hastings-within-Gibbs

algorithms are implemented. Nevertheless, the analytic results of this chapter for the rela-

tively simple Gaussian models will help us gain valuable intuition about non-centering for

the much more complicated models that we consider in the following chapters.

2.3 The normal hierarchical model

In this section we calculate analytic results for the rate of convergence of the CA and the

NCA for the normal hierarchical model (1.12) which was discussed in Section 1.6; see also

(2.14) below. This is a toy example which, however, serves nicely to illustrate and motivate

some of the main ideas presented in this thesis. This model has also been used for pedagogical

purposes by Liu and Wu (1999).

We initially assume that an improper uniform prior is chosen for Θ, which however can

be shown (see Lindley and Smith (1972)) to lead to a proper posterior. We also assume

that the variances σ2
x, σ2

y are known, which is essential in order to be able to derive analytic

results of the convergence rate. Notice that the sample average Yi =
∑

j Yij/n is sufficient

for Xi and has normal distribution with mean Xi and variance σ2
y/n. Therefore, when σ2

y

is assumed known multiple observations per Xi is equivalent to rescaling the observation

error variance σ2
y . Hence with no loss of generality, we take n = 1 in (1.12), and the model
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rewrites as

Yi = Xi + σyεi

Xi = Θ + σxzi, i = 1, . . . ,m . (2.14)

The CP for this model is (X, Θ), where X = (X1, . . . , Xm). It is easy to see that the

joint distribution of (X, Θ) is multivariate Gaussian with precision matrix given by

Q =

⎛
⎜⎝ (1/σ2

x + 1/σ2
y)Im −1/σ2

x1
t

−1/σ2
x1 m/σ2

x

⎞
⎟⎠ .

We can use the results of Section 2.1.1 but also of Section 2.1 to compute the rate of

convergence of the CA, denoted by ρc. This was originally done in Roberts and Sahu (1997)

(see Section 4.1, but also Section 14.2 of Roberts and Tweedie (2004)), where it was found

that

ρc = 1 − σ2
x

σ2
x + σ2

y

=
σ2

y

σ2
x + σ2

y

. (2.15)

This expression reveals automatically that the CA works well when the observation error is

small compared to the variance of the random effects. There is an interesting connection

between the expression (2.15) and a statistical concept crucial in the analysis of missing data

problems, that of the Bayesian fraction of missing information introduced by Rubin (1987).

For a fixed real function h(Θ), it can be defined as the ratio

κ =
Var [E[h(Θ) | Y,X] | Y ]

Var [h(Θ) | Y ]
= 1 − E[Var [h(Θ) | Y,X] | Y ]

Var [h(Θ) | Y ]
. (2.16)

It follows that ρc = 1 − κ, where (2.16) is computed for linear functions of Θ. We can

interpret κ as the proportion of extra variation caused by not observing X when making

inference about h(Θ). The posterior mean for Xi has a weighted average form

E[Xi | Y, Θ] = κYi + (1 − κ)Θ

E[Xi | Y ] = κYi + (1 − κ)Y (2.17)

which shows that κ (evaluated for the identity function) is the weight given on the data point

Yi when predicting (under square loss function) the underlying Xi; see Lindley and Smith

(1972) for more details on this. Notice that Yi is the least squares estimator of Xi when

we ignore the prior dependence among the Xis. This point estimate is pooled towards the

population average Y with weight 1 − κ. Actually, we will see in Section 7.8 that posterior
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expectations of the canonical parameters in generalised hierarchical models admit similar

weighted average forms.

Liu (1994b), using some of the results of Liu et al. (1994), shows that the rate of conver-

gence of the two-component Gibbs sampler equals the maximal Bayesian fraction of missing

information, which is obtained as the supremum of (2.16) over all functions h with unit

variance. There is a frequentist version of the ratio (2.16) known as the fraction of missing

information, which instead of dividing posterior variances it divides the corresponding Fisher

informations evaluated either at the true parameter values or at maximum likelihood esti-

mates. It is known that the latter characterises the rate of convergence of the EM and ECM

algorithm (see Meng and Rubin (1993), Meng and van Dyk (1997), but also Section 7.10 of

this thesis). The two ratios coincide when the joint distribution of (X, Θ) is Gaussian. These

connections have been used to find approximations to the Gibbs sampler convergence rate

for non-Gaussian target distributions, see for example Sahu and Roberts (1999), Roberts and

Sahu (2001), Meng and van Dyk (2001). Moreover, techniques which have been employed to

improve the convergence rate of EM algorithm have been found to be successful in improving

the Gibbs sampler, see for example Meng and van Dyk (1999), Sahu and Roberts (1999),

Liu and Wu (1999) and Section 7.10 of this thesis.

The result in (2.15) can be derived by finding the maximal correlation between X and

Θ. As was observed in Section 2.1 this is given by

Corr(
∑

Xi, Θ | Y ) =
√

1 − κ.

An NCP for this model can be constructed by writing (2.14) in an equivalent form as

Yi = Θ + X̃i + σyεi

X̃i = σxzi, i = 1, . . . ,m (2.18)

where X̃ = (X̃1, . . . , X̃m) is a priori independent of Θ and X = X̃ + 1Θ. Actually, it is in

this form that the normal hierarchical model often appears in the literature, see for example

Tanner and Wong (1987). (X̃, Θ) has multivariate Gaussian distribution with precision

matrix

Q =

⎛
⎜⎝ (1/σ2

x + 1/σ2
y)Im σ2

y1
t

σ2
y1 m/σ2

y

⎞
⎟⎠

and similar calculations as for the CA yield that the rate of convergence of the NCA, denoted
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by ρnc, is

ρnc = κ. (2.19)

Notice that for the simple normal hierarchical model the rates ρc and ρnc do not depend

on the sample size m. This is not true in general for other partially exchangeable models.

Moreover, X̃ and X are orthogonal marginally in an L2 sense, that is Cov{X, X̃ | Y } = 0

(see Figure 7.1). This explains why ρc = 1− ρnc, bearing in mind Amit’s characterisation of

the convergence rate as the cosine of the angle between spaces presented in Section 2.1. This

property shows that CA and NCA are complementary of each other, in the sense that the one

performs best when the other is very poor and provides some justification on why these two

parameterisations are natural competitors. Moreover, it inspires the partially non-centered

methods which will be developed in Chapter 7. However it is not preserved in more general

models, even inside the Gaussian family, as we shall see in Section 2.4.

2.3.1 Brownian motion interpretation

Intuition into how the Gibbs sampler performs under the CP and the NCP can be gained

by expressing the model (2.14) inside a simple Brownian motion context.

For reasons of exposition suppose that m = 1 (it is straightforward to generalise the ideas

for arbitrary m). Then the data Y can be seen as the value of a Brownian motion, X̃(·) say

(the choice of such notation will become clear in the Chapter 4), at time σ2
y + σ2

x, that has

been started at time 0 from initial value Θ. The random effect X can be obtained as the

value of the Brownian motion at time σ2
x. Therefore, we want to infer about the values of

the Brownian motion at time 0 and σ2
x conditional on its value Y at time σ2

y + σ2
x. Under

this setting, the total time σ2
y + σ2

x represents the marginal uncertainty about Θ while the

time proportion κ = σ2
x/(σ

2
x + σ2

y) represents the relative strengths of the prior and the data

in model (2.14).

The Gibbs sampling algorithm based on the CP iterates between the two steps

1 Simulate X | Θ, Y ∼ N(κY + (1 − κ)Θ, σ2
yκ);

2 Simulate Θ | X,Y ∼ N(X, σ2
x)

These steps have natural representations in terms of simulations from a Brownian bridge

B(·), which is a Brownian motion conditioned to take a prescribed value at some fixed time

in the future; see Section 1.8. Figure 2.1 shows the first step of this simulation.

1 Simulate a Brownian bridge B(t), 0 ≤ t ≤ σ2
y + σ2

x forwards in time starting

from Θ and hitting Y at time σ2
y + σ2

x. Set X = B(κ(σ2
y + σ2

x))
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2 Simulate a Brownian motion X̃(t), 0 ≤ t ≤ κ(σ2
y + σ2

x) backwards in time started

from X at time κ(σ2
y + σ2

x). Set Θ = X̃(0).

 

time

Y

0 σx
2 σx

2 + σ2
y

Θ

Figure 2.1: Updating of X given Y and Θ as a Brownian bridge simulation: simulate a
Brownian bridge starting at time 0 from Θ and hitting Y at time σ2

y + σ2
x, obtain X as the

value of the bridge at time κ(σ2
y + σ2

x) = σ2
x.

When κ is close to one, the data Y dominate in the sense that the Brownian bridge

in Step 1 has to hit Y at time σ2
y + σ2

x and therefore its value at time κ(σ2
y + σ2

x), will

be approximately independent from its initial value Θ. This is exactly the case where the

centered parameterisation is preferable. On the other hand, when κ is close to zero, the prior

will dominate since the Brownian bridge starts from Θ and the value at time κ(σ2
y + σ2

x) will

be very close to it, regardless essentially of the data. This is the case when the non-centered

is to be preferred.

This interpretation offers insight into the behaviour of the CA and the NCA, by trans-

lating dependence into time. More importantly though, in Chapter 4 we shall show how

this interpretation on the expanded state space can be used to construct new classes of non-

centered algorithms where variance parameters are not assumed to be known, that is when

inference for either σ2
x or σ2

y is of interest. Similar interpretations can be attempted for other

hierarchical models with additive structure.

Finally, this interpretation has close links with the semi-parametric model introduced in

Neal (2001) where branching Brownian motions are used to model hierarchical dependence

structure explicitly.

43



2.3.2 Effect of prior distribution on the rate of convergence

Instead of choosing an improper prior for Θ we could choose a proper conjugate Gaussian

prior, Θ ∼ N(μ, v2) where μ and v2 have fixed values. Actually, as 1/v2 → 0 this prior

converges to the improper uniform prior. The posterior distribution of (X, Θ) is still multi-

variate Gaussian and the precision matrix remains unaltered except for the diagonal element

of the last row which becomes m/σ2
x + 1/v2. Similarly, that element of the precision matrix

of (X̃, Θ) becomes m/σ2
y + 1/v2 and it is easy to show that

ρc =
v2

σ2
x + v2

(1 − κ)

ρnc =
v2

σ2
y + v2

κ.

As it can be seen both algorithms improve their performance for any 1/v2 > 0, while their

relative performance is

1 − ρnc

1 − ρc

=
σ2

y + v2(1 − κ)

σ2
x + v2κ

σ2
x + v2

σ2
y + v2

=
1 − κ

κ

κ/v2 + 1/(σ2
y + σ2

x)

(1 − κ)/v2 + 1/(σ2
y + σ2

x)
. (2.20)

Notice that whether (2.20) is less than one or not, which can be used as a criterion to decide

whether to use a centered or a non-centered algorithm, does not depend on the choice of v2

but only on whether κ < 1/2. However, the ratio of the convergence rates in (2.20), which

also appears in (2.47), does not correspond to some relative measure of efficiency, as for

example those described in Section 2.1.2, although it is related to the more informative ratio

log{ρnc}/ log{ρc} as ρc, ρnc → 1 (see for example Section 2 of Pitt and Shephard (1999)).

Notice that for fixed κ and v2 if we let σ2
y + σ2

x → ∞ then ρc, ρnc → 0 both at the same

speed, since the ratio in (2.20) tends to one. This is expected, since if we have very strong

prior beliefs about Θ, its posterior dependence with both X and X̃ will be very small.

2.4 A general normal hierarchical model

We will now describe a very general form of the normal hierarchical model (1.12) that

encompasses most of the Gaussian models used in practice. We will show how to calculate

the rate of convergence for the CA and the NCA and discuss how these results compare with

those derived above for the simpler model. Although our results are simple and based on well

known properties of the normal hierarchical model as developed by Lindley and Smith (1972),

they will prove very useful in the construction of partially non-centered parameterisations
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for Gaussian and non-Gaussian models in Chapter 7.

The data are ni×1 vectors Yi , i = 1, . . . ,m and a set of covariates C1i, ni×p, is observed

for each data point. The random effects are Xi, p × 1 and the model is written as

Yi = C1iXi + (Vi)
1/2εi

Xi = C2Θ + D1/2zi i = 1, . . . ,m (2.21)

where εi, zi are vectors of independent standard normal random variables with the appropri-

ate dimensions, Vi is the covariance matrix of the Yi vector conditional on the Xi, Θ is a q×1

vector and C2 is another design p × q matrix. We will assume for convenience that CT
2 C2 is

invertible, as will usually be the case. Actually, in many cases C2 is a p×1 vector of ones and

then CT
2 C2 = p. Conditional on Θ the Xis are independent. The variance matrices will be

assumed known and inference will be made for the missing data X = (X1, . . . , Xm) and Θ.

The (X, Θ) is the CP for (2.21), while the NCP is given by (X̃, Θ) where X̃ = (X̃1, . . . , X̃m)

and X̃i = Xi − C2Θ.

For Vi = σ2
i Ini

, C2 = Ip and Θ a p × 1 vector, model (2.21) coincides with the model

considered in Gelfand et al. (1996). In this paper, the authors compare centered and non-

centered parameterisations for this model, however, without using the methodology pre-

sented in Section 2.1.1 which can produce exact results. Instead they try to find the param-

eterisation that minimises the correlation between the Xis and Θ and concluded that the

CP is likely to be preferred in most real-data applications. (2.21) is more general than the

normal linear models studied by Lindley and Smith (1972), since it allows for unbalanced

design, i.e the ni to vary with i.

We will refer to index i = 1, . . . ,m as individuals and to index j = 1, . . . , ni for each

i as measurements, borrowing the terminology from longitudinal data analysis where such

models have been used extensively. An interpretation of model (2.21) is as follows: we

believe that the measurements for each individual depend linearly on the corresponding

covariates C1i, although they are allowed to be correlated (serially correlated when j indexes

time, as usually happens in repeated measurements studies). We believe that the regression

coefficients differ for each individual, for example due to unmeasured covariates. However,

they have an exchangeable structure and we further believe that they are centered around

some population value C2Θ with variance matrix D. Thus we can borrow strength when

estimating the individual’s coefficient from the information about the other individuals.

When the observations can be thought of as a sample from an infinite population then

(2.21) is a partially exchangeable model, like those discussed in Section 1.6.

Standard calculations (see Section 2 of Gelfand et al. (1996) and Lindley and Smith
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(1972), also Chapter 9 of O’Hagan (1994)) yield:

Yi | Θ ∼ N(C1iC2Θ, Σi)

Σi = Vi + C1iDCt
1i

therefore

Θ | Y ∼ N(Θ̂, T−1)

T =
∑

Ti

Θ̂ = T−1CT Σ−1Y (2.22)

where

Ti = Ct
2C

t
1iΣ

−1
i C1iC2

Σ = diag(Σ1 . . . Σm)

Ct = (Ct
2C

t
11, . . . , C

t
2C

t
1m)

Y t = (Y t
1 , . . . , Y t

m) (2.23)

If we define the p × p matrix

Qi = Ct
1iV

−1
i C1i + D−1 (2.24)

then conditional on Θ

E(Xi | Y, Θ) = Q−1
i (Ct

1iV
−1
i Yi + D−1C2Θ)

Var (Xi | Y, Θ) = Q−1
i (2.25)

while marginally

E(Xi | Y ) = Q−1
i (Ct

iV
−1
i Yi + D−1C2Θ̂)

Var (Xi | Y ) = Q−1
i + Q−1

i D−1T−1D−1Q−1
i

Cov(Xi, Xj | Y ) = Q−1
i D−1T−1D−1Q−1

j , i 	= j

Cov(Xi, Θ | Y ) = Q−1
i D−1C2T

−1. (2.26)

These expressions can be derived using basic properties of the covariance operator, such as

bilinearity and that Cov(X,Y ) = Cov(X, E(Y | X)) (see Chapter 5 of Whittaker (1990)) in

conjunction with the results in (2.22). Notice that when we write Cov(X,Y ) for two random

vectors X, Y we mean the matrix containing the covariances between each element of X
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and each element of Y .

Our target is to compute the rate of convergence of the CA and the NCA for the normal

hierarchical model (2.21). For the simpler (1.12) we have shown that this depends on κ, which

is the ratio of the observed to augmented information. We will try to find the corresponding

quantity for the more general model, although now this will clearly be a matrix and not a

scalar. Considerable insight into this problem can be gained by assuming that Ct
1iV

−1
i C1i is

invertible. This is done just to help gaining some understanding and none of our final results

will depend on this assumption. In this case we can rewrite (2.26) as

E(Xi | Y ) = Q−1
i (Ct

1iV
−1
i C1iX̂i + D−1C2Θ̂)

X̂i = (Ct
1iV

−1
i C1i)

−1Ct
1iV

−1
i Yi (2.27)

which expresses the posterior expectation of Xi as a weighted average of the least squares

estimator X̂i, which ignores the dependence among the Xis, and the estimate of the mean

of the Xis, C2Θ̂. (Ct
1iV

−1
i C1i)

−1 is the variance of the least squares estimator and therefore

(2.24) is the sum of the observation and prior precision. Therefore Q−1
i D−1 corresponds to

1 − κ =

1
σ2

α

1
σ2

a
+ 1

σ2
e

=
σ2

e

σ2
α + σ2

e

, (2.28)

Q−1
i Ct

1iV
−1
i C1i corresponds to κ and clearly by the definition of (2.24)

Q−1
i D−1 + Q−1

i Ct
1iV

−1
i C1i = Ip.

It is obvious that the weights given to the least squares estimator and the population mean

should vary with i, as opposed to the constant weights for the simpler normal model, re-

flecting the heteroscedasticity among the Yis introduced by the variance matrices Vi and the

design matrices C1i.

The following equality will prove helpful in many calculations,

Q−1
i Ct

1iV
−1
i C1i = DCt

1iΣ
−1
i C1i. (2.29)

It can be proved by first showing that

Q−1
i = D − DCt

1iΣ
−1
i C1iD

which is done by using a very important matrix identity, proved for example in Lindley and
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Smith (1972) (see p. 5, formula (10)), and then by noticing that

Q−1
i D−1 + DCt

1iΣ
−1
i C1i = Ip

Q−1
i D−1 + Q−1

i Ct
1iV

−1
i C1i = Ip.

In order to compute the rate of convergence of the CA for this model, we need to find

the B-matrix defined in Section 2.1.1. By writing π(Θ, X | Y ) = π(Θ | Y )π(X | Θ, Y ) and

using the results obtained above we can show that the precision matrix corresponding to the

joint distribution of (X, Θ) has the following partitioned form:

Qc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q1 0 . . . 0 −D−1C2

0 Q2 . . . 0 −D−1C2

...
...

. . . . . .
...

0 0 . . . Qm −D−1C2

−Ct
2D

−1 −Ct
2D

−1 . . . −Ct
2D

−1 mCt
2D

−1C2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.30)

We mention here that there are considerable computational and analytical advantages by

partitioning Qc as in (2.30), i.e with the elements corresponding to Θ in the bottom-right

corner, rather than with those elements in the top-left corner, as is done in Roberts and

Sahu (1997) for example. The main reason being that in doing so we need in the end to

compute the eigenvalues of a q × q matrix rather than of a p× p matrix, and typically q will

be much less than p.

The A-matrix is then

Ac =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 Q−1
1 D−1C2

0 . . . 0 Q−1
2 D−1C2

... . . .
...

...

0 . . . 0 Q−1
m D−1C2

1
m

(Ct
2D

−1C2)
−1Ct

2D
−1 . . . 1

m
(Ct

2D
−1C2)

−1Ct
2D

−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.31)
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from which we derive

Bc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 Q−1
1 D−1C2

0 . . . 0 Q−1
2 D−1C2

... . . .
...

...

0 . . . 0 Q−1
m D−1C2

0 . . . 0 W c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.32)

where

W c =
1

m
(Ct

2D
−1C2)

−1Ct
2D

−1
∑

Q−1
i D−1C2 =:

∑
W c

i (2.33)

The rate of convergence of the CA for (2.21) equals the maximum modulus eigenvalue of

W given above. Although in a slight simpler setting, Gelfand et al. (1996) (p. 482) noticed

the importance of the Wi matrices and remarked that when their determinant is near zero

then the CA is efficient. Actually, the matrices they looked at are the corresponding p × p

matrices that we would have obtained had we written Qc with the Θ elements in the top-left

corner, as was discussed before.

We will now derive the rate of convergence of the NCA for (2.21). The precision matrix

of (X̃, Θ) is partitioned as

Qnc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q1 0 . . . 0 (Q1 − D−1)C2

0 Q2 . . . 0 (Q2 − D−1)C2

...
...

. . . . . .
...

0 0 . . . Qm (Qm − D−1)C2

Ct
2(Q1 − D−1) Ct

2(Q2 − D−1) . . . Ct
2(Qm − D−1) Ct

2

∑
(Qi − D−1)C2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2.34)
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and therefore, if we define G = (Ct
2

∑
(Qi − D−1)C2)

−1

Anc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 −Q−1
1 (Q1 − D−1)C2

0 . . . 0 −Q−1
2 (Q2 − D−1)

... . . .
...

...

0 . . . 0 −Q−1
m (Qm − D−1)

−GCt
2(Q1 − D−1) . . . −GCt

2(Qm − D−1) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.35)

Bnc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 −Q−1
1 (Q1 − D−1)C2

0 . . . 0 −Q−1
2 (Q2 − D−1)C2

... . . .
...

...

0 . . . 0 −Q−1
m (Qm − D−1)C2

0 . . . 0 W nc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.36)

where

W nc = GCt
2

∑
(Qi − D−1)Q−1

i (Qi − D−1)C2 =:
∑

W nc
i . (2.37)

In general, it is not true that W c+W nc = Ip, which would imply that the rate of convergence

of the NCA is one minus that of the CA, as was shown for the simple normal model (1.12).

Consider for example the following slight modification of (1.12),

Yi = Xi + σyiεi

Xi = Θ + σxzi, i = 1, . . . ,m (2.38)

where we have allowed for heteroscedasticity among the observed data. Then, directly from

(2.33) and (2.37) we have that

ρc =
1

m

∑
(1 − κi)

ρnc =
1∑
1/σ2

yi

∑
κi(1/σ

2
yi)

κi =
σ2

x

σ2
x + σ2

yi

. (2.39)

Suppose we take σ2
yis to be independent and identically distributed and assume for simplicity
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that E(1/σ2
y1) < ∞. If we define ρc(σ

2
y1) to be the rate of convergence of the CA for (1.12)

when the observation variance is σ2
y1 then as m → ∞

ρc → E[ρc(σ
2
y1)]

ρnc → E[(1 − ρc(σ
2
y1))(1/σ

2
y1)]

E[1/σ2
y1]

and since 1/σ2
y and (1 − ρc(σ

2
y)) have clearly positive covariance,

ρnc ≥ 1 − ρc.

Some simulation results suggest that the same is true when E(1/σ2
y1) = ∞, which seems

intuitively reasonable since in that case the observation errors σ2
yis tend to be very small

favouring the CA.

2.5 A State-space model

In Section 2.4 we saw that when allowing for dependence within each Xi (through the

covariance matrix D) and for heterogeneity among the Yis (through the covariates Ci1 and

the different covariance matrices Vi), the rates of convergence for the CA and NCA are

qualitatively very different than those for the simple normal model (1.12), a major difference

being that they don’t sum up to one. Here we will try to gain some understanding on these

phenomenon by looking at an example from this family of models with a specific structure

on D.

Our example is taken from the class of linear Gaussian state-space models (see for example

West and Harrison (1990) for an overview of such models). In their simplest form they are

expressed as

Yi = Xi + σyεi

Xi = φXi−1 + Θ(1 − φ) + σx(1 − φ2)1/2zi, i = 1, . . . , n (2.40)

σ2
x, σ2

y and φ will be considered known and we will choose an improper uniform prior distri-

bution for Θ. Notice that the joint distribution of (X1, . . . , Xn, Θ) is multivariate Gaussian

therefore an exact analysis of the convergence rates for the CA and the NCA is feasible.

This problem was originally considered by Pitt and Shephard (1999), and their results are

reviewed later in this section.

(2.40) falls under the general normal hierarchical model in (2.21), if we take m = 1, n1 =

51



n, V1 = In, C2 = 1 and

D−1 =
1

(1 − φ2)σ2
x

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −φ 0 . . . 0 0

−φ 1 + φ2 −φ . . . 0 0

...
...

. . . . . .
... 0

0 0 0 . . . −φ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, using directly the results of Section 2.4, the rate of the CA is given by

ρc = W c =
1

σ2
x(1 + φ)(n − (n − 2)φ)

vtQ−1v (2.41)

vt = [1 1 − φ . . . 1 − φ 1]

Q = D−1 + 1/σ2
yIn.

Unfortunately, we can’t further simplify (2.41) for ρc, since Q−1 doesn’t have a simple

tractable form.

The NCP for this model simply parameterises in terms of X̃ = (X̃1, . . . , X̃n), X̃i = Xi−Θ

and Θ, just as for the normal hierarchical model in (2.21). Obviously, we can obtain the rate

of convergence of the NCA directly from (2.37) as

ρnc = W nc =
1

mσ2
y

1tQ−11 (2.42)

(2.43)

This expression, although useful for computing ρnc for specific parameter values, is not

very convenient for comparing it with ρc. Working from first principles, as described in

Section 2.1.1, we can show that

ρnc =
1tQ1 − 2(σ2

x(1 + φ))−11tv + (σ2
x(1 + φ))−2vtQ−1v

1tQ1 − 2(σ2
x(1 + φ))−11tv + (n − (n − 2)φ)/(σ2

x(1 + φ))
(2.44)

although derivation of this expression directly from (2.43) is less straightforward. Careful

calculations show that

1tQ1 − 2(σ2
x(1 + φ))−11tv + (n − (n − 2)φ)/(σ2

x(1 + φ)) =
n

σ2
y

.
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We now notice that

1 − ρnc =
(n − (n − 2)φ)/(σ2

x(1 + φ)) − (σ2
x(1 + φ))−2vtQ−1v

1tQ1 − 2(σ2
x(1 + φ))−11tv + (n − (n − 2)φ)/(σ2

x(1 + φ))

= (1 − ρc)
1 − κ

κ

1

1 − φ2
(1 − 2(n − 1)/nφ + (n − 2)/nφ2). (2.45)

In the second equality we made use of the definition of κ in (2.16). By letting n → ∞ we

can obtain the following result about the asymptotic relative performance of the CA and

NCA for the Gaussian state-space model:

1 − ρnc

1 − ρc

=
1 − κ

κ

1 − φ

1 + φ
. (2.46)

The definition of the integrated autocorrelation time τf for a scalar function f of an

ergodic Markov chain was given in (2.12). Let τ be the integrated autocorrelation time for

the identity function of the stationary Markov chain {Xi, i = 1, 2, . . .} defined in (2.40).

Then

1 − ρnc

1 − ρc

=
1 − κ

κ

1

τ
. (2.47)

This is a particularly interesting and intuitive expression, which also explains the be-

haviour of the CA and the NCA when applied in situations where the missing data are

stationary stochastic processes (see for example Chapter 6 and particularly Section 6.8).

The first term in (2.47) corresponds to (1 − ρnc)/(1 − ρc) when φ = 0, i.e when the state-

space model collapses to the normal hierarchical model (2.14). The higher the dependence

among the Xis the more preferable the CA becomes over the NCA. That is, the CA is more

likely to be preferred for highly autocorrelated hidden processes.

On the one hand, when estimating Xi we can use information not only from the corre-

sponding observed data point Yi, but also from all the “neighbouring” data, since they all

have underlying X value very close to Xi, due to their prior high dependence. Hence, when

X is highly autocorrelated it is like having multiple observations Yi1, Yi2, . . . for every missing

data point Xi, which makes the observation error smaller. At the same time, as τ increases

X becomes less informative about the stationary mean Θ. Therefore, as the dependence

in the X process increases, both the data become more informative about X and the link

between parameters and missing data gets weaker, therefore it is not surprising that the CA

is increasingly more efficient.

It is important to realise that (2.47) is largely a qualitative expression regarding ρc and

ρnc. Namely, it shows how CA becomes preferable over NCA for a fixed κ as we increase

the persistence in the hidden process. However, the value of the ratio (1 − ρnc)/(1 − ρc) is

not really interpretable (see also the relevant remark at the end of Section 2.3.2). As we
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discussed in Section 2.1.2 a more appropriate measure is log(ρc)/ log(ρnc), although this is

approximately equal to (2.47) when both rates are close to unity. Another quantity that can

be used to this end is (1 + ρnc)(1 − ρc)/[(1 − ρnc)(1 + ρc)]. This approach was adopted by

Pitt and Shephard (1999) as we will shortly describe.

Figure 2.2 demonstrates the performance of the CA and the NCA for various sample

sizes n, values of φ and κ.
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Figure 2.2: Convergence rates results for the state-space model. The first two rows plot
−1/ log(ρc) and −1/ log(ρnc) against the sample size n for various values of φ, for κ = 0.8
and κ = 0.2 respectively. The last row shows (1 − ρnc)/(1 − ρc) against n together with its
asymptotic limit (the horizontal line), for φ = 0.1 (left) and φ = 0.95 (right).

Pitt and Shephard (1999) were the first to derive analytic convergence rates for the Gibbs
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sampler applied to the Gaussian state-space model (2.40), although they used a slightly

different formulation where the stationary variance of the hidden process is σ2
x/(1 − φ2).

Using the methodology developed by Roberts and Sahu (1997) for calculating the rate of

convergence of the Gibbs sampler on Gaussian target distributions, they considered two

issues: when Θ is considered fixed, how efficient is a single site updating Gibbs sampler for

simulating from the conditional posterior distribution of X = (X1, X2, . . . , Xn), and when

Θ is unknown whether the CP or the NCP should be adopted for simulating from the joint

posterior distribution of (Θ, X).

The first problem is outside the scope of this thesis and therefore we will not discuss

it in any detail. The main result is that when the hidden process is very persistent (i.e

when φ is close to 1) and κ → 0, the single-site updating scheme is very inefficient and the

rate of convergence, for large n, tends to 1. Therefore, either forward-backward updating

schemes, that update X as a block, or other blocking schemes that update large chunks of

the underlying process should be preferred.

The second problem has been closely examined in this section. Pitt and Shephard (1999)

consider the two-component Gibbs sampler that updates X as a block (using for example

forward-backward techniques) and study when the CP or the NCP should be preferred. Here,

we derived all the results treating (2.40) as a special case of the general normal hierarchical

model (2.21) and using the results we obtained for that model in the previous section. Pitt

and Shephard (1999) worked from first principles and derived similar expressions. Their

equation (4) on page 70, although it appears different, is exactly the same as (2.43). To

compare the asymptotic relative efficiency of the NCA over the CA they used (1 + ρnc)(1 −
ρc)/[(1 − ρnc)(1 + ρc)], and also provided tight upper and lower bounds for this expression,

since (1 + ρnc)/(1 + ρc) is analytically intractable. They found the analytic results of the

Gaussian state-space model to be valuable for deciding on the parameterisation to be used

for more complex and intractable models. In particular, they considered parameterisation

issues for a log-Gaussian discrete time stochastic volatility model, which can be expressed

as linear non-Gaussian state-space model.

2.6 Linear non-Gaussian model

The following toy example is very simple, but its results are quite striking. Suppose we

modify the simple normal hierarchical model (1.12) such that εij has a standard Cauchy

distribution, while zi remains standard Gaussian. That is, the model now writes

Yi = Xi + εi, εi ∼ Ca(0, 1)

Xi = Θ + σxzi, , zi ∼ N(0, 1), i = 1, . . . ,m (2.48)
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where the latent variance is assumed to be known σ2
x = 1, although inference for that

parameter will be considered in Section 4.3.

In this context, the heavy tailed nature of the Cauchy distribution makes the observation

equation relatively uninformative for extremal values of X. Following the intuition gained

from studying the normal hierarchical model, we might expect the CA to perform poorly

in some way in the tail regions in relation to the NCA. Figure 2.3 shows output from the

Gibbs sampler for both the CA and the NCA (where m = 1) for different starting values

for Θ. The CA exhibits unstable heavy-tailed excursions characteristic of algorithms which

fail to be geometrically ergodic (see Roberts (2003) and Section 3.1.5 of this thesis), while

the NCA appears to return to the distribution mode very rapidly from all starting values.

In fact, Chapter 3 proves that the CA fails to be geometrically ergodic whereas the NCA is
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Figure 2.3: Gibbs sampler output for Θ in the Normal-Cauchy model (2.48), where we have
taken m = 1, Y1 = 51.91, σ2

x = 1.. Top: centered parameterisation started from Θ0 = 50
(left) and Θ0 = 500 (right). Bottom: non-centered parameterisation for the same starting
values. All chains were run for 104 iterations. Notice the different scales in the plots.

uniformly ergodic. We refer to that chapter for definitions, the proofs and considerably more

general results about convergence of the Gibbs sampler for linear hierarchical models with
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heavy tailed links. For example, we show that for Cauchy latent equation with Gaussian

observation (as used for example in Wakefield et al. (1994)), the opposite result holds with

the NCA failing to be geometrically ergodic while the CA is uniformly ergodic.
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Chapter 3

Convergence of MCMC for linear

hierarchical models with heavy-tailed

links

3.0 Introduction

This chapter studies the convergence of the two-component Gibbs sampler for linear non-

Gaussian models. We show that the CA can have markedly different behaviour from the

NCA when the tails of either the observation and/or the latent equation are non-Gaussian.

In particular, we establish conditions under which the CA converges uniformly quickly and

the NCA fails to be geometrically ergodic. This is for example the case when the prior of

the missing data is heavy tailed whereas the observation error has exponential or lighter

tails. This result justifies the tremendous success of the early implementation of the Gibbs

sampler in simple hierarchical models, see for example Wakefield et al. (1994). The proof of

the negative result for the NCA is based on the notion of the capacitance of a Markov chain.

Dual conditions imply that the CA is not geometrically ergodic and the NCA is uniformly

fast, when for example the prior has light and the observation error heavy tails.

The conditions we use have originally been developed in the Bayesian robustness litera-

ture and we make this connection. We also look at a model for which these conditions are

not satisfied, where the double exponential distribution is used in both the latent and ob-

servation equation. We show geometric ergodicity for both the CA and the NCA by proving

the existence of appropriate drift conditions.

The material of this chapter is based on Roberts and Papaspiliopoulos (2003).

In the sequel, we will use ΠX and πX to denote the probability law and the density with

respect to the Lebesgue measure (when it exists) respectively of a random variable X, and

ΠX|Y , πX|Y for the conditional law and density respectively of X given Y . Capital letters are
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used for random variables while lower case for their values. “⇒” denotes weak convergence

of probability measures.

3.1 Markov chain theory for general state spaces

Section 1.5.1 introduced the very basic concepts in the theory of Markov chains for general

state-spaces, while Section 2.1 went a bit further presenting some results about the spectral

analysis of the transition operator of the Gibbs sampling Markov chain. This section goes

deeper into Markov chain theory, in order to develop the necessary machinery to prove the

main results of this chapter regarding uniform and geometric ergodicity of the Gibbs sampler

under the NCP for various linear non-Gaussian hierarchical models. The material below is

based heavily on Roberts and Tweedie (2004) and Meyn and Tweedie (1993).

Notice that although most of the definitions and theorems presented in the following sub-

sections hold for quite arbitrary state spaces (with very weak assumptions on their structure),

our focus in this chapter is on Euclidean spaces.

3.1.1 φ-irreducibility and small sets

Since the Markov chain {Zn} can be thought of as a random variable taking values in the

sample-path space Ω (see Section 1.5.1), it is natural to define for any set A ∈ B(Z)

τA := min{n ≥ 1 : Zn ∈ A} (3.1)

ηA :=
∞∑

n=1

1l[Zn ∈ A] (3.2)

the first return and occupation time on A respectively.

We define L(z, A) for z ∈ Z and A ∈ B(Z) to be the probability that the Markov chain

started from z ∈ Z ever enters A, that is

L(z, A) := Pz[τA < ∞] = Pz[Zn ∈ A, for some n ≥ 0].

Definition 3.1.1. The Markov chain {Zn} is called φ-irreducible if there exists a non-trivial

probability measure φ on B(Z) such that, whenever φ(A) > 0, we have L(z, A) > 0 for all

z ∈ Z.

It is remarkable, that as long as {Zn} has an invariant probability measure π, which

will be the case in MCMC by construction, then φ-irreducibility for some measure φ ensures

π-irreducibility and uniqueness of π (see Proposition 4.4.1 of Roberts and Tweedie (2004)).

Definition 3.1.2. A set C ∈ B(Z) is called a small set if there exists an m > 0, a non-

trivial probability measure φ on B(Z), and an ε > 0, such that for all A ∈ B(Z) and z ∈ C,
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we have the minorisation condition,

Pm(z, A) ≥ εφ(A). (3.3)

Then we say that C is (m, ε, φ)-small, or simply, m-small.

Trivially, any singleton {z} ⊂ Z is a 1-small set, since we can choose the minorising

measure to be the transition kernel P (z, ·). (3.3) expresses that C essentially behaves like

a singleton, since with probability at least ε, the chain m-steps after it has left C it will

have forgotten which point in C it started from. Small sets play a prominent role in the

analysis of Markov chains on general state spaces. For example, the technique of coupling,

which is used to prove the ergodic theorem (see Section 3.1.3) for irreducible and aperiodic

Markov chains, is based on the existence of such small sets. We will see in Section 3.1.4

and Section 3.1.5 that small sets are also related to the concepts of uniform and geometric

ergodicity. Therefore, it is important to recognise small sets in the state-space. It turns out

that in many cases compact sets are small, see for example Sections 5.1.1 and 5.2 of Roberts

and Tweedie (2004) for details. This will be the case in the applications involved in this

chapter. We conclude this section with defining another important concept, that of strong

aperiodicity:

Definition 3.1.3. When there exists a small set C satisfying the minorisation condition

(3.3) for m = 1 (that is, C is 1-small), then the chain is called strongly aperiodic.

As the name suggests, this is a strong form of aperiodicity. To avoid unnecessary detail

we refer to Section 5.3.3 of Roberts and Tweedie (2004) for the definition of aperiodicity

for general state spaces. Chapter 5 of Roberts and Tweedie (2004) shows that the MCMC

algorithms under mild conditions are aperiodic. This will be the case in all the examples of

this chapter.

3.1.2 Recurrence and Harris chains

π-irreducibility for a Markov chain ensures that all “big” (according to π) sets have a chance

of being visited. Recurrence relates to whether these sets will be visited in a finite time

almost surely. This topic is covered in detail in Chapter 6 of Roberts and Tweedie (2004).

A set A is called recurrent if Ez(ηA) = ∞ for all z ∈ A and a π-irreducible Markov chain

{Zn} is called recurrent if every A ∈ B(Z) with π(A) > 0 is recurrent. Notice that the

definition doesn’t assert that ηA = ∞ almost surely, which can be shown (see Proposition

6.2.1 of Roberts and Tweedie (2004)) to be equivalent to the demand that

L(z, A) = 1, for all z ∈ A. (3.4)
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A set A for which (3.4) is true for every z ∈ A is called Harris recurrent and Harris recurrent

chains are defined analogously. Certainly, (3.4) is more profoundly expressing the intuitive

notion of recurrence than the requirement Ez(ηA) = ∞, in the sense that the chain repeatedly

visits all “big” sets. Nevertheless, for every recurrent set A there are two options: if A is ever

reached by the chain, then it will be revisited infinite number of times. However, for some

starting points, there is the chance that the chain never visits A. This is why Ez(ηA) = ∞
but not necessarily ηA = ∞ almost surely. Harris chains ensure that such bad starting

points do not exist. This dichotomy is manifested in the decomposition of Z = H ∪N for a

recurrent chain, where H is absorbing (that is, if the chain starts in H never leaves it) and

non-empty, and every set A ⊂ H in B(Z), with π(A) > 0 is Harris, and N is π-null and

transient. Most MCMC chains are Harris recurrent, see Chapter 6 of Roberts and Tweedie

(2004).

3.1.3 The ergodic theorem

The total variation norm for a signed measure ν on (Z,B(Z)) is defined as

‖ν‖ := sup
|f |≤1

∣∣∣∣
∫

f(y)ν(dy)

∣∣∣∣ = 2 sup
A

|ν(A)|.

The ergodic theorem, which is Theorem 7.1.1 of Roberts and Tweedie (2004), for an aperiodic

and φ-irreducible Markov chain {Zn}, is stated as a collection of equivalent conditions which

ensure that there exists a unique probability measure π and a π-null set N , such that for

every initial condition z ∈ Z − N ,

‖P n(z, ·) − π(·)‖ → 0, as n → ∞.

When {Zn} is Harris, N = ∅, which shows that the Harris property is important to guarantee

convergence from all possible starting points of the sample space. A sufficient condition

for the ergodic theorem to hold, for an aperiodic and irreducible Markov chain, is that there

exists an invariant probability measure π for the chain, which is always true by construction

for MCMC algorithms. Convergence in total variation distance ensures convergence of the

type

lim
n→∞

Ez[f(Zn)] = πf

for bounded functions, although typically we are more interested in convergence results for

unbounded functions. The f -norm of a signed measure ν is defined as

‖ν‖f = sup
g:|g|≤f

∣∣∣∣
∫

g(y)ν(dy)

∣∣∣∣
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where f ≥ 1. Surprisingly, if {Zn} is φ-irreducible and aperiodic, and π is invariant probabil-

ity measure, the extra assumption that f ∈ L1 is enough to generalise the ergodic theorem:

‖P n(z, ·) − π(·)‖f → 0, as n → ∞

and, thus, incorporate convergence of moments of unbounded functions g, which increase to

∞ not faster than f .

3.1.4 Uniform ergodicity of Markov chains

Definition 3.1.4. A Markov chain {Zn} is called uniformly ergodic if there exists an in-

variant measure π such that

sup
z∈Z

‖P n(z, ·) − π‖ → 0, as n → ∞. (3.5)

Therefore, uniform ergodicity is a very strong form of ergodicity, since it ensures that

there are no starting values which can lead to arbitrarily slow convergence of the chain,

minimising somehow the “burn-in” problem. There are many properties which are equivalent

to uniform ergodicity and can be used to show that a chain converges or not, uniformly

quickly. In the following theorem we state the most relevant to our purposes. A more

complete list is given in Theorem 9.1.1 of Roberts and Tweedie (2004).

Theorem 3.1.1. For any Markov chain {Zn} the following are equivalent:

1 {Zn} is uniformly ergodic.

2 There exists r > 1 and R < ∞ such that for all z ∈ Z

‖P n(z, ·) − π‖ ≤ Rr−n,

which implies that the convergence takes place at a uniform geometric rate.

3 The Doeblin condition: the chain is aperiodic and there exists a probability measure φ

on B(Z), an η < 1, δ > 0 and an integer m, such that, whenever φ(A) > η,

inf
z∈Z Pm(z, A) > δ. (3.6)

4 The state-space Z is m-small, for some m.

Usually, one of the last two conditions are used to establish uniform ergodicity for a given

Markov chain.
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3.1.5 Geometric ergodicity of Markov chains

Definition 3.1.5. A Harris Markov chain {Zn} with an invariant probability measure π,

is called geometrically ergodic, sometimes also called V -uniformly ergodic, if there exists a

function V ≥ 1 with πV < ∞, such that

‖P n(z, ·) − π‖V ≤ RV V (z)r−n
V (3.7)

for some constants rV > 1, RV < ∞.

Geometric ergodicity is usually expressed as a collection of equivalent conditions, see for

example Theorem 10.1.1 of Roberts and Tweedie (2004). For our purposes the following

suffices.

Theorem 3.1.2. Suppose that the Markov chain {Zn} is φ-irreducible and aperiodic. More-

over, suppose that there exists a small set C, constants b < ∞, λ < 1 and a function V ≥ 1

finite at some z0 ∈ Z, satisfying the (Foster-Lyapunov) drift condition

PV (z) ≤ λV (z) + b1l[z ∈ C], for all z ∈ Z. (3.8)

Then the set SV := {z ∈ Z : V (z) < ∞} is absorbing, π(SV ) = 1 and {Zn} is geometrically

ergodic.

(3.8) is known as a drift condition and in many examples, especially those occurring in

MCMC, it provides a mechanism for showing that a particular chain is geometrically ergodic

by finding an appropriate function V . Notice that if (3.8) holds,

P nV (z) ≤ λnV (z) + b
1 − λn+1

1 − λ

which shows that πV < ∞.

We will only consider drift conditions in IR, since all our applications can be analysed

at this level of complexity. Drift conditions can be considered for higher dimensions as well,

although they become less intuitive. In IR compact sets are typically small for MCMC chains

(see Chapter 5 of Roberts and Tweedie (2004)). This will be the case in our applications

and we will assume throughout this chapter that compact sets are small.

Figure 3.1 informally illustrates an example of a drift function V and a small set C for

a unimodal density π on IR. C is typically taken to be a compact set around the mode of π

- an area where the chain keeps returning to. It will typically be necessary that V (z) goes

to infinity as |z| → ∞. To see why notice that outside C

PV (z)

V (z)
≤ λ. (3.9)
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V

π

Figure 3.1: A typical example of a drift function V for a unimodal density π on IR. The
shaded area consists of pairs (z, y) such that z ∈ C, where C is the small set used in the
drift condition. C is typically some compact set around the mode of π.

The speed at which it needs to increase as |z| → ∞ depends on how quickly the chain drifts

back to C. If the chain returns very quickly to C, PV will be small compared to V even

when the latter increases slowly. Notice that πV has to be finite, therefore the tails of π put

further restrictions on how quickly V can afford to increase as |z| → ∞.

It is important to have an idea how to derive a drift condition for a given Markov chain

with transition kernel P . We sketch two techniques when Z ⊆ IR, which will become valuable

in Section 3.5. We assume throughout that V is increasing as z → ∞, decreasing as z → −∞
and that compact sets are small. Suppose that we can show that

lim sup
|z|→∞

PV (z)

V (z)
< 1,

then by definition there exists some c > 0 and a 0 < λ < 1 such that

PV (z)

V (z)
≤ λ for all |z| > c.

Take the small set to be C = [−c, c]. The existence of a drift condition can easily be

established if V is continuous and P is weak Feller, which means that PV (z) is continuous

in z whenever V is (see Section 5.1.1 of Roberts and Tweedie (2004)). Most MCMC chains are

weak Feller, for example both the Metropolis and the Gibbs algorithm under mild smoothness

assumptions on the target density π. Under these assumptions, PV (z)/V (z) is continuous

and when C is compact there exists some 0 < b < ∞ such that PV (z)/V (z) < b for all

z ∈ C and (3.8) follows.

Sometimes it is possible to show that

PV (z) ≤ λ′V (z) + b′, for all z ∈ Z. (3.10)
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This is not in the form required in (3.8), nevertheless once (3.10) has been shown it is not

hard to establish the drift condition. From (3.10) follows that

PV (z)/V (z) ≤ λ′ + b′/V (z).

Take C = [−c, c] for some c > 0. Then, assume that V (z) > V (c) for all |z| > c, which

implies that outside C

PV (z)/V (z) ≤ λ′ + b′/V (c) := λ.

Therefore, we try to find a c > 0 such that V (c) is the lower bound of V outside C and λ < 1

in the inequality above. Typically λ′ < λ, since we need to ”sacrifice” some of the speed at

which we drift towards C in order to introduce the innovation b once in C. Inside C,

PV (z) − λV (z) ≤ λ′V (z) + b′ − λV (z) = (λ′ − λ)V (x) + b′.

If λ′ < λ then (3.8) follows with b = b′. Otherwise, we try to bound V on C by some B and

take b = b′ + B.

Geometric ergodicity can also be studied in the L2 framework. This allows the intro-

duction of powerful geometrical results about geometric convergence involving the notion of

capacitance of a Markov chain.

Definition 3.1.6. For a given Markov chain {Zn} with an invariant probability measure π

and transition kernel P , the conductance of a set A ∈ B(Z) with π(A) > 0 is defined as

c(A) =

∫
A

P (x,Ac)π(dx)

π(A)
(3.11)

and the chain capacitance as

κ = inf
0<π(A)≤1/2

c(A), (3.12)

where the infimum is taken over all A ∈ B(Z). The conductance has the interpretation

as the probability of leaving A having started according to π restricted to A. The κ defined

in (3.12) should not be confused with the signal-to-noise ratio defined in (2.16). To keep con-

sistency with the literature, we use the same notation for both, without creating confusion,

since the two quantities never appear in the same context.

Let g = 1 − ‖P‖, then the following inequality holds only for reversible Markov chains

and is known as the Cheeger inequality

κ2/2 ≤ g ≤ 2κ; (3.13)
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see Lawler and Sokal (1988) for example. Notice that for reversible chains, spec(P ) = ‖P‖
and g is the spectral gap (see Section 2.1), thus (3.13) can be used to derive bounds on the

L2 geometric convergence rate of P . It is typically difficult to compute the capacitance of a

chain, due to the infimum operation involved in (3.12). On the other hand, this notion can

effectively be exploited to prove negative results, as is done in Theorem 3.3.3 for example. In

particular, in many examples we aim at showing that κ = 0 by finding sets with arbitrarily

small capacitance. This then demonstrates that the Markov chain fails to be geometrically

ergodic, by Cheeger’s inequality (3.13).

In Section 3.3 we are interested in using this result to prove that the two-component

Gibbs sampler is not geometrically ergodic for some linear non-Gaussian models. However,

the Gibbs sampler is not reversible so it is not feasible to apply the result directly. Instead a

two-stage procedure is needed. Firstly, recall from Section 1.5.2 that the two marginal chains

of the sampler are reversible. Secondly, we can benefit from the result about de-initialising

chains in Section 3.1.6 to show that the convergence rate of the bivariate chain coincides with

the rate at which the marginal chains converge. Thus, we can use the Cheeger inequality to

bound the rate of convergence of the two-component Gibbs sampler.

3.1.6 De-initialising chains

The notion of de-initialising chains, introduced by Roberts and Rosenthal (2001), proves very

convenient in the convergence rate analysis of the two-component Gibbs sampler. Generally,

let {Zn} be a Markov chain on a state space Z and {Un} be another chain (not necessarily

Markovian) on U . We call {Un} de-initialising for {Zn} if for each n > 0, Zn is independent

of Z0 given Un. This situation arises naturally in the two-component Gibbs sampler (see

Section 1.5.2). Let π be the target distribution of the sampler and Z = (Z(1), Z(2)) ∼ π.

Then, as shown in the graphical model of the Gibbs sampler in Figure 1.1, the marginal

Markov chain {Z(2)
n } is de-initialising for {Z(1)

n }, but also for the joint chain {Zn}. Trivially,

{Zn} is de-initialising for {Z(2)
n }. When two chains are de-initialising for each other they are

termed co-de-initialising. Then Corollary 1 and Theorem 1 of Roberts and Rosenthal (2001)

can be used to show that the convergence rate of {Zn} is the same as that of {Z(2)
n }. Since

the rate of convergence of the two-component Gibbs sampler is invariant to the order of the

updated components (see Section 1.5.2, but also Section 2.1), the convergence rate of {Z(1)
n }

coincides with that of {Z(2)
n } and {Zn}.
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3.2 Linear non-Gaussian models and robust Bayesian

analysis

This chapter deals with hierarchical models which have the same linear structure as the

normal hierarchical model (1.12),

Yij = Xi + εij, j = 1, . . . , n

Xi = Θ + zi, i = 1, . . . , m (3.14)

but where the distribution of the error terms {εij, zi} in either or both of the two equations

are not Gaussian, but they are assumed to be symmetric. All random variables above take

values in IR. For simplicity in the sequel we take n = 1. Unlike the Gaussian model, when

εijs are not normally distributed it is not certain that one-dimensional sufficient statistics

exist, thus the assumption n = 1 can affect the generality of the results. Nevertheless, we

believe that our results still hold but the case of arbitrary n will be investigated elsewhere.

When the error distributions are heavy tailed (see Section 3.2.1 for definitions), (3.14)

can handle outlying observations in a more satisfactory way than the normal model (1.12);

see for example Pericchi and Smith (1992), O’Hagan (1979), Dawid (1973) and references

therein. The Bayes estimate (under square loss function) of Xi given Y and Θ in the normal

model is shown in (2.17) to be

E[Xi | Y, Θ] = κYi + (1 − κ)Θ

where κ ∈ [0, 1] is defined in (2.16). It can be shown that whatever the prior we assign to Θ

the Bayes estimate of Xi will tend to infinity when Yi → ∞. On the other hand, it is often

desirable that such an outlying observation is ignored. This can be achieved if, for example

εi has a heavy tailed distribution, the Cauchy for instance; Section 3.2.1 gives conditions

under which such outlier-proneness can be guarranted.

Similarly, in the three-stage hierarchical model (3.14), although the data Yij might be

believed to be normally distributed, there are situations where the analysis needs to be

protected from the effects of a small number of outlying Xis. This situation arises often in

hierarchical modelling, especially in random effect models where Xi is the random effect of

the ith individual in the population. (It is typical in medical studies, e.g. in pharmacokinetics

(see Wakefield et al. (1994)) that there will be a small number of individuals who behave

very differently from the rest.) One way of protecting against aberrant individuals is to use

a heavy tailed second-stage distribution (see for example Wakefield et al. (1994) and the

discussion of Choy and Smith in Lee and Nelder (1996)). This downweighs the influence of

the outliers so that the corresponding parameters are shrunk less and their contribution to
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the overall population mean is reduced. We also note that there are extensions of the simple

model (3.14) in the time series modelling, where the Xis are serially correlated (i indexes

time in that context) and zi is modeled by a heavy tailed distribution (see for example

Harvey et al. (1994)).

The purpose of this chapter is to study the convergence of the Gibbs sampler on the

joint posterior distribution of X = (X1, . . . , Xm) and Θ in (3.14), under the two different

parameterisations: the centered (X, Θ), and the non-centered (X̃, Θ), where X̃ = X −1Θ is

a priori independent of Θ; see Section 2.2 and Section 4.1 for a description of non-centering

for hierarchical models.

For simplicity we will further assume that m = 1 (on top of the assumption that n = 1)

throughout this chapter. Actually, this is not very crucial, since the independence of among

the Xis conditionally on Θ still allows us a good deal of analytic tractability. Nevertheless,

this extension is beyond the scope of this chapter and will be reported elsewhere. Thus, we

rewrite (3.14) in a notationally more convenient form (which is consistent with Roberts and

Papaspiliopoulos (2003))

Y = X + C

X = Θ + X̃. (3.15)

The simple linear structure of (3.15) allows us to derive analytic results concerning the

convergence rate of the Gibbs sampler. The results are not quantitative as those for the

Gaussian models of Chapter 2 but qualitative. Nevertheless, they are striking since they

reveal that the CA and the NCA can have markedly different performance when the tails

of the latent and observation equations are not normal-like. The link with the Bayesian

robustness literature is fruitful, since Section 3.3 and Section 3.4 show that the conditions

which have been developed in that context to ensure dominance of either the prior or the

likelihood in the presence of outliers, turn out to characterise the speed at which the CA and

the NCA converge to stationarity. These conditions are described in the following section.

3.2.1 The Dawid/O’Hagan conditions

Dawid (1973) assumes a single observation Y = y from the linear model Y = X + C and

investigates the asymptotic behaviour of the posterior distribution of X as y → ∞. In

particular, he establishes conditions on ΠC and ΠX under which ΠX|Y =y ⇒ ΠX as y → ∞,

that is the posterior distribution of X converges to its prior as the observation becomes large.

He also remarked that due to the symmetry of X and C in the model, if their distributions

are interchanged the same conditions ensure that Πy−X|Y =y ⇒ ΠC as y → ∞, therefore the

prior is ignored. When ΠC and ΠX are both Gaussian neither of these situations can happen,

since the posterior mean of X in (2.17) is always a compromise between the prior and the
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data.

Dawid (1973) asks that ΠC and ΠX have densities with respect to the Lebesgue measure

πC , πX respectively, and expresses his conditions in terms of those, although as we shall

see some of them are more naturally understandable using probability measures. These

conditions correspond to the case where y → ∞, however they can be obviously modified to

cater for the case where y → −∞. We will also provide a proof of the main result for reasons

of completeness, but also in order to motivate the choice of these particular conditions.

Actually, our proof shows that the second condition is redundant, since conditions 1 and 3

are enough to prove the result.

The Dawid’s conditions for Πy−X|Y =y ⇒ ΠC as y → ∞
• D1. Given ε > 0 and h > 0, there exists A such that when x > A, then

|πX(x′) − πX(x)| < επX(x) whenever |x′ − x| < h. (3.16)

• D2. For some constants B and M , 0 < πX(x′) < MπX(x) whenever
x′ > x > B.

• D3. Defining
k(x) = sup

z
{πX(x − z)/πX(z)} (3.17)

then ∫ ∞

−∞
k(x)πC(x)dx < ∞.

There are various ways to define a heavy tailed distribution with support on the real line,

see for example Section 1.4 of Embrechts et al. (1997) for a collection of different definitions.

The following coincides with the class L of heavy tailed distributions defined in Section 1.4

of Embrechts et al. (1997).

Definition 3.2.1. A random variable X in IR is said to have a right heavy tailed distribution

if for all h > 0,

ΠX [A < X < A + h]

ΠX [X > A]
→ 0, as A → ∞ (3.18)
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which implies that

log ΠX [X > A]

A
→ 0 as A → ∞. (3.19)

The definition extends obviously to left heavy tailed distributions. (3.19) shows that

the tails of a heavy-tailed ΠX decay slower than exponential. For the standard Cauchy

distribution for example, the ratio in (3.18) is for large A approximately h/(A+h). Generally,

the limit in (3.18) is a constant for exponentially decreasing tails and infinity for those which

decay faster than exponential.

Lemma 3.2.1. D1 implies that ΠX is right heavy tailed.

Proof Take any h > 0. Then for every ε > 0 there exists an A > 0 such that for all

x > A

|πX(x + h) − πX(x)| < επX(x).

Then ∫ ∞

A

|πX(x + h) − πX(x)|dx ≥
∣∣∣∣
∫ ∞

A

{πX(x + h) − πX(x)}dx

∣∣∣∣
= ΠX [A < X < A + h]

thus
ΠX [A < X < A + h]

ΠX [X > A]
< ε.

Notice that the above inequality holds also for all L > A, therefore the result follows since

ε can be chosen arbitrarily small. ��
Lemma 3.2.2. D1 implies that for every h ∈ IR

πX(x − h)

πX(x)
→ 1, as x → ∞.

The proof is immediate. For densities with exponential tails this limit is a constant and

with tails lighter than exponential is infinity.

Lemma 3.2.3. We define

f(y) :=

∫
πX(x)πC(y − x)dx =

∫
πX(y − x)πC(x)dx (3.20)

where πC is any density on IR. Then, D1 and D3 imply that

f(y)

πX(y)
→ 1 as y → ∞.
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Proof For any δ > 0 there exists some h > 0 such that

∫ h

−h

πC(x)dx = 1 − δ

since πC is a probability density function. For that h, D1 implies that for any ε > 0 there

exists some A > 0, such that for all y > A

∣∣∣∣πX(y − x)

πX(y)
− 1

∣∣∣∣ < ε.

On the other hand, D3 implies that both

∫ ∞

h

πX(y − x)

πX(y)
πC(x)dx

and ∫ −h

−∞

πX(y − x)

πX(y)
πC(x)dx

converge to 0 as h → ∞. Therefore, it is not difficult to see that f(y)/πX(y) → 1 as y → ∞.

��

Lemma 3.2.4. D1 and D3 imply that Πy−X|Y =y ⇒ ΠC as y → ∞.

Proof Lemma 3.2.2 and Lemma 3.2.3 immediately imply point-wise convergence of the

densities πy−X|Y =y(x) → πC(x) as y → ∞ for every x ∈ IR. By Lemma 3.2.3 follows that

there exists some A > 0 such that πX(y)/f(y) < 2 for all y > A, therefore πy−X|Y =y(x) ≤
2k(x)πC(x) for all y > A (k(x) is defined in (3.17)), the function on the right side of

the inequality being integrable as a consequence of D3. Thus, we can use the dominated

convergence theorem to prove the lemma. ��
As we remarked earlier, if the distributions of X and C are interchanged, D1 and D3 imply

that ΠX|Y =y ⇒ ΠX . O’Hagan (1979) strengthens D2 and D3 slightly but only to make them

easier to verify. Whereas Dawid imposes conditions on both ΠX and ΠC , O’Hagan (1979)

studies outlier proneness and resistance for linear models only in terms of ΠC . Although his

work is relevant to our purposes, we will not pursue this connection further, since Dawid’s

conditions are enough for the results of this chapter; see Roberts and Papaspiliopoulos (2003)

for extensions.

3.2.2 Our approach

This chapter concentrates on the simple model (3.15) where the linear structure is imposed

on both the observation and the latent equations, and where the improper uniform prior is
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chosen for Θ. The location structure of the model ensures that the posterior for Θ is proper

under this prior elicitation. Moreover, we want to keep the observed Y = y fixed and use

the Dawid/O’Hagan conditions to derive results concerning

ΠX|Y,Θ=θ as θ → ∞.

However, we can rearrange the equations in (3.15) as

Θ = X − X̃

X = Y − C

and notice that when X̃ and C have symmetric distributions, model (3.15) can be written

equivalently (in distribution) as

Θ = X + X̃

X = Y + C

This form allows us to use the Dawid/O’Hagan conditions directly to study the limiting form

of ΠX|Y,Θ=θ as θ → ∞.

We use the two-component Gibbs sampler (see Section 1.5.2) to obtain samples from

the posterior distribution of (X, Θ) in (3.15) given an observation Y = y. The algorithm

alternates between updating X and Θ from their conditional distributions, thus it produces

a Markov chain {(Xn, Θn) , n = 0, 1, . . . } with transition density

P [(x0, θ0), (x1, θ1)] = πΘ|X,Y (θ1 | x0, y)πX|Θ,Y (x1 | θ1, y).

The transition kernels of the marginal reversible Markov chains {Xn, n = 0, 1, . . . } and

{Θn, n = 0, 1, . . . } are denoted by PX and PΘ respectively and their densities with respect

to the Lebesgue measure by px and pΘ respectively; for example

pX(x0, x1) =

∫
πΘ|X,Y (θ | x0, y)πX|Θ,Y (x1 | θ, y)dθ.

The above definitions extend naturally when the NCP parameterisation is used and the

Gibbs sampler updates X̃ and Θ.
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3.3 Convergence of the CA and the NCA for the Cauchy-

Gaussian model

This section proves that the NCA for the model in (3.15), where X̃ ∼ N(0, 1) and C ∼
Ca(0, 1), is uniformly ergodic and the CA fails to be geometrically ergodic.

The joint posterior density of (X, Θ) given an observation Y = y is given by

πX,Θ|Y (θ, x | y) ∝ e−(x−θ)2/2

1 + (y − x)2
. (3.21)

and the corresponding posterior density of (X̃, Θ) is

πX̃,Θ|Y (x, θ | y) ∝ 1

1 + (y − x + θ)2
exp{−x2/2}. (3.22)

Lemma 3.3.1. When ΠX̃ is a standard Gaussian and ΠC a standard Cauchy distribution

then

ΠX̃|Y,Θ=θ ⇒ ΠX̃

Proof This statement follows immediately by Lemma 3.2.4, since the Cauchy and the

normal satisfy D1 and D3 given in Section 3.2.1. ��
This lemma formalises the notion of asymptotic (Θ ≥ θ, θ → ∞) posterior independence

between X̃ and Θ. On the contrary, this result implies that for large θ, ΠX|Y,Θ=θ is roughly

a N(θ, 1) distribution, therefore X becomes independent of the observed data Y = y.

Notice that X̃ is marginally independent of Y , namely it is not identified by the data,

and X | Y = y ∼ Ca(y, 1). These statements can actually be shown using the rather general

result proved in Lemma 3.4.1.

Lemma 3.3.2. PX(x0, ·) ⇒ N(0, 2) as x0 → ∞.

Proof Direct calculation shows that

pX(x0, x1) ∝ 1

1 + (y − x1)2
exp{−(x1 − x0)

2/4}.

Essentially, this can be seen as a posterior density arising from a model like (3.15), but where

C ∼ N(0, 2), X̃ ∼ Ca(0, 1), Θ = y and the observation is Y = x0. Therefore Lemma 3.2.4

implies that PX(x0, ·) ⇒ N(0, 2) when x0 → ∞, as desired. ��

Theorem 3.3.3. The centered algorithm is not geometrically ergodic for the model (3.15)

where C ∼ Ca(0, 1) and X̃ ∼ N(0, 1).
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Proof The proof is based on the notion of the capacitance of the Markov chain {Xn , n =

0, 1, . . . } defined in Section 3.1.5. We aim to show that κ = 0, by identifying sets with

arbitrarily small capacitance, which then demonstrates the result by Cheeger’s inequality

(3.13) and the result about de-initialising chains of Section 3.1.6; see Section 3.1.5 for details

about the capacitance. Let κ(h) = κ([h,∞)) then, for any l > 0 if the chain is started

according to the stationary measure restricted to [h,∞)

κ(h) = P[X1 < h | X0 > h]

= P[X1 < h | X0 > h + l]ΠX|Y [X0 > h + l | X0 > h]

+ P[X1 < h | h < X0 < h + l]ΠX|Y [X0 < h + l | X0 > h]

≤ P[X1 − X0 < −l|X0 > h] + ΠX|Y [X0 < h + l | X0 > h].

As h → ∞ the second term converges to zero, due to (3.18), while the first term converges to

Φ(−l/
√

2), due to Lemma 3.3.2, which can be chosen to be arbitrarily small for sufficiently

large l.

This implies that the algorithm’s capacitance κ must be 0 which implies that geometric

ergodicity fails by Cheeger’s inequality (3.13). ��

Lemma 3.3.4. Let p(θ) = ΠX̃|Θ,Y (X̃ ∈ [−1, 1]|θ, y). Then

1 p is continuous;

2 p(θ) > 0 for all θ ∈ IR;

3 limθ→±∞ p(θ) = 1 − 2Φ(−1);

4 δ := infθ∈IR p(θ) > 0.

Proof From (3.22) immediately follows that πX̃|Θ,Y (x | θ, y) is continuous in θ. There-

fore, we can use a standard result about continuity of integrals over bounded areas of contin-

uous functions to show 1. 2 follows since p is obtained by integrating an everywhere positive

function. 3 follows directly from Lemma 3.3.1. 4 follows from 1, 2 and 3 using standard

compactness and continuity arguments. ��

Theorem 3.3.5. The non-centred algorithm is uniformly ergodic for the model (3.15) where

C ∼ Ca(0, 1) and X̃ ∼ N(0, 1).

Proof

We will prove the theorem by showing that the marginal Markov chain {Θn , n = 0, 1, . . . }
is 1−small (see Definition 3.1.2). This will then prove the theorem, due to condition 4 of

Theorem 3.1.1.
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First note that

πΘ|X̃,Y (θ | x, y) =
1

π

1

1 + (θ − (x − y))2

which implies that Θ given Y and X̃ has a Cauchy distribution. If x ∈ [−1, 1] then

πΘ|X̃,Y (θ | x, y) ≥ 1

π

1

1 + (|θ| − (x − y))2

≥ 1

π

1

1 + (|θ| + 1 + y)2
.

Therefore,

pΘ(θ0, θ1) ≥
∫ 1

−1

πΘ|X̃,Y (θ1 | x, y)πX̃|Θ,Y (x | θ0, y)dx

≥ 1

π

1

1 + (|θ1| + 1 + y)2
δ

due to property 4 given in Lemma 3.3.4. The function appearing on the right hand side is

clearly integrable, therefore we take φ(·) in (3.3) to be have density the normalised version

of this function and ε to be the product of δ/π and the normalising constant. ��
Figure 2.3 shows output from the implementation of both the CA and the NCA for dif-

ferent starting values for Θ. The CA exhibits unstable heavy-tailed excursions characteristic

of algorithms which fail to be geometrically ergodic, while the NCA appears to return to the

distribution mode very rapidly.

3.4 The general result

The steps in the proofs of Theorem 3.3.3 and Theorem 3.3.5 can be easily replicated for the

more general setting, where we don’t assume particular forms for ΠC and ΠX but we only

ask that they satisfy the Dawid’s conditions of Section 3.2.1 and they are symmetric. We

first need to establish the following useful result, where we assume the existence of densities

for the corresponding measures for simplicity. Using this, we can prove the general theorem.

Lemma 3.4.1. If C is symmetric in (3.15) and πΘ(θ) ∝ 1 then πX̃|Y (x | y) = πX̃(x). When

X̃ is symmetric, πX|Y (x | y) = πC(y − x).

Proof

πX̃,Θ|Y (x, θ | y) ∝ πC((y − x) − θ)πX̃(x)

since πΘ(θ) ∝ 1 and X̃ is apriori independent of Θ. Integrating both sides with respect to θ

and exploiting the symmetry of C yields the required result. Similar argumentation shows

the second property. ��
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Theorem 3.4.2. If ΠX̃ satisfies D1 and ΠC is such that D3 holds, then the CA is uniformly

ergodic, while the NCA fails to be geometrically ergodic. If the roles of ΠC and ΠX̃ are

interchanged then the NCA is uniformly ergodic and the CA converges at a sub-geometric

rate.

For example, if ΠC is a Ca(0, cy), then it satisfies conditions 1 and 2. On the other hand

it can be shown that
πC(y − x)

πC(y)
≤ M + (x/cy)

2

for a suitably chosen M > 0. Thus, whenever the tails of πX̃ are such that polynomial

moments exists the NCA is uniformly ergodic and the CA fails to be geometrically ergodic.

Examples of πX̃ with this tail behaviour include the double exponential, the Gaussian and

more generally all densities whose tails decay faster than exponential.

Nevertheless, there are many other interesting combinations of distributions ΠX and ΠC

which do not satisfy D1 and D3 of Section 3.2.1. Roberts and Papaspiliopoulos (2003)

characterise the rate of convergence for linear hierarchical models where ΠX̃ and ΠC can

be any among the Cauchy, the Double exponential, the Gaussian and distributions with

tails lighter than normal. This chapter concludes with a characterisation of the rate of

convergence when both ΠX and ΠC are double exponential distributions.

3.5 The double exponential-double exponential model

This section shows geometric ergodicity for both the CA and the NCA when X̃ and C are

standard double exponential random variables with density exp{−|x|}, x ∈ IR. We will do

so establishing the existence of a drift condition as described in Section 3.1.5.

Theorem 3.5.1. Both the non-centered and the centered algorithms are geometrically ergodic

for the model (3.15) where C ∼ DEx(0, 1) and X̃ ∼ DEx(0, 1).

Proof We first show the result for the centered. We will do so by establishing the

existence of a drift condition (3.8) for the function V (x) = 1+|x|. In the following paragraph

we will present an argument which shows that

lim
x→∞

PV (x)

V (x)
= 1/2. (3.23)

The same argument can be applied to prove that the same limit is obtained as x → −∞. A

byproduct of our argument is that PV (x) is continuous in x, thus having established (3.23)

and using the results of Section 3.1.5 the existence of a drift condition follows.
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Without loss of generality we take Y = y = 0. It is easy to derive that

when θ > 0, πX|Y,Θ(x | 0, θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1/{2(1 + θ)} exp{x} when x < 0

1/(1 + θ) when 0 < x < θ

1/{2(1 + θ)} exp{θ − x} when x > θ

,

which is graphically illustrated in Figure 3.2, and similarly that

when θ < 0, πX|Y,Θ(x | 0, θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1/{2(1 − θ)} exp{x − θ} when x < θ

1/(1 − θ) when θ < x < 0

1/{2(1 − θ)} exp{x} when x > 0

.

These explicit forms allow us to directly compute after some algebra
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Figure 3.2: The conditional distribution of X given Y = 0 and Θ = 10 in (3.15) where C
and X̃ are double exponential random variables.

2E[|X1| | Θ1 = θ] =
θ2 + |θ| + 2

|θ| + 1
; (3.24)

notice that

θ2 + |θ| + 2

|θ| + 1
→ |θ|, as|θ| → ∞

θ2 + |θ| + 2

|θ| + 1
≤ 1 +

|θ|
2

. (3.25)
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Then, since Θ1 | X0 = x ∼ DEx(x, 1)

2E[|X1| | X1 = x] =

∫
E[|X1| | Θ1 = θ]πΘ|X(θ | x)dθ

=

∫ x

−∞
E[|X1| | Θ1 = θ]eθ−xdθ +

∫ ∞

x

E[|X1| | Θ1 = θ]ex−θdθ

= e−x

∫ x

−∞

θ2 + |θ| + 2

1 + |θ| eθdθ + ex

∫ ∞

x

θ2 + θ + 2

1 + θ
e−θdθ

≤ e−x

∫ x

−∞
(1 +

|θ|
2

)eθdθ + ex

∫ ∞

x

(1 +
θ

2
)e−θdθ

= (x + 1) + 1 + e−x

from which immediately follows (3.23). Therefore, the theorem is proved for he CA.

The same procedure can be repeated for the NCA, since πX̃|Y,Θ(x | 0, θ) has a similar

mixture form as X and Θ | X̃, Y ∼ DEx(Y − X̃, 1). ��
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Chapter 4

General non-centered

parameterisations and state space

expansion

4.0 Introduction

We have been rather loose in defining the NCP for general hierarchical models so far. This

chapter gives the general definition and describes the corresponding Metropolis-Hastings

algorithm. It also introduces a technique which can be used to construct easy to implement

non-centered parameterisations for a wide range of univariate distributions. The aim is,

when X is a one-dimensional random variable with some parameters Θ, to find another

random object X̃ which is a priori independent of Θ and such that X is a deterministic

function of X̃ and Θ. We observe that this function can be non-invertible and therefore X̃

might live on a larger space than X.

This section introduces a specific state space expanded class of NCPs for infinitely divisi-

ble and related distributions. The transformed missing data X̃ is taken to be a Lévy process.

By means of an example, we illustrate that this technique can be easily implemented. An

immediate application is the construction of NCPs for most of the hierarchical generalised

linear models, which are presented for example in Lee and Nelder (1996).

We carry out a simulation study in order to assess the performance of the Hastings-within-

Gibbs sampler under a state space expanded NCP. We compare it with the performance of

the sampler under an alternative NCP, which avoids the state space expansion, for some

hierarchical models where Θ is a scale parameter. It is found that the state space expanded

NCP has worse performance and some conjectures are made in order to explain the difference

in efficiency among the competing NCPs.

Nevertheless, the state space expansion proves to be a very useful tool when constructing

79



NCPs for models with hidden stochastic process. This problem is investigated in Chapter 5.

4.1 General non-centered parameterisations

The notions of centered and non-centered parameterisations for a hierarchical model with

graphical representation as in Figure 1.3 have been introduced in Section 1.7 and Section 2.2.

In Chapter 2 we gave some examples of these parameterisations applied to linear models. In

this chapter we firstly formalise the notion of a non-centered parameterisation and describe

a general MCMC algorithm for its implementation. Secondly we develop some methods that

expand greatly the range of models that an NCP can be applied to.

The general setting is as follows. The distribution of the observed data Y depends on

the unobserved/latent/missing data X and the distribution of the latter depends on some

parameters Θ. X can live on an arbitrary space, in our examples in Chapter 5 and Chapter 6

it is a point process, but Θ typically takes values on some subset of the Euclidean space. We

will assume the existence of a joint posterior density

π(X, Θ | Y )

although not necessarily with respect to the Lebesgue measure, from which the conditionals

up to proportionality can be derived.

The important feature of the NCP for the simple models we have studied so far that can

be extracted to a much more general context, is the orthogonality of the prior structure.

Specifically, we need to find some random quantity X̃ which is a priori independent of Θ

and some function h such that

X = h(X̃, Θ) . (4.1)

Notice at this point that a priori independence between X̃ and Θ makes sense even if an

improper prior is chosen for Θ (see Section 1.4).

We assume that the Hastings-within-Gibbs sampler is used to obtain samples from the

joint posterior distribution of parameters and missing data. When the centered parame-

terisation is employed the target distribution is the distribution of (X, Θ) given Y and the

algorithm is termed the centered algorithm (CA). When a non-centered parameterisation is

employed then the target distribution is the distribution of (X̃, Θ) given Y and the algorithm

is called the non-centered algorithm (NCA). Thus, the CA is described below.
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A Hastings-within-Gibbs to sample from (Θ, X) | Y (CA)

Iterate the following steps:

1. Update Θ according to π(Θ | X)

2. Update X according to π(X | Θ, Y )

The difference between the CA and the NCA lies in the step which updates the parameters

given the missing data. The NCA is described below.

A Hastings-within-Gibbs to sample from (Θ, X̃) | Y (NCA)

Iterate the following steps:

1. Update Θ according to π(Θ | X̃, Y )

2. Transform (Θ, X̃) → X

3. Update X according to π(X | Θ, Y )

4. Transform (Θ, X) → X̃.

This is a convenient way to implement the NCA, which shows how to exploit existing com-

puter code made for the corresponding CA. Step 3 of the NCA coincides with Step 2 of

the CA, while Steps 2 and 4 are transformations. Notice that when a direct simulation is

possible at Step 3, the transformation at Step 2 is unnecessary.

Chapter 2 studied when a non-centered parameterisation is preferable to a centered pa-

rameterisation for Gaussian models, based on exact convergence rate analysis. For more

general models such exact quantitative results are not available, nevertheless Chapter 3 pro-

vided a qualitative comparison of the two schemes for linear non-Gaussian models. Generally

speaking, we expect the NCA to perform well when the missing data are weakly identified

by the observed data. Of course, by construction if X is not identified (that is its posterior

is the same as its prior), neither is Θ and certainly this does not represent an interesting

inferential problem. Instead, we are interested in cases where certain aspects of the missing
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data are not identified. For example, in the normal linear models of Chapter 2 we found the

NCP to be preferable when there was little information about the individual effects (there-

fore the variance of Xi − X where X =
∑m

i=1 Xi/m is very small). For that model we can

keep the information about the population mean Θ fixed and vary the information about

individual effects by changing κ defined in (2.16). In Chapter 6 we find that for stochastic

volatility models some ergodic characteristics are well identified, nevertheless other aspects

of the latent structure are weakly identified. This feature is often observed in models with

latent stochastic processes.

In principle, an NCP always exists, although it might not be analytically sufficiently

tractable to be of any practical use. If for example X is a unidimensional random variable

with distribution function FΘ(x) then it is well known (see e.g. Ripley (1987)) that if U ∼
Un(0, 1), then X

d
=F−1

Θ (U), therefore we could take X̃ = U and then X = h(X̃, Θ) = F−1
Θ (X̃).

However, in most cases F−1
Θ is analytically intractable and such a construction would be of

no practical use. Specifically, we are interested in NCPs for which we can easily perform

the transformations Steps 2 and 4 of the algorithm, and where Step 1 can be handled using

some Metropolis-Hastings mechanism.

We have already seen cases where it is straightforward to construct NCPs that are very

easy to implement. For example, for the Gaussian model with unknown location parameter

(2.14) h and X̃ are identified simply as

X = h(X̃, Θ) = Θ + X̃

X̃ ∼ N(0, σ2
x).

More generally, whenever Θ is a location parameter for the prior distribution of X, the

transformation

X = X̃ + Θ

will produce a valid and tractable NCP, while when Θ is a scale parameter we can set

X = ΘX̃.

However, it is less obvious how to devise an NCP for a variety of distributions often used in

practice, consider for example the case where X ∼ Ga(Θ, 1) and Θ > 0.

In the following sections we will describe a technique, which extends the range of models

for which an NCP can be constructed, and it is based on the observation that the function h

in (4.1) can be non-invertible. Therefore, we find an X̃ which lives on a higher dimensional

space than X, and we term this a state space expanded NCP. It will then be the case that,

the transformation Step 4 of the NCA will be stochastic.

It is important to note that, once a state space expanded NCP has been constructed, it
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is most likely that a direct simulation at Step 1 of the Hastings-within-Gibbs algorithm will

be impossible and a Metropolis-Hastings step will have to be used instead; see for example

Section 4.2 and Section 5.3.1. The state space expanded NCPs we propose typically result

in discontinuous conditional densities π(Θ | X̃, Y ) (see for example Section 4.2). It turns

out that this can be a serious drawback of the method, in the sense that although an NCP

might be preferable (for example due to poor identifiability of the latent structure), a state

space expanded NCP might be not very efficient due to the slow mixing of the Metropolis

step used to update the parameters, as a result of the roughness of the target density. This

issue is thoroughly discussed in Section 4.3 and Section 6.12.2.

When X is a unidimensional random variable, we can explore the relationship between

infinitely divisible distributions and Lévy processes (see Section 1.8 for definitions) to con-

struct state space expanded NCPs. The following section illustrates this method by means of

an example. Section 4.3 compares state space expanded NCPs with other NCPs and makes

some general comments about the efficiency of the former. Chapter 5 shows how similar

techniques can be employed to construct NCPs for hidden stochastic processes.

4.2 NCPs for gamma random effect models by expand-

ing the state space

This section describes a method for constructing state space expanded NCPs when the

missing data are gamma random variables. To ease exposition and allow implementational

and computational aspects to be discussed in some detail, we consider gamma random effect

models. These models have a partially exchangeable structure as described by the graphical

model in Figure 1.5 together with the specification that Xi ∼ Ga(Θ, 1). At this moment we

will not make specific assumptions regarding the distribution of Yi given Xi.

For this example finding X̃ is far from straightforward, since location-scale transforma-

tions are not appropriate. Nevertheless, recall from Section 1.8 that the gamma distribution

is infinitely divisible and it is the marginal distribution of a standard gamma process. That

is, if X̃i(t), t ∈ [0,∞) is a standard gamma process then X̃i(t) ∼ Ga(t, 1). Therefore, we

can construct an NCP by taking X̃ = (X̃1, . . . , X̃m), a collection of m mutually independent

standard gamma processes X̃i, and the function h to be

h(X̃i, Θ) = X̃i(Θ) for all i = 1, . . . ,m. (4.2)

It is not straightforward to write down the joint posterior distribution of (X̃, Θ) but it

is not necessary either. In order to implement the NCA (see Section 4.1) we only need to

know up to proportionality the the conditional distributions X̃ | Θ, Y and Θ | X̃, Y , but

these are very easy to derive. The two steps of the algorithm are described in detail below.
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In parallel to demonstrating the general methodology, we provide a numerical and graphical

illustration, for which we take m = 1 and assume that Y1 ∼ Ex(X1).

Step 1: Simulate X̃ conditionally on Θ, Y

Due to the partially exchangeable structure of the model

X̃i(·) ⊥⊥ X̃j(·) | (Θ, Y ) for all i 	= j.

Therefore, simulation of X̃ conditional on Y and Θ is done by simulating independently each

of the processes X̃i conditionally on Yi and Θ.

By construction, the distribution of X̃i(Θ) conditionally on Yi and Θ coincides with that

of Xi | Yi, Θ, therefore a sample can be drawn using exactly the same procedure as for the

corresponding step of the CA. Moreover, notice that also by construction

Yi ⊥⊥ {X̃i(t), t 	= Θ} | X̃i(Θ).

Therefore, conditionally on X̃i(Θ), the state of the process at any other time can be directly

simulated from the prior as described in Section 1.8. An illustration of these simulations is

given in Figure 4.1.

We will use a Metropolis-Hastings step to update Θ according to π(Θ | X̃, Y ), which is

described in the following paragraph. It turns out that only X̃i(Θ) for each i = 1, . . . ,m

needs to be stored at the current step of the algorithm, rather than the whole path from

each X̃i process.

Step 2: Update Θ conditionally on X̃ and Y

At this step of the algorithm we update Θ given Y and a sample path from each of the

processes X̃i. Recalling that X̃ and Θ are a priori independent, the conditional density

that we wish to simulate from is proportional to

m∏
i=1

π(Yi | X̃i(Θ))π(Θ). (4.3)

Typically, some sort of a Metropolis-Hastings step is needed to (approximately) simulate

from this conditional distribution. Suppose that the current value of the parameter is θ0 and

θ1 has been proposed from some density q(θ0, θ1). The Metropolis-Hastings acceptance ratio

is

r =
π(θ1 | Y, X̃)q(θ1, θ0)

π(θ0 | Y, X̃)q(θ0, θ1)
, (4.4)
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Figure 4.1: Steps to update X̃i conditionally on Yi and Θ. The current value of Θ is denoted
by θ0. (a): Simulate the value of the process at time θ0. Denote this by xi := X̃i(θ0). (b):
Given X̃i(θ0) = xi, simulate forwards in time a gamma process started from xi at time θ0.
(c): Simulate a beta process started at time 0 from 0 and stopped at time θ0 to xi. (d): The
new configuration for X̃i. To produce these figures we have assumed the model Yi ∼ Ex(Xi),
initial values θ0 = 3 and assumed an observed data point Yi = yi = 0.5.
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where π(Θ | Y, X̃) is derived from (4.3), and the move from θ0 to θ1 will be accepted with

probability min{1, r}.
Therefore, in order to perform this updating step we only need to know the value of each

stochastic process X̃i at times θ0 and θ1. X̃i(θ0) is available from the previous step of the

algorithm and we have already shown how to simulate the value of the process at any time

t conditionally on this value; an illustration is given in Figure 4.2.
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θ0 θ1time

X̃
i
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θ0θ1 time

X̃
i

(a) (b)

Figure 4.2: Updating of Θ conditionally on X̃i, Yi. The step function corresponds to the
unnormalised density π(Yi | X̃1(Θ)) as a function of Θ, where X̃1 has the configuration
shown in Figure 4.1.d. The product of this density and π(Θ) is the target density of this
step of the algorithm. The proposed value for Θ is θ1 > θ0 in (a) and θ1 < θ0 in (b).
Once a new value θ1 has been proposed, we simulate the value of X̃i(θ1) from the prior,

namely X̃i(θ1)
d
=X̃i(θ0) + G, G ∼ Ga(θ1 − θ0, 1), if θ1 > θ0, and X̃i(θ1)

d
=BX̃i(θ0), B ∼

Be(θ1/θ0, (θ0−θ1)/θ0), if θ0 > θ1. The paths in red colour in the plot show these simulations
as gamma and beta process simulations respectively, as described in the previous step of the
algorithm. Once X̃i(θ1) has been simulated the acceptance probability of the move from θ0

to θ1 given in (4.4) can be computed. To produce these figures we have assumed the model
Yi ∼ Ex(Xi), initial values θ0 = 3, proposed values θ1 = 5 in (a) and θ1 = 1 in (b), and
assumed an observed data point Yi = yi = 0.5.

4.2.1 Non-centering for infinitely divisible and related distribu-

tions

The NCP described in the previous section can be applied whenever we can write X = X̃(Θ),

where X̃(·) is a Lévy process, therefore it is applicable whenever the distribution of X is

infinitely divisible (see Section 1.8). In the example of Section 4.2 X ∼ Ga(Θ, 1) and X̃(·) is

a standard gamma process. Another example, which is studied more closely in Section 4.3,
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is when X ∼ N(0, Θ) and X̃(·) is taken to be a standard Brownian motion. Actually, this

scheme is inspired by the Brownian motion interpretation of the normal linear model of

Section 2.3.1.

Similar methods can be used for functions of random variables with infinitely divisible

distributions. For example if X ∼ Be(α, β) and Θ = (α, β) then X = X1/(X1 + X2), X1 ∼
Ga(α, 1), X2 ∼ Ga(β, 1). One option in this example is taking X̃(·) to be a standard gamma

process and writing X = X̃(α)/X̃(α + β).

4.3 Comparison of different non-centering schemes

We have argued that the decision on whether to employ a CP or not depends on the statistical

properties of the model and the type of data available. Nevertheless, even when an NCP is

believed to be preferable to a CP, the computational implementation of the former might be

much less efficient than of the latter. For example, this could happen when “pure” Gibbs

steps, which are feasible under a CP, have to be replaced by Metropolis-Hastings steps when

an NCP is employed. There is clearly a trade-off, since in presence of very high dependence

between X and Θ the performance of the NCA might still be better than the CA, despite

having to do relatively inefficient Metropolis-Hastings steps. Nevertheless, if more than one

NCPs exist for the same model it is possible that their performance might be very different,

as a result of the varying efficiency of the Hastings steps used in the algorithms. A challenging

and open question is whether, if “pure” Gibbs steps were possible, all NCPs for a particular

model would have similar performance. Our experience and results (reported here and in

Section 6.12.2) suggest that the smoothness of the density π(Θ | X̃, Y ) crucially affects the

efficiency of the corresponding NCA. A Metropolis-Hastings step is typically used to update

Θ and the performance of the algorithm critically depends on the smoothness of the target

density; see Section 6.12.2 for more details and relevant references.

The results of this section are complementary to those of Section 6.12.2 and try to shed

some light on two issues: firstly, whether the performance of the Hastings-within-Gibbs

sampler varies with different NCPs for the same model, and if yes why. And, secondly, why

NCAs perform poorly in situations where we would expect them to be very successful, as

is observed for example in Chapter 6. The preliminary results presented here and in Sec-

tion 6.12.2, as well as other simulation studies we have carried out but not included in this

thesis, suggest that the fact that Metropolis-Hastings steps are used instead of direct simu-

lations from the conditionals is very crucial and is related with both of the above questions.

Whenever one NCA uses more efficiently Hastings steps than another, its performance is

considerably better. The efficiency of the Hastings step might be very poor in cases where

an NCP is preferable, thus the NCA performs poorly although a different implementation

of the algorithm might have been very efficient.
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This section compares empirically two different NCPs, one based on a state space expan-

sion and one based on a scale transformation, for a class of latent distributions for which

both of these parameterisations can be easily implemented: the stable family.

4.3.1 The stable family

We begin with some definitions. The distribution of a random variable X is said to belong

in the stable family if it is infinitely divisible (see Section 1.8) and for any c > 0 there is a

b > 0 such that

K(bu; X) = cK(u; X).

Stable Lévy processes are defined as those with marginal stable disributions. If X̃(·) is a

stable Lévy process then

X̃(ct)
d
=cHX̃(t), for some H ≥ 1/2; (4.5)

see Theorem 13.11 of Sato (1999) for a proof of this result. Property (4.5) is known as self-

similarity and H is called the exponent of the stable process and it is uniquely determined by

the process. The (self-similarity) index of the stable process is defined as k = 1/H, therefore

0 < k ≤ 2, where the boundary value k = 2 characterises the Brownian motion (and the

Gaussian distribution correspondingly), while for k < 2 the associated stable distribution

has infinite variance.

In the following suppose that X
d
=X̃(Θ) where X̃(·) is a stable Lévy process. In this case,

there exist two obvious NCPs for (X, Θ). The first is based on a state space expansion and

simply takes X̃ to be the stable Lévy process and sets

X = X̃(Θ).

We will refer to this as the lp-NCP. The second NCP exploits the self-similarity of the

distribution of the Lévy process X̃(·). With a slight abuse of notation, let X̃ = X̃(1). Then

a transformation of (X̃, Θ) to X is given by

X = ΘHX̃,

where H is the exponent of the process. The validity of this transformation is ensured by

(4.5). We refer to this non-centered scheme as the sc-NCP.

In the rest of this chapter we will try to compare the empirical performance of these

two schemes focusing on some examples. In general, stable distributions have intractable

densities thus simulating the increments of the corresponding Lévy processes is hard. There-

fore, we choose to study the two most tractable stable distributions, the Gaussian and the
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Cauchy.

4.3.2 Gaussian latent distribution

Suppose that X ∼ N(0, Θ), therefore X
d
=X̃(Θ) where X̃(·) is a Brownian motion, which is a

stable Lévy process with exponent H = 1/2 (see for example Sato (1999)). Therefore both

the lp-NCP and the sc-NCP can be applied easily in this case.

We try both parameterisations for the linear hierarchical models

Yi = Xi + εi

Xi ∼ N(0, Θ), i = 1, . . . ,m. (4.6)

where εi ∼ N(0, σ2
y).

We simulate three different data sets from the first model with m = 200, σ2
y = 1 and

three different values for Θ, 0.2, 1, 5. An inverse gamma prior is chosen for Θ with both

parameters equal to 1. For both NCAs the updating of X̃ given Θ and Y is straightforward.

A Metropolis-Hastings step on the log-scale is used to update Θ given X̃, Y . MCMC traces

and autocorrelation plots are shown in Figure 4.3 for both algorithms.

Figure 4.4 shows MCMC traces when both algorithms are started far out in the target

distribution tails, for the data corresponding to the middle row in Figure 4.3, i.e when

m = 200, σ2
y = Θ = 1. The lp-NCA has a random-walk type of behaviour when started in

the tails, characteristic of algorithms which fail to be geometrically ergodic (see Chapter 3).

Figure 4.5 and Figure 4.6 plot log π(Θ | X̃, Y ) as a function of Θ for both the sc-NCP

and the lp-NCP for data of various sizes simulated using Θ = θT , where θT = 0.2 and θT = 5

respectively. X̃ has been simulated from its conditional distribution given Y and the “true”

value of Θ. Moreover, the simulation is done in a way where the transformation of X̃ and θT

yields the same X in both algorithms. For the lp-NCP 20 realisation of X̃ have been drawn

in order to show the variability of log π(Θ | X̃, Y ). Nevertheless, all realisations result in

the same X when transformed using θT . See also Section 6.12.2 for some similar plots in a

comparison of different NCPs for Poisson processes.

The relative qualitative behaviour of the two algorithms is very similar to the present case

when the Gaussian observation error in (4.6) is replaced by Cauchy, therefore εi ∼ Ca(0, cy).

Again the lp-NCP has very slow convergence and very unstable excursions into the tails.

4.3.3 Cauchy latent distribution

Suppose that X ∼ Ca(0, Θ), then X
d
=X̃(Θ) where X̃(·) is a standard Cauchy process, which

is a stable Lévy process with exponent H = 1 (see for example Sato (1999)). For the standard
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Figure 4.3: Simulation results from implementation of the sc-NCA and the lp-NCA for the
normal hierarchical model with unknown latent variance Θ. First column shows trace plots
for the sc-NCA while the second shows the corresponding trace plots for the lp-NCA. The
last column superimposes the ACFs of the sample paths from the two implementations where
the solid line corresponds to sc-NCA and the dashed to lp-NCA. Both algorithms have been
run for 104 iterations, the first 103 being discarded for estimation of the ACFs as burn-in
(clearly larger burn-in should be used for the lp-NCA in the last row). For the simulation
we have taken m = 200, σ2

y = 1 and Θ = 0.2, 1, 5 (first, second and third row respectively).
An Ig(1, 1) prior was chosen for Θ.
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simulated under the specification m = 200, σ2

y = Θ = 1. Both algorithms are initialised at
θ0 = 100 and the proposal variances are tuned so that the overall acceptance rate is 0.2-0.3,
although similar results were obtained for a variety of scaling schemes. The lp-NCA has a
random-walk type of behaviour when started in the tails, characteristic of algorithms which
fail to be geometrically ergodic.

Cauchy process,

X̃(t + s) − X̃(t) | X̃(t) ∼ Ca(0, s), t, s > 0.

This setting allows us to use both the lp-NCP and the sc-NCP introduced earlier.

We apply them to the linear model

Yi = Xi + εi, εi ∼ Ca(0, cy)

Xi ∼ Ca(0, Θ), i = 1, . . . ,m (4.7)

where cy is considered to be known. Simulation results (not shown here) are in total agree-

ment with those of the previous section and reveal that the lp-NCA is mixing much slower

than the sc-NCA and has a random walk type behaviour when started from the tails.
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Figure 4.5: (Un-normalised) log π(Θ | X̃, Y ) as a function of Θ for sc-NCP (left) and lp-
NCP (right) for the normal hierarchical model (4.6), with m = 1 (top), m = 50 (middle) and
m = 200 data simulated from the model using Θ = 0.2 and σy = 1. X̃ has been simulated
from X̃ | Y, Θ = 0.2 for both algorithms. The simulation has been designed in such way
that the transformation of X̃ and Θ = 0.2 leads to the same X in both algorithms. For the
lp-NCP 20 realisations of X̃ | Y, Θ = 0.2 have been drawn, all resulting to the same X and
the corresponding functions π(Θ | X̃, Y ) are superimposed.
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Figure 4.6: (Un-normalised) log π(Θ | X̃, Y ) as a function of Θ for sc-NCP (left) and lp-
NCP (right) for the normal hierarchical model (4.6), with m = 1 (top), m = 50 (middle)
and m = 200 data simulated from the model using Θ = 5 and σy = 1. X̃ has been simulated
from X̃ | Y, Θ = 5 for both algorithms. The simulation has been designed in such way
that the transformation of X̃ and Θ = 5 leads to the same X in both algorithms. For the
lp-NCP 20 realisations of X̃ | Y, Θ = 5 have been drawn, all resulting to the same X and
the corresponding functions π(Θ | X̃, Y ) are superimposed.
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Chapter 5

Non-centered parameterisations for

Poisson processes

5.0 Introduction

This chapter develops a collection of non-centering techniques for latent Poisson processes,

some of which are based on state space expansion. These methods are employed in Chap-

ter 6, where inference for the non-Gaussian stochastic volatility models of Barndorff-Nielsen

and Shephard (2001) is considered. The connection between Poisson processes, positive

indepepndent increments processes and completely random measures, which is established

in Section 5.7 and Section 5.8, renders our methodology potentially useful in fully Bayesian

non-parametric inference for random distributions and related functions. For a review of this

area see Walker et al. (1999), for applications in survival analysis see Walker and Damien

(1998), in spatial modelling see Wolpert and Ickstadt (1998) and in inverse problems see

Wolpert et al. (2003).

The chapter starts by reviewing some basic theory for Poisson processes, which will

be used in our NCPs. We then formulate the problem of likelihood-based inference for

Poisson processes and more generally Gibbs processes, and describe an MCMC algorithm

for simulating Gibbs processes. We give two NCPs for Poisson processes, and show how they

are implemented. We then establish the connection between completely random measures,

positive independent increments and Poisson processes. In particular, we show that the well

known Ferguson-Klass representation for positive Lévy processes is essentially an NCP.

Non-centered methodology has been developed for two more important families of stochas-

tic processes; diffusion processes by Roberts and Stramer (2001) and Gaussian processes by

Christensen and Waagepetersen (2003) and Christensen et al. (2003).
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5.1 Poisson processes: review of basic definitions and

properties

We begin by formally defining the Poisson process and presenting some of its properties that

are more relevant to our purposes. The material presented below is largely based on the

monograph by Kingman (1993), which is a short but thorough study of Poisson processes.

Other important references include Stoyan et al. (1995), Karr (1991) and Norris (1997).

Informally, a point process on a set S is a random set of discrete points of S. More

formally, it is a measurable function, Φ say, from some set Ω (associated with a probability

triple) into the set of all countable subsets of S, which is called the state space of Φ. The

careful measure-theoretic construction can be found, for example, in p.7-9 of Kingman (1993)

and p. 99-101 of Stoyan et al. (1995). Some more details will be given in Section 5.1.4. The

(random) number of points of Φ that lie on the measurable set A ⊂ S is denoted by Φ(A).

Every configuration of Φ, φ say, acts as a counting measure on S, therefore Φ can be thought

of as a random counting measure on S (see Section 5.7). There is a dual treatment of point

processes, namely as random counting measures and as random closed sets, see Stoyan et al.

(1995) for details.

The Poisson process is a point process which is characterised by the following two prop-

erties:

1 for any disjoint measurable subsets A1, . . . , An of S, the random variables Φ(A1), . . . , Φ(An)

are independent, and

2 Φ(A) ∼ Pn(Λ(A)), where 0 ≤ Λ(A) ≤ ∞.

It follows that

Λ(A) = E[Φ(A)]

and that Λ is a measure on S, hence it is called the mean measure of the Poisson process Φ.

The only restriction on Λ is that it has to be non-atomic, that is Λ({x}) = 0 for all x ∈ S.

It is often the case that Λ is σ-finite, which means that there exists a partition S = ∪∞
i=1Si

such that Λ(Si) < ∞ for all i = 1, 2, . . .. There are however, interesting examples where this

does not hold, which will be encountered in Section 5.8.

When Λ(S) < ∞, that is when Φ has a finite number of points almost surely, conditionally

on the event that Φ(S) = n, the random points of Φ = {X1, . . . , Xn} are independent random

variables, identically distributed according to the normalised mean measure Λ(·)/Λ(S).

In all the applications we will encounter in this thesis, S is some Borel subset of a

Euclidean space. In these cases, if Λ is some multiple of the Lebesgue measure on S, the

corresponding Poisson process is called homogeneous. When S = [0,∞) we will occasionally
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refer to the random function

z(t) = Φ((0, t])

as a Poisson process (see also Section 5.8); Figure 5.1 depicts the relationship between z(·)
and Φ.
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Figure 5.1: The relationship between the Poisson process Φ with state space the positive
half-line, plotted with asterisks, and the jump function z(·). For the simulation we have
taken S = [0, 100] and Φ to be a homogeneous Poisson process with intensity 0.1.

5.1.1 Restriction, superposition and mapping properties

Suppose that Φ is a Poisson process on a set S with mean measure Λ and S1 ⊂ S is a

measurable subset. Essentially by definition, the random closed set Φ∩S1 is a Poisson process

on S1 with mean measure the restriction of Λ to S1. It is also easy to show that if S1∩S2 = ∅
then Φ ∩ S1 and Φ ∩ S2 are independent Poisson processes. These properties will prove

invaluable in the implementation of the NCAs described in Section 5.3.2 and Section 5.4.

Superposition, together with thinning and clustering (see Chapter 5. of Stoyan et al.

(1995)), comprise the three basic operations that can be used to produce more complicated

point processes from simpler ones. The description of thinning will be deferred to Section 5.2

while clustering will not be considered in this thesis. The superposition of the point processes

Φ1, Φ2, . . . is the point process

Φ =
∞⋃

n=1

Φn

that contains the points of all the constituent processes. If Φn, n = 1, 2, . . . are independent

Poisson processes with corresponding mean measures Λn, n = 1, 2, . . . the superposition
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theorem (p.16 in Kingman (1993)) states that Φ is also a Poisson process with mean measure

Λ =
∞∑

n=1

Λn.

Another remarkable property of the Poisson process is that when its state space is mapped

into another space, the transformed points form again a Poisson process. Suppose that Φ

is a Poisson process on S with mean measure ΛΦ(·) and that h is a measurable function

from S into some space T . The points h(X) for X ∈ Φ form a random countable subset of

T , Ψ say, and the mapping theorem asserts that under some mild conditions they form a

Poisson process with mean measure

ΛΨ(A) = ΛΦ(h−1(A)), A ⊂ T. (5.1)

The conditions are that ΛΦ is σ-finite and that the induced measure (5.1) has no atoms. It

is still possible however that ΛΨ is not σ-finite. This theorem has far reaching implications

(see the relevant discussion on p.21 of Kingman (1993)) and will explicitly be used in our

NCPs for Poisson processes. Since we will come back to it many times in this chapter, we

formally state it below and refer to Section 2.3 of Kingman (1993) for a formal proof.

Theorem 5.1.1. Let Φ be a Poisson process with σ-finite mean measure ΛΦ(·) on the state

space S, and let h : S → T be a measurable function such that the induced measure (5.1) has

no atoms. Then h(Φ) =: Ψ is a Poisson process on T with mean measure defined in (5.1).

5.1.2 Sums over Poisson processes

This section briefly reviews some results concerning sums of the form

Cf =
∑
X∈Φ

f(X) (5.2)

where f is some real valued measurable function on S. Moreover, for the purposes of this

chapter it is enough to assume that f takes positive values only, although the theory pre-

sented in this section does not require this assumption. The material of this section serves to

demonstrate the connection between the Poisson process and other positive Lévy processes,

which are going to be discussed later in this chapter. Moreover, the theory developed here

provides some strong analytic tools to tackle problems raised in Chapter 6.

The main result, which is known as Campbell’s theorem, establishes the conditions under

which Cf is absolutely convergent with probability 1 and gives an expression for its cumulant

function (defined in Definition 1.8.2):
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Theorem 5.1.2. Let Φ be a Poisson process on S with mean measure Λ and Cf be defined

as in (5.2), where f is a positive function. Then Cf is absolutely convergent with probability

1 if and only if

∫
S

min{f(x), 1}Λ(dx) < ∞

and then

K(u; Cf ) := log E{e−uCf} = −
∫

S

(1 − e−uf(x))Λ(dx). (5.3)

In particular, whenever they exist

E{Cf} =

∫
S

f(x)Λ(dx)

Var {Cf} =

∫
S

f(x)2Λ(dx).

A proof, which is based on the ’standard machine’ (in David Williams’ terms, see p.59

of Williams (1991)) of integration theory can be found in Chapter 3 of Kingman (1993).

The equality expressed in (5.3) can be used as a characterisation of the Poisson process. In

particular, if (5.3) is true for u = 1, for some measure Λ(·) and for a sufficiently rich family

of functions f (for example all functions that take a finite number of different values) then

Φ is a Poisson process with mean measure Λ(·). For more details on this characterisation

and its use in proving the celebrated Rényi’s theorem see Section 3.3 and 3.4 of Kingman

(1993). This is also used to prove Theorem 5.1.3.

5.1.3 Marked Poisson processes

Suppose that Φ is a Poisson process and that, to every x ∈ Φ it is assigned a random mark

mx ∈ M , which is generated independently of any other point of Φ and of the rest of the

marks. It is yet another remarkable property of the Poisson process that when it is marked

as described above it produces a Poisson process on the product space S×M . The space M

is subject to some mild measure-theoretic constraints, which are going to be satisfied in all

the examples we will encounter. Essentially, we will only be concerned with problems where

M is a Euclidean space, although there are many applications in stochastic geometry where

M is a much more complicated space (see Stoyan et al. (1995) for such examples). The marks

are generated from a probability “transition” kernel P (x, ·) (defined in Definition 1.5.1).

Theorem 5.1.3. The random set Ψ = {(X,mX); X ∈ Φ}, mX ∈ M , constructed by marking

a Poisson process Φ with mean measure ΛΦ is a Poisson process on S×M with mean measure

98



given by

ΛΨ(A) =

∫
(x,m)∈A

P (x, dm)ΛΦ(dx). (5.4)

The proof is based on the characterisation of the Poisson process via (5.3) and is given

in p.55 of Kingman (1993). Often mX is independent of X and as a consequence ΛΨ is a

product measure.

As a result of the marking and mapping theorems, the random set containing the marks

{mX ; X ∈ Φ} forms a Poisson process on M with mean measure given by

∫
S

P (x,A)ΛΦ(dx), A ⊂ M.

We can therefore immediately use Campbell’s Theorem 5.1.2 to find the moment generating

function of the sum

Cf =
∑
X∈Φ

f(mX)

for measurable positive functions f on M . Suppose for example that mX is positive and

independent of X, then

K(u; Cf ) = −
∫ ∞

0

(1 − e−uf(x))ΛΦ(S)P (dx). (5.5)

We will see in Section 5.7 and Section 5.8 that such expressions lie at the heart of the

Lévy-Khinchine representation theorem for positive Lévy processes.

When S is the positive half-line and mX is independent of X, we will call

z(t) =
∑
X∈Φ

mX1l[X < t]

the compound Poisson process; the relationship between the marked Poisson process Ψ =

{(X,mX); X ∈ Φ} and z(·) is depicted in Figure 5.2. This relationship is explored in

Chapter 6 to provide a data augmentation method based on marked Poisson processes for

the non-Gaussian OU stochastic volatility models considered there.

5.1.4 Likelihood functions for Poisson and Gibbs processes

The results of this and the following section are particularly relevant to any computational

method used to perform likelihood-based inference for point processes. Specifically, the

implementation of both the CP and the NCP for the volatility model presented in Chapter 6
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Figure 5.2: The relationship between the marked Poisson process Ψ, produced by marking
a homogeneous Poisson process with intensity 0.1, with independent Ex(1) marks, and the
compound Poisson process z(·); for the simulation we have taken S = [0, 100].

is based explicitly on the results presented below. Moreover, it will become apparent later

in this chapter that the choice of dominating measures and the issue of absolute continuity

between stochastic processes, which are discussed in this section in the context of point

processes, are very relevant to the construction of non-centered parameterisations. This

connection was first observed and exploited in Roberts and Stramer (2001) in the context of

inference for partially observed diffusions.

Our target is to derive the likelihood function for an arbitrary Poisson process and conse-

quently to define the Gibbs process in terms of its density with respect to the Poisson process.

We first need to add some detail about the measure-theoretic construction sketched in the

beginning of Section 5.1. The development below follows Stoyan et al. (1995) and Geyer and

Møller (1994) closely.

Let (S,S, Λ) be a measure space, where S is the state space of the Poisson process Φ

(typically S is some measurable subset of a Euclidean space), S is the corresponding σ-

algebra that contains all the singletons {x} ⊂ S (typically a Borel σ-algebra), and Λ(·)
is the mean measure (typically a measure with a density with respect to the Lebesgue

measure on (S,S)). The theory presented in this section is concerned with processes for

which Λ(S) < ∞. The corresponding exponential space (see Geyer and Møller (1994) and

Carter and Prenter (1972) for example) is denoted by (Ω,F ,Q). Ω is the space containing
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all sequences of elements from S, sometimes represented as

Ω =
∞⋃

n=0

Ωn, where Ωn = {{x1, . . . , xn} ⊂ S}, Ω0 = {∅}. (5.6)

Notice that Ω0 = {∅} is the empty set configuration, i.e the configuration of Φ that contains

no points, which is distinct from the empty subset of Ω. Clearly, realisations of Φ, denoted

here with the lower case letter φ, take values in Ω. F is the smallest σ-algebra on Ω that

makes measurable all mappings φ → φ(B) for B ∈ S. The law of Φ on (Ω,F) is denoted by

Q which is uniquely determined by the system of finite-dimensional distributions

Q[Φ(B1) = n1, . . . , Φ(Bk) = nk], k = 1, 2, . . . , n1, . . . , nk ≥ 0, B1, . . . , Bk ∈ S

where the sets B1, . . . , Bk can be taken to be pairwise disjoint. Actually, an important

theorem for random closed sets (see for example Chapter 6 of Stoyan et al. (1995)) states

that for any point process Φ the system of the so-called void probabilities

Q[Φ(B) = 0], B ∈ S

is enough to characterise its distribution. Notice that this result holds for general point

processes, not just for the Poisson process.

When Φ is a Poisson process with finite mean measure Λ(·), Q can be represented, for

any F ∈ F , as (see p.21 of Geyer and Møller (1994))

Q(F ) = exp{−Λ(S)}
[
1l[Ω0 ∈ F ] +

+
∞∑

n=1

1

n!

∫
· · ·
∫

1l[{x1, . . . , xn} ∈ F ]Λ(dx1) · · ·Λ(dxn)

]
. (5.7)

In particular, if f is some real measurable function on Ω

∫
F

f(φ)Q(dφ) = exp{−Λ(S)}
[
1(Ω0 ∈ F )f({∅})

+
∞∑

n=1

1

n!

∫
· · ·
∫

1l[{x1, . . . , xn} ∈ F ] (5.8)

× f({x1, . . . , xn})Λ(dx1) . . . Λ(dxn)

]
. (5.9)

It is easy to show that a Poisson process Φ with finite mean measure Λ(·) has the dis-

tribution given by (5.7) using a conditioning argument (on the number of points of Φ) and

the basic definitions and properties presented in the beginning of Section 5.1. We can also
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show the converse, that if a point process Φ has a distribution given by (5.7) it is then

a Poisson process with mean measure Λ(·). This can be easily achieved using the expres-

sion (5.9) together with the characteristic functional idea, discussed briefly at the end of

Section 5.1.2 and in more detail in Section 3.3 of Kingman (1993).

Suppose now that a realisation of an arbitrary Poisson process Φ has been observed,

φ = {x1, . . . , xn} say. Moreover, some parametric form for the mean measure Λ(·) = Λ(·; Θ)

has been assumed, where Θ is a vector of unknown parameters, and we are interested in

obtaining the likelihood function, i.e the density of the data φ given the parameters Θ in

order to perform likelihood-based inference for Θ. Since Ω is an infinite-dimensional space

we can’t expect this likelihood to be given with respect to to some Lebesgue measure, as

it is conventionally done in statistics. Instead the dominating measure has to be infinite-

dimensional.

When S is a bounded subset of a Euclidean space, a natural choice is the probability

measure of a standard Poisson process. Namely, the dominating measure, denoted by Q,

is the one derived from (5.7) by setting Λ to be the Lebesgue measure on (S,S). Most of

the applications considered in this thesis are like that. An important exception is problems

involving marked Poisson processes, which live on spaces of the form S × M where M can

be unbounded. However, an immediate extension of the idea suggested above can be applied

as long as the marked Poisson process is finite almost surely. At this early stage, we remark

that actually the choice of a dominating measure is rather strongly related to the choice

of an NCP for a stochastic process. We will come back to this point in Section 5.2, where

NCPs for Poisson processes will be constructed.

Abstracting from specific choices, suppose that a dominating measure Q has been chosen,

and that it corresponds to the distribution of a Poisson process on S with mean measure

K(·). Suppose that we are interested in expressing the density of the distribution of Φ, P
say, with respect to Q. This can be done as described in the following lemma. For reasons

of completeness we provide a proof.

Lemma 5.1.4. Suppose that Q and P are the distributions of two Poisson processes with

mean measures K(·) and Λ(·) respectively, where Λ(S) + K(S) < ∞. If Λ is absolutely con-

tinuous with respect to K with density Λ(dx)/K(dx) = f(x), then P is absolutely continuous

with respect to Q and the Radon-Nikodym derivative between the two measures evaluated at

φ = {x1, . . . , xn} ∈ Ω is given by

dP
dQ = exp{K(S) − Λ(S)}

φ(S)∏
i=1

f(xi)

where the product is replaced by 1 if φ(S) = 0.
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Proof For any F ∈ F ,

P(F ) =

∫
F

P(dφ)

= exp{−Λ(S)}
[
1l[Ω0 ∈ F ]

+
∞∑

n=1

1

n!

∫
· · ·
∫

1l[{x1, . . . , xn} ∈ F ]Λ(dx1) · · ·Λ(dxn)

]

= exp{−Λ(S)}
[
1l[Ω0 ∈ F ]

+
∞∑

n=1

1

n!

∫
· · ·
∫

1l[{x1, . . . , xn} ∈ F ]f(x1) . . . f(xn)K(dx1) . . . K(dxn)

]

= exp{K(S) − Λ(S)}
∫

F

g(φ)Q(dφ)

where the last equality is true due to (5.9), with g(φ) = f(x1) · · · f(xn), when φ = {x1, . . . , xn}, n >

0 and g({∅}) = 1. This proves the lemma. ��
We note that a special case of the previous result is proved in p.167 of Stoyan et al.

(1995) using the void probabilities mentioned in the beginning of this section.

Informally, the density derived in the lemma above evaluated at a particular realisation

of the Poisson process Φ, φ, can be interpreted as a quantification of how more likely it is

that φ was generated by a Poisson process with mean measure Λ(·) relative to have been

generated by one with mean measure K(·).
Notice that application of the lemma above can fail when the point process contains

infinite number of points on S. It can then be true that Q and P are mutually singular,

despite absolute continuity of Λ with respect to K. An example is given in p.168 of Stoyan

et al. (1995). Consider two homogeneous Poisson processes Φ1, Φ2 on [0,∞), with different

intensities, λ1 	= λ2. The mean measures are apparently equivalent, however the distributions

of the processes are mutually singular, since with probability 1, limn→∞ Φi([0, n))/n = λi,

i = 1, 2 (see p.42 of Kingman (1993)). Therefore the measure of Φ1 puts all the mass on

configurations which have zero probability under the distribution of Φ2, and vice versa. This

situation is related with and motivates the non-centered parameterisations of Section 5.2.

For a similar problem in the context of diffusion processes, where the diffusion sample path

uniquely determines the variance of the process via the quadratic variation identity, see

Roberts and Stramer (2001).

Gibbs processes and hierarchical modelling

New point processes can be produced from old by transforming their distribution by means

of probability densities. This is the idea behind the theory of Gibbs processes. These
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processes first arose in statistical physics (see for example Preston (1976)) and have been

used as a modelling devise in many spatial statistics applications (see Section 5.5 of Stoyan

et al. (1995)). We will shortly see how these processes arise in the context of hierarchical

modelling.

Formally, a Gibbs process Φ with finite number of points almost surely, is defined

by specifying the density of its distribution, P say, with respect to the distribution of a

Poisson process, Q say, g = dP/dQ. This construction is developed briefly in Section 5.5 of

Stoyan et al. (1995), where it is shown how hard-core and clustered point processes can be

obtained.

As an example consider the (unconditional) Strauss model (Strauss (1975)), which is used

to model repulsion between points. Assuming that the state space is the unit square S =

[0, 1]×[0, 1], the density g with respect to the distribution of the homogeneous Poisson process

on S with intensity 1, is in the exponential family

g(φ) ∝ exp{φ(S)θ1 + s(φ)θ2}

where

s(φ) = #{{xi, xj} ⊂ φ, i 	= j : ‖xi − xj‖ < r}

is the number of unordered pairs of points having distance less than r > 0. It is necessary

that θ2 ≤ 0 for the density to be integrable, where the upper bound corresponds to the

homogeneous Poisson process with intensity eθ1 . For fixed φ(S) and θ2 < 0 the density is

decreasing in s(φ) therefore the points tend to be repulsing from each other, actually the

limit θ2 → −∞ corresponds to a hard-core process, where no points at distance less than r

are allowed. The first column of Figure 5.3 demonstrates three different simulated data sets

from the Strauss model with r = 0.1, θ1 = log(100) and θ2 = log(0.75), log(0.1), log(0.001)

in top, middle and bottom correspondingly. Details on the method used to simulate these

processes are provided in Section 5.1.5.

Gibbs processes will not be used directly to model data in this thesis. Nevertheless, they

arise naturally as described below (see Chapter 6 for a specific application). Assume that in

the hierarchical model shown in Figure 1.3 the distribution of the data Y conditionally on

X has some Lebesgue density πY |X(y | x). Suppose that X is modelled as a Poisson process

with finite mean measure Λ(·; Θ), where Θ is a vector of unknown parameters, and that

πX|Θ(x | θ) is the density of its distribution with respect to some suitable reference measure,

as described by Lemma 5.1.4. It follows that by construction the process X conditioned on

Y and Θ is a Gibbs process. Its density with respect to to the Poisson reference measure is

πY |X(y | x)πX|Θ(x | θ).
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Figure 5.3: Simulation from the Strauss model with r = 0.1, θ1 = log(100) and for three
different values of θ2, log(0.75), log(0.1), log(0.001) in top, middle and bottom correspond-
ingly. A configuration of the process is shown in the left column, MCMC samples from the
stationary distribution of the sufficient statistics are plotted in the middle and right columns.
The birth-and-death MCMC algorithm of Section 5.1.5 was used to obtain the samples from
the point processes, run for 105 iterations but then thinned every 100 to produce the plots.
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Availability of this density is necessary when performing a two-component Hastings-within-

Gibbs algorithm to sample from the join posterior distribution of (X, Θ), as for example

described in the application of Chapter 6.

MCMC simulation from the distribution of a Gibbs process is described in the following

section.

5.1.5 Birth-death-displacement MCMC algorithms for simulating

Gibbs processes

Simulating Gibbs point processes in a direct way is usually either impossible or extremely

inefficient (see for example the discussion in Section 5.5 of Stoyan et al. (1995)). Instead,

Markov chain methods have been proposed for this purpose that are very easy to implement

and typically much more efficient than the direct rejection sampling type methods. An

algorithm that has been known since at least Preston (1975), is based on running a spatial

continuous time birth-death Markov process which converges towards the Gibbs process.

Interest for similar algorithms has been recently revived in the statistical community, see

for example Stephens (2000) and Cappé et al. (2003) for a recent review. In contrast, we

will use the Metropolis-Hastings birth-and-death algorithm proposed by Geyer and Møller

(1994). There are some advantages of this algorithm over the continuous time one, most

importantly its simplicity in implementation, however a comparison of the two methodologies

is far beyond the scope of this thesis and we simply refer to Cappé et al. (2003), Stoyan et al.

(1995), Geyer and Møller (1994) and Stephens (2000). Moreover, all these approaches relate

to the reversible jump MCMC methods, see Green (1995).

We aim at sampling from a Gibbs process on state space S which has density g with

respect to a Poisson process reference distribution. The mean measure of the Poisson process

is denoted by Λ(·) and it is assumed that Λ(S) < ∞. Geyer and Møller (1994) describe how

to create a reversible Metropolis-Hastings Markov chain, with state space the exponential

space Ω defined in Section 5.1.4, which converges to the distribution of the Gibbs process.

The transition kernel is a mixture of two reversible kernels,

P (φ, F ) = wdPd(φ, F ) + (1 − wd)Pbd(φ, F ), F ∈ F , φ ∈ Ω

where 0 ≤ wd ≤ 1 is the probability of choosing kernel Pd. The latter represents a dimension-

preserving move, that tries to displace one of the existing points of φ. Pbd represents a

dimension-changing move that attempts to either kill one of the existing or give birth to a

new point.

In particular, suppose that φ = {x1, . . . , xn} with g(φ) > 0. The displacement kernel

chooses with equal probability one of the existing points, xi say, and proposes to displace it
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according to the measure q(xi, dy) = q(xi, y)Λ(dy). The proposal distribution Q(φ, F ) can

be written as

Q(φ, F ) =
1

n

n∑
i=1

∫
S

1l[φ − {xi} ∪ {y} ∈ F ]q(xi, y)Λ(dy)

This can be viewed as a kernel that updates x ∈ φ conditionally on φ − {x} and therefore

the Metropolis-Hastings acceptance probability is given simply by

αd(φ, φ − {x} ∪ {y}) = min

{
1,

g(φ − {x} ∪ {y})q(y, x)

g(φ)q(x, y)

}
(5.10)

whenever n ≥ 1, q(x, y)q(y, x) > 0, g(φ − {x} ∪ {y}) > 0, and 0 otherwise.

The proposal kernel corresponding to Pbd is concentrated on Ωn−1∪Ωn∪Ωn+1 (or Ω0∪Ω1

when n = 0) defined in (5.6). With probability p(φ) we generate a new point x ∈ S from

some distribution b(φ, x)Λ(dx), and with the remaining probability we delete a randomly

chosen point y ∈ φ with some probability d(φ − {y}, y) or if n = 0 we do nothing. Notice

that we adopt the slightly unusual notation d(φ−{y}, y) following Geyer and Møller (1994),

because it simplifies some of the formulae below. The second argument in d(·, ·) denotes the

point which is proposed to be deleted, while the first argument is the closed set of points

which is common in the point process before and after the proposal of the death. Thus for

example, d(φ, y) is the probability of deleting y from φ ∪ {y}.
The transition probability for Fn ⊂ Ωn, n = 0, 1, . . . is

P (φ, Fn+1) = p(φ)

∫
S

1l[φ ∪ {x} ∈ Fn+1]αbd(φ, φ ∪ {x})b(φ, x)Λ(dx), n ≥ 0

P (φ, Fn−1) = (1 − p(φ))
∑
x∈φ

1l[φ − {x} ∈ Fn−1]αbd(φ, φ − {x})d(φ − {x}, x), n ≥ 1

P (φ, Fn) = 1l[φ ∈ Fn]

{
p(φ)

∫
S

(1 − αbd(φ, φ ∪ {x})b(φ, x)Λ(dx)

+ (1 − p(φ))
∑
x∈φ

(1 − αbd(φ, φ − {x}))d(φ − {x}, x)

}
, n ≥ 0

and reversibility holds if and only if

∫
1l[φ ∈ Fn, φ ∪ {x}Fn+1]g(φ ∪ {x})αbd(φ ∪ {x}, φ)d(φ, x)Λ(dx1) . . . Λ(dxn)Λ(dx)

=

∫
1l[φ ∈ Fn, φ ∪ {x}Fn+1]g(φ)αbd(φ, φ ∪ {x})b(φ, x)Λ(dx1) . . . Λ(dxn)Λ(dx)

for all measurable Fn ⊂ Ωn, Fn+1 ⊂ Ωn+1, n ≥ 0. When n = 0, Λ(dx1) . . . Λ(dxn) is replaced
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by 1l[φ = {∅}]. This implies that the Metropolis-Hastings acceptance probability is

αbd(φ, φ ∪ {x}) = min{1, r(φ, x)}

if g(φ ∪ {x}) > 0, and 0 otherwise, and

αbd(φ ∪ {x}, φ) = min{1, 1/r(φ, x)}

if g(φ ∪ {x}) > 0 and 0 otherwise, where

r(φ, x) =
g(φ ∪ {x})

g(φ)

1 − p(φ ∪ {x})
p(φ)

d(φ, x)

b(φ, x)
. (5.11)

Convergence of the birth-death-displacement algorithm is established in Section 4 of Geyer

and Møller (1994).

As an illustration of the algorithm, we simulated from the Strauss model described in

the previous section and summarise the results in Figure 5.3. In our simulations we chose

p(φ) = 0.5, b(φ, x) ∝ 1, d(φ, x) = 1/n, when φ(S) = n, and wd = 0, therefore no displacement

moves were attempted, following the advice given in Section 5 of Geyer and Møller (1994).

The birth-death-displacement algorithm will be used as part of a larger MCMC algorithm

in Chapter 6.

5.2 NCPs for Poisson processes

Often we are interested in making inference about a hierarchical model as in Figure 1.3,

where X is a Poisson process on a state space S with mean measure Λ depending on some

parameters Θ. We will encounter such hierarchical models in Chapter 6, in the context

of non-Gaussian stochastic volatility models. Moreover, such hierarchical models arise in

Bayesian non-parametric modelling, see for example Wolpert and Ickstadt (1998) in the

context of modelling spatial variation. In our applications S is typically some subset of

IRd, d = 1, 2, . . .. The distribution of the data Y given X is defined through some Lebesgue

density πY |X(y | x), but we will not make any assumptions about its form here. Furthermore,

we will take for granted that the mean measure Λ admits a Lebesgue density λ(x), x ∈ S,

which will occasionally be denoted as λ(x; Θ) to stress its functional dependence on the

parameters Θ.

We intend to use the two-component Hastings-within-Gibbs sampler as described in

Section 4.1 to obtain samples from the joint posterior distribution of (X, Θ). In many

applications, due to ergodicity, the augmented information about Θ can be much larger

than the marginal information. An extreme example was given in Section 5.1.4, where

actually the information contained in X about Θ is infinite, since the latter is obtained as
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a strong law limit from the former. In such cases, of very high prior dependence between X

and Θ, unless the data are very informative about X, we expect (see Chapter 6) the centered

algorithm to have poor convergence properties. We can’t be very precise in our statements

here without making specific assumptions about the distribution of Y given X.

Therefore, there might be potential benefit from using an NCP for models with hidden

Poisson processes. According to the general presentation of Section 4.1 these parameterisa-

tions work with (X̃, Θ) where X̃ is a priori independent of Θ, and X is obtained from them

by means of some (not necessarily invertible) function. The MCMC algorithm that samples

from the joint posterior of (X̃, Θ) is described in Section 4.1, where its relationship with the

centered algorithm is shown. Typically, there is a collection of NCPs for a particular pair

(X, Θ) which differ in the prior of X̃ and the way (X̃, Θ) is transformed to X.

The following sections develop two NCPs, which have quite different properties and appli-

cability. Both have their grounds on methods for simulating complex Poisson processes from

simpler ones. NCP by thinning (referred to by THIN-NCP) is motivated by the independent

thinning operation on point processes and it can be applied for any S ⊂ IRd, d = 1, 2, . . ..

NCP by the inverse CDF method (referred to by CDF-NCP) is usually employed when S is

a subset of the real line, and has its grounds on a method used to simulate Poisson processes

in time by generating their independent increments.

5.3 NCP by thinning

Assume for the moment that λ is bounded by one on S, λ(x) < 1 for all x ∈ S. A

Poisson process X on S with intensity function λ can be obtained from another Poisson process

on S with intensity one, X̃ say, by thinning, that is by independently deleting each point of

the latter, x ∈ X̃ with probability 1−λ(x). It can easily be shown that the process resulting

from this rejection sampling procedure is indeed a Poisson process with intensity function

λ, since

E[X(B)] =

∫
S

λ(x)dx = Λ(B), for all B ⊂ S.

This technique is discussed, for example, in Section 6.1 of Devroye (1986), Section 4.2 of

Ripley (1987) and Section 5.1 of Stoyan et al. (1995). Thinning can be seen as a random

mapping from a Poisson process X̃ on S to another Poisson process X ⊂ X̃ on S. However,

it can also be interpreted as a deterministic mapping from Poisson processes on the expanded

state space S× (0, 1) to Poisson processes on S. Namely, a Poisson process X with intensity

function λ(x) < 1, x ∈ S can be obtained from a Poisson process X̃ on S × (0, 1) as

X = {Xj : (Xj, Zj) ∈ X̃ and Zj < λ(Xj)}; (5.12)
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see Figure 5.4 for an illustration. It is an immediate consequence of the restriction prop-

erty of Poisson processes, described in Section 5.1.1, and the mapping Theorem 5.1.1 that

this selection procedure produces a Poisson process on S with intensity function λ. Actu-

ally, under the above interpretation there is no need to bound λ. Therefore, an NCP for a

Poisson process X on S with intensity function λ can be constructed by taking X̃ to be a

unit intensity Poisson process on S × (0,∞) and the deterministic but not invertible trans-

formation from X̃ to X to be (5.12). This was originally proposed by Roberts et al. (2003)
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Figure 5.4: Transformation from X̃ to X. X is a Poisson process on S with intensity λ(x; θ),
X̃ is a unit intensity Poisson process on S×(0,∞). Choose all points of X̃ that lie on {(x, z) :
x ∈ S, y < λ(x; θ)} (white area in the plot) and project them down to S. The resulting points
(denoted by the black asterisks) form X. In this example S = [0, 30], λ(x; θ) = θ, θ = 0.3.

and is reviewed in Chapter 6, in the context of non-Gaussian stochastic volatility models. In

the terminology of Chapter 4, this is a state space expanded NCP, since X̃ lives on a higher

dimensional space than X and the transformation (Θ, X̃) → X is not invertible.

It is possible to construct NCPs by thinning where X̃ is not a homogeneous Poisson process

on S × (0,∞). This is interesting, for example, when S is a product space. Of course, (5.12)

is not the appropriate transformation in this case. We will consider such parameterisations

in Section 5.5 and discuss how they compare with the one suggested in this section.

In Section 4.2 we showed that the expanded state space NCAs were just as easy to

implement as the corresponding CAs. This was attributed to the independent increments

property of X̃ and the fact that the data depended only on some values of X̃ rather than

on the whole process. The situation is very similar here, where X̃ is a Poisson process. The

points of X̃ on disjoint sets form independent processes while the data Y is independent

of the points of X̃ on {(x, z) : z > λ(x), x ∈ S} (lying on the grey area in Figure 5.4)

conditionally on its points on {(x, z) : z < λ(x), x ∈ S} (lying on the white area).

Assume that a CA as described in Section 4.1 already exists for sampling from the

joint posterior distribution of (Θ, X). Typically, the birth-death-displacement algorithm of
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Section 5.1.5 is used to update X given Y and Θ, for example this is the strategy we adopt

in Chapter 6. In Section 4.1 we gave the two transformation steps necessary to implement

a state space expanded NCP. Step 2 transforms (Θ, X̃) → X and it is deterministic and for

the THIN-NCA this transformation is given in (5.12). Step 4 is a stochastic transformation,

(Θ, X) → X̃, therefore we need to ’rebuild’ X̃ given Θ, Y and X, which is a projection of

a subset of X̃ on S. Section 4.1 suggested that this step can be incorporated into Step 1,

which updates Θ given X̃ and Y . Implementation of Steps 1-3 of the THIN-NCA is not

complicated by the form of the intensity function λ or the state space S. Nevertheless, the

feasibility of the random mapping (Θ, X) → X̃, either when explicitly performed at Step 4

or when it is implicitly done at Step 1, depends crucially on the functional form of λ.

The following section describes the transformation (Θ, X) → X̃ and how it can be in-

corporated into Step 1 for the special case where X is a homogeneous Poisson process.

Section 5.3.2 generalises to locally finite non-homogeneous Poisson processes, for which the

intensity function satisfies the integrability condition

∫
C

λ(z)dz < ∞

on any bounded set C ⊂ S. Implementation of the THIN-NCA for processes with non-σ-

finite mean measures is briefly considered in Section 5.8.1.

5.3.1 THIN-NCA for homogeneous Poisson processes on a bounded

state space

Let X be a homogeneous Poisson process with intensity θ on a bounded state space S ⊂ IRd

for some d = 1, 2, . . .. We initially describe the transformation (Θ, X) → X̃ and then show

how to merge this step into the step which updates Θ given X̃ and Y .

Stochastic transformation (Θ, X) → X̃

We define

X̃(0,Θ) = X̃ ∩ (S × [0, Θ))

X̃[Θ,∞) = X̃ − X̃(0,Θ)

so that X̃ is the disjoint union

X̃ = X̃(0,Θ) ∪ X̃[Θ,∞)

and recall from (5.12) that

X = {Xj : (Xj, Zj) ∈ X̃(0,Θ)}.
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X̃(0,Θ) and X̃[Θ,∞) (which correspond to the white and grey areas in Figure 5.4 respectively)

are independent conditionally on Θ, due to the restriction property of Poisson processes

(Section 5.1.1). By construction, the observed data Y depends only on X as we described

in Section 5.2. Therefore, conditionally on Θ, X̃[Θ,∞) is independent of Y . As a result, it is

also independent of X̃(0,Θ) and can, in principle, be simulated from its prior.

We write

X̃(0,Θ) = {(Xj, Zj), j = 1, . . . , N,Xj ∈ S, 0 ≤ Zj ≤ Θ}

for some random integer N > 0, otherwise X̃(0,Θ) = {∅}. The Zjs are independent of the data

Y , since the likelihood depends only on the projection X on S. Therefore, conditionally on

N , the Zjs are independent of the Xjs and independent of each other, distributed as Un[0, Θ].

Hence, X̃(0,Θ) is obtained from a configuration of X = {x1, . . . , xn} simply as

X̃(0,Θ) = {(xj, Zj) : xj ∈ X,Zj ∼ Un[0, Θ]}

(or X̃(0,Θ) = {∅} if n = 0).

Summarising, we transform (Θ, X) to X̃, where X = {x1, . . . , xn} for some n ≥ 0, as

follows:

Stochastic transformation (Θ, X) → X̃

Simulate X̃[Θ,∞) as a Poisson process with unit intensity on
S × [Θ,∞)

Simulate independent variables Zj ∼ Un[0, Θ], j = 1, . . . , n

Set X̃(0,Θ) = {(xj, Zj) : xj ∈ X,Zj ∼ Un[0, Θ]}
Set X̃ = X̃(0,Θ) ∪ X̃[Θ,∞)

Update Θ conditionally on X̃ and Y

Assume for the moment that X̃ is available at Step 1 of the NCA given in Section 4.1.

Typically, a Metropolis-Hastings step will be used to update Θ given X̃ and Y . Suppose

that θ0 is the current value of Θ and θ1 has been generated from some proposal kernel
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q(θ0, θ1). The Metropolis-Hastings acceptance ratio is

r =
π(Y | X(1))π(θ1)q(θ1, θ0)

π(Y | X(0))π(θ0)q(θ0, θ1)
(5.13)

where X(0), X(1) are defined through (5.12) with λ(x) = θ0 and λ(x) = θ1 for all x ∈ S

respectively, see also Figure 5.5. The transition from θ0 to θ1 is accepted with probability

min{1, r}. Thus, if we had X̃ then we could easily perform Step 1. However, the previous

section shows that this is not necessary and we only need to have X at this step. If we

propose θ1 < θ0 then X(1) can be obtained as a random thinning of X(0), where its point of

the latter is killed with probability 1 − θ1/θ0. If θ1 > θ0 then X(1) is the superposition of

X(0) and an independent Poisson process on S with intensity θ1 − θ0.

The next section generalises this algorithm for arbitrary locally finite Poisson processes.

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

θ0

θ1

θ1

Figure 5.5: Updating of Θ given X̃ and Y in the THIN-NCA. The current value of θ is
denoted by θ0 and the proposed by θ1, the corresponding quantities for X by X(0) and X(1)

respectively. If θ1 < θ0, X(1) is found by removing from X(0) all points {x ∈ X(0) : (x, z) ∈
X̃∩S× [θ1, θ0)} (lying in the cyan area). If θ1 > θ0, X(1) is derived from X(0) by the addition
of all points {x ∈ S : (x, z) ∈ X̃ ∩ S × [θ0, θ1)} (lying in the yellow area). Once X(1) has
been found the Metropolis-Hastings acceptance probability (5.13) can be calculated. In this
example we have taken S = [0, 10], θ0 = 2, θ1 = 1 and θ1 = 3.

5.3.2 THIN-NCA for finite Poisson processes

The ideas of the previous section extend naturally to arbitrary Poisson processes. The main

assumption here is that Λ(S) < ∞, apart from which the intensity function can be totally

arbitrary.

Let θ0, θ1, X(0) and X(1) be defined as in the previous section. We also define

S0 = {x ∈ S : λ(x; θ0) < λ(x; θ1)}
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and S1 = S − S0. If λ(x; Θ) is not monotonic in Θ for all x ∈ S, determination of S0 might

be a tedious task. X(1) is derived from X(0) by the following steps:

Derivation of X(1) from X(0)

Kill each point Xj ∈ X(0)∩S1 with probability 1−λ(Xj; θ1)/λ(Xj; θ0)

Calculate μ =
∫

S0
{λ(z; θ1) − λ(z; θ0)}dz, or set μ = 0 if S0 = ∅

Simulate N ∼ Pn(μ)

Add to X(0) N new points generated independently from the
density proportional to λ(x; θ1) − λ(x; θ0), x ∈ S0

The second and fourth step in the above algorithm might be difficult when λ(x; θ) is totally

arbitrary. However, notice that THIN-NCA can be relatively easily implemented for a class

of intensity functions frequently encountered in applications

λ(x; Θ) = Θq(x)

where q(x) is a density function on S. Then, S0 = S when θ0 < θ1 otherwise S0 = ∅,
μ = max{0, θ1 − θ0} and the new points are generated from q.

5.4 NCP by the inverse CDF method

This reparameterisation can be employed whenever the state space S is a subset of the real

line, although it can be extended when we consider marked Poisson processes. This section

assumes that S = (0,∞). It is based on the inverse CDF method for simulating random

variables (see for example Section 3.2 of Ripley (1987)) and suffers from its limitations, in

particular the necessity to invert functions and the difficulty to extend to high dimensions.

Nevertheless, it can be very useful especially when the intensity function satisfies (5.18), as

we shall see in Section 5.8.1.

Let X = {X1, X2, . . .} be a Poisson process in time where 0 < X1 < X2 < · · · , with

intensity function λ, for which we will temporarily assume that

∫ x

0

λ(z)dz < ∞
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for all x > 0. This intensity corresponds to locally finite Poisson processes, however ex-

tensions will be considered later in this section. We also define X̃ = {X̃1, X̃2, . . .} to be

a homogeneous Poisson process in time with intensity one and 0 < X̃1 < X̃2 < · · · . The

increments of this process X̃j+1 − X̃j, j = 1, 2, . . . (where X̃0 := 0) are independent and

distributed as Ex(1). Some authors define the homogeneous Poisson process on a subset of

the real line as a continuous-time Markov chain with exponentially distributed inter-arrival

times, see for example Section 2.4 of Norris (1997). For a proof of this property, when the

definition of a Poisson process is as in Section 5.1, see for example Section 4.1 of Kingman

(1993).

Let Y1 be the time until the first arrival of X, i.e Y1 := X1. Then

P [Y1 > x] = P [X([0, x)) = 0] = exp

{
−
∫ x

0

λ(z)dz

}

therefore Y1 can be simulated by the inverse CDF method as the solution with respect to x

of the following equation

− log(1 − U) =

∫ x

0

λ(z)dz, U ∼ Un[0, 1]

which is equivalent to

X̃1 =

∫ x

0

λ(z)dz.

Let X1 be the solution to this equation and therefore the first point of X. Conditional on

this value, the time until the next arrival Y2 := X2 − X1 can be simulated by solving

X̃2 − X̃1 =

∫ X1+x

X1

λ(z)dz.

Recalling that X̃1 =
∫ X1

0
λ(z)dz, X2 is obtained as the solution to

X̃2 =

∫ x

0

λ(z)dz.

By a recursive application of the above argument Xn is obtained as the solution to

X̃n =

∫ x

0

λ(z)dz (5.14)

and generally

X = {h(x) : x ∈ X̃} (5.15)
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where h is the increasing function determined by

h−1(x) =

∫ x

0

λ(z)dz. (5.16)

If ∫ ∞

0

λ(z)dz < ∞

then there exists some finite n > 0 almost surely such that (5.14) cannot be solved for all x.

In that case Xn−1 is the last point of the Poisson process (under the usual time-ordering)

which is finite almost surely, as it would have been expected by the integrability condition

satisfied by its intensity function. By convention, in (5.15) we map all points x such that

h(x) >
∫∞
0

λ(z)dz to 0.

The relationship between X and X̃ described by (5.15) and (5.16) can also be deduced

using an argument based on the mapping Theorem 5.1.1. In particular, suppose that we

want to find the increasing, measurable and differentiable h such that X derived from X̃ by

(5.15) has intensity function λ. For A ⊂ IR

∫
A

λ(z)dz = E[X(A)] = E[X̃(h−1(A))]

=

∫
h−1(A)

dz

=

∫
A

dh−1(z)

dz
dz

therefore h solves the differential equation

λ(x) =
dh−1(x)

dx
. (5.17)

Under the initial condition h−1(0) = 0, (5.17) is solved by the function defined in (5.16).

We will now show how CDF-NCP works when∫ x

0

λ(z)dz = ∞∫ ∞

x

λ(z)dz < ∞ (5.18)

for all x > 0. In this case, we start by simulating the latest arrival X1 in X, which will finite

almost surely by (5.18), and write X = {X1, X2, . . .} where now ∞ > X1 > X2 > · · · > 0.

P [X1 < x] = P [X([x,∞)) = 0] = exp

{
−
∫ ∞

x

λ(z)dz

}

therefore X1 can be simulated by the inverse CDF method as the solution with respect to x
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of the following equation

X̃1 =

∫ ∞

x

λ(z)dz.

The same arguments which lead to (5.14) yield that Xn is obtained as the solution to

X̃n =

∫ ∞

x

λ(z)dz. (5.19)

Notice that there are infinite points of X in any neighbourhood of 0. It follows that X is

obtained by X̃ via (5.15), but where now h is the decreasing function determined by

h−1(x) =

∫ ∞

x

λ(z)dz. (5.20)

We can arrive at the same result using the mapping theorem, as described earlier.

When
∫∞

0
λ(z)dz < ∞, h can be given either by (5.16) or by (5.20). If the latter is chosen

then almost surely there will be a point X̃n >
∫∞

0
λ(z)dz and (5.19) will be impossible to

solve. In this case we follow the convention to map all x in (5.20) such that x >
∫∞
0

λ(z)dz

to 0.

As an illustration, consider the intensity function

λ(x) = rφ exp{−φx}, x > 0. (5.21)

This is the intensity of a Poisson process which is obtained as a projection of a Poisson process

which we will revisit in Section 5.5.1 and Section 6.5. Since
∫∞

0
λ(z)dz < ∞ either (5.16) or

(5.20) can be used. The solution to (5.14) is given by

Xn = −1

φ
log(1 − X̃n/r), X̃n < r

and the solution to (5.19) by

Xn = −1

φ
log(X̃n/r), X̃n < r.

The solutions as functions of X̃ are superimposed in Figure 5.6.

If λ(x) depends on some parameters Θ, a non-centered reparameterisation of (X, Θ) can

be constructed by taking X̃ to be a unit intensity Poisson process and X is derived from

X̃ and Θ by (5.15) and (5.16) or (5.20). This is the CDF-NCP, which can be directly

implemented only for Poisson processes on subsets of IR, since it explicitly uses the time

ordering of the Poisson process points, although extensions for marked Poisson processes

are possible as in Section 5.5.

CDF-NCP can be applied whenever (5.16) or (5.20) is easily invertible, which, however,
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Figure 5.6: The increasing (red) and decreasing (blue) transformation h in the CDF-NCP
corresponding to the intensity function (5.21). In this plot we have taken r = 4, φ = 1.

can only be achieved numerically in many applications. Implementation of the CDF-NCA

for locally finite processes on bounded intervals S = [0, T ], T > 0 is on the same lines as

of the THIN-NCA, therefore we will omit any details and refer back to Section 5.3. For

example, when λ(x) = Θ for all x ∈ S, only the finite number of points of X̃ that lie on

[0, T θ] need to be monitored during the iterations of the algorithm.

Section 5.8.1 reveals the connection of this method to the Ferguson and Klass (1972)

representation for positive Lévy processes. There it is argued that it might be preferable to

the THIN-NCP when the intensity function of the latent Poisson process satisfies (5.18).

5.5 NCPs for marked Poisson processes

Here we discuss how the ideas for non-centering of Poisson processes can be applied when

the state space has a product space structure and there exists a representation of the process

as marked Poisson. Rather than pursuing the greatest possible generality, we prefer to focus

on a class of processes which are very relevant to our applications in Chapter 6. Neverthe-

less, at the end of this section it should be clear how to extend the ideas to more general

marked Poisson processes. Section 5.5.1 illustrates the methods developed here through a

specific example.

We take S = [0, T ] × (0,∞), where 0 < T < ∞ and assume that the intensity function

factorises as

λ(c, ε) = r(c)q(ε), (c, ε) ∈ S (5.22)
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where r is integrable. In many applications r will be a constant function but there are

interesting examples where q will not be integrable, as for example for the point process

representation of subordinators in Section 5.8. A Poisson process X = {(Ci, Ei), i =

1, 2, . . .} with mean measure (5.22) admits a marked Poisson process representation: it is

obtained by marking the Poisson process {Ei, i = 1, 2, . . .} on (0,∞) with intensity func-

tion q(ε)
∫ T

0
r(c)dc, with marks Ci ∼ r (up to proportionality). If further q is integrable

we can obtain X by marking the Poisson process {Ci, i = 1, 2, . . .} with intensity function

r(c)
∫∞

0
q(ε)dε, with marks Ei ∼ q (up to proportionality).

Suppose that the parameter vector is decomposed as Θ = (Θ1, Θ2), r is a function of Θ1

only and q a function of Θ2 only. We describe three different NCPs below. When both r

and q are integrable they can all be used (see Section 5.5.1 for an example) but when q is

not integrable the second will be much more suitable.

We term the first parameterisation the MPP-THIN-NCP, which as described below pre-

supposes that q is integrable. We non-center the marginal process {Ci, i = 1, 2, . . .} using the

THIN-NCP of Section 5.3 and we find a non-centered transformation (Θ2, Ei) → (Θ2, Ẽi) as

for example described in Chapter 4. Then the MPP-THIN-NCP takes

X̃ = {(Ci,Mi, Ẽi), i = 1, 2, . . .} (5.23)

where the process {(Ci,Mi), i = 1, 2, . . .} is a unit intensity Poisson process on [0, T ] ×
(0,∞). The transformation of (Θ1, Θ2, X̃) → X is done by first constructing the process

{Ci, i = 1, 2, . . .} from {(Ci,Mi), i = 1, 2, . . .} as described in Section 5.3 (see in particular

the transformation in (5.12)) and then for each i = 1, 2, . . . transforming (Θ2, Ẽi) → Ei, as

described in Chapter 4.

A similar NCP, which however can be constructed even when q is not integrable, inter-

changes the roles of Ci and Ei in the above construction. That is, we non-center the Poisson

process {Ei, i = 1, 2, . . .} with mean measure
∫ T

0
r(c)dcq(ε) using the unit rate Poisson pro-

cess {(Ei,Mi), i = 1, 2, . . .}. Moreover, suppose that (Θ1, Ci) → (Θ2, C̃i) is a non-centered

transformation of the random variable Ci with density proportional to r(·). Then

X̃ = {(Ei,Mi, C̃i), i = 1, 2, . . .}

and the transformation (Θ1, Θ2, X̃) → X is performed by adjusting appropriately the pro-

cedure described in the previous paragraph for the case where q is integrable. When r(·)
is a constant function the scheme discussed above coincides with the THIN-NCP which is

described later in this section.

The MPP-CDF-NCP which we construct below is based on the CDF-NCP proposed in

119



Section 5.4. We take

X̃ = {(C̃i, Ẽi), i = 1, 2, . . .} (5.24)

where {Ẽi, i = 1, 2, . . .} is a unit intensity Poisson process on (0,∞) and where (Θ1, C̃i) → Ci

is a non-centered transformation of the random variable Ci with density proportional to

r(·). Transformation of (Θ1, Θ2, X̃) → X is done by first constructing the process {Ei, i =

1, 2, . . .}, as described in Section 5.4 (using either the increasing or the decreasing transfor-

mation), and then for each i = 1, 2, . . . transforming (Θ1, C̃i) → Ci, as shown in Chapter 4.

When q is integrable we can reverse the roles of C and E.

A third NCP can be considered for a marked Poisson process, one which simply ignores

the product space structure of S and takes

X̃ = {(Ci, Ei,Mi), i = 1, 2, . . .} (5.25)

to be a unit intensity Poisson process on S×(0,∞). The transformation X̃ → X is achieved

via (5.12), that is by

X = {(Ci, Ei) : (Ci, Ei,Mi) ∈ X̃ and Mi < λ(Ci, Ei)}}.

In accordance to Section 5.3 we term this the THIN-NCP. In order to pinpoint the different

construction between the MPP-THIN-NCP and the THIN-NCP we have used a different

notation for the points of the corresponding X̃ processes: a typical point of the X̃ process

is denoted by (Ci, Ei,Mi) for the THIN-NCP and by (Ci,Mi, Ẽi) for the MPP-THIN-NCP.

Firstly, this highlights that the latter non-centers X by first non-centering the marginal

{Ci, i = 1, 2, . . .} and then the conditional distribution of the Eis given the Cis. Instead, the

THIN-NCP non-centers the process as a whole. Secondly, the notation indicates that after

projection on S, the points resulting from the MPP-THIN-NCP need a further transforma-

tion, that of Ẽi → Ei, while this is unnecessary for the THIN-NCP.

5.5.1 An illustrative example

In order to illustrate the techniques we have developed so far we consider a specific example.

Let X be a Poisson process on S = [0, T ] × (0,∞) with intensity function

λ(c, ε; Θ) = rφ exp{−φε}, (c, ε) ∈ S, Θ = (r, φ), (5.26)

We will encounter a latent process with such mean measure in Chapter 6, specifically in

Section 6.5, and we will show that it is related with the shot-noise continuous time Markov

process. Recognise that the intensity function in (5.26) is of the form given in (5.22), where
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r(c) = r and q(ε) = φ exp{−φε} which integrates to 1.

There are (at least) three interesting NCPs which can be constructed for this process. The

first is the MPP-THIN-NCP suggested in Section 5.5 which takes X̃ to be a Poisson process

on [0, T ] × (0,∞) × (0,∞) with mean measure

e−ε̃dc dm dε̃. (5.27)

and X is retrieved from X̃ = {(Ci,Mi, Ẽi), i = 1, 2, . . .} and Θ as follows (see also Figure 5.7).

MPP-THIN-NCP when λ(c, ε; Θ) = rφ exp{−φε}
Let X̃ = {(Ci,Mi, Ẽi), i = 1, 2, . . .} as in (5.23).

Select all points from X̃ for which Mi < r.

Project these points to [0, T ] × (0,∞).

Transform {(Ci, Ẽi)} to {(Ci, Ei)} where Ei = Ẽi/φ.

X consists of the transformed points.

We can also apply the MPP-CDF-NCP proposed in Section 5.5. We take X̃ = {(Ci, Ẽi), i =

1, 2, . . .} to be a unit rate Poisson process on S and transform X̃ → X as follows (see also

Figure 5.8).

MPP-CDF-NCP when λ(c, ε; Θ) = rφ exp{−φε}
Let X̃ = {(Ci, Ẽi), i = 1, 2, . . .} as in (5.24).

Select all points (Ci, Ẽi) ∈ X̃ for which Ẽi < r.

Set Ei = − log{Ẽi/r}/φ.
X = {(Ci, Ei), i = 1, 2, . . .}.
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Figure 5.7: The MPP-THIN-NCP of (Θ, X) for the Poisson process with intensity (5.26).
Current values of the parameters are assumed to be r = 0.1, φ = 1 and T = 100. X̃ is

a Poisson process on [0, T ] × (0,∞) × (0,∞) with mean measure e−ε̃dc dm dε̃; choose all
(Ci,Mi, Ẽi) ∈ X̃ with Mi ≤ r (denoted by circles as opposed to the points with Mi > r
denoted by asterisks); project them to S; set Ei = Ẽi/φ.
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Figure 5.8: The MPP-CDF-NCP of (Θ, X) for the Poisson process with intensity (5.26).
Current values of the parameters are assumed to be r = 0.1, φ = 1 and T = 100. X̃ is a unit
rate Poisson process on S; choose all (Ci, Ẽi) ∈ X̃ with Ẽi < r; set Ei = − log(Ẽi/r)/φ.
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Notice that the decreasing transformation (5.20) is used, therefore E1 > E2 > · · · , where

E1 < ∞ almost surely by the form of the intensity function in (5.26).

The third possible NCP ignores the product space structure of S and is the THIN-NCP

suggested in Section 5.5 and Section 5.3. That is, X̃ = {(Ci, Ei,Mi), i = 1, 2, . . .} is a

unit rate Poisson process on S × (0,∞) and obtain X from X̃ as described below (see also

Figure 5.9).

THIN-NCP when λ(c, ε; Θ) = rφ exp{−φε}
Let X̃ = {(Ci, Ei,Mi), i = 1, 2, . . .} as in (5.25).

Select all points from X̃ for which Mi < rφ exp{−φEi}.
Project these points to [0, T ] × (0,∞).

X consists of the projected points.
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Figure 5.9: The THIN-NCP of (Θ, X) for the Poisson process with intensity (5.26). Current
values of the parameters are assumed to be r = 0.1, φ = 1 and T = 100. X̃ is a unit rate
Poisson process on S × (0,∞) and X consists of all (Ci, Ei) such that (Ci, Ei,Mi) ∈ X̃ and
Mi < λ(Ci, Ei).

The MCMC implementation of the THIN-NCA is not straightforward, unlike the other
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two algorithms, therefore we spend this paragraph to show how to implement the algorithm

outlined in Section 5.3.2. Let θ0 = (r0, φ0), θ1 = (r1, φ1), X(0) and X(1) be defined as in

Section 5.3.1, and S0, S1, μ and N as defined in Section 5.3.2. It is easy to show that

S0 = {(c, ε) : ε(φ1 − φ0) > log[r0φ0/(r1φ1)]}

which for given current and proposed values of the parameters can be easily found. Let

d = max{0, (φ1 − φ0)
−1 log[r0φ0/(r1φ1)]}, then

μ =

⎧⎪⎨
⎪⎩

T [r1(1 − e−φ1d) − r0(1 − e−φ0d)] when φ0 > φ1

T [r1e
−φ1d − r0e

−φ0d] when φ0 ≤ φ1

which can be 0. Therefore we can easily draw N ∼ Pn(μ). Nevertheless, the simulation of

any of the N > 0 points (c, ε) from the density (assuming μ > 0)

1

μ
(r1φ1e

φ1ε − r0φ0e
φ0ε), (c, ε) ∈ S0 (5.28)

is not straightforward. However, we note that the second derivative of the logarithm of this

density is

−e−(φ1+φ0)εr0r1φ0φ1(φ0 − φ1)
2

(φ1r1e−φ1ε − φ0r0e−φ0ε)2

therefore we can use the ARS technique of Wild and Gilks (1993), see Section 1.5.2.

5.6 Completely random measures and subordinators

This section reviews some theory about completely random measures and subordinators, and

serves a double purpose. Firstly, it aims at establishing the connection between completely

random measures and Poisson processes. This will then allow our methods to be extended to

various contexts, ranging from Bayesian non-parametrics to volatility modelling. Secondly,

it gives some definitions and properties of positive Lévy processes and subordinators, which

provide the blocks which the stochastic volatility models proposed by Barndorff-Nielsen and

Shephard (2001) are built upon. Inference for these models is studied in Chapter 6.

The next section follows closely Chapter 8 of Kingman (1993), while the material about

subordinators and positive Lévy processes is largely based on Walker and Damien (2000),

Ferguson and Klass (1972), Ferguson (1974), Ferguson (1973) and Barndorff-Nielsen and

Shephard (2004). Our account will be fairly informal, nevertheless references are given for

proofs of the results.
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5.7 Completely random measures

The Poisson process, introduced in Section 5.1, is an example of a random measure. If Φ is a

Poisson process on a state space S, then each realisation of the process, φ say, is a counting

measure on S, therefore Φ is a random counting measure. Generally, a random measure

on a space S is a stochastic process every realisation of which acts as a measure on S. A

research area which is particularly interested in random measures is Bayesian non-parametric

modelling, where prior distributions are constructed on spaces of probability measures. This

modelling approach, which has its foundations on de Finetti’s representation theorem (see

Section 1.6), is described in Ferguson (1974) and a more recent review is Walker et al. (1999);

see also Section 5.8.2. Bayesian modelling using random measures arises also in the context

of spatial statistics, see for example Wolpert and Ickstadt (1998), and more recently in the

statistical analysis of inverse problems, see for example Wolpert et al. (2003).

A completely random measure Φ is defined to be a random measure such that for disjoint

sets Ai ⊂ S,

Φ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

Φ(Ai) (5.29)

where the random summands on the right are independent random variables. This property

suggests that the joint distribution of the random variables Φ(A1), . . . , Φ(An) for arbitrary

n > 0 and measurable sets Ai is determined by the distribution of Φ(A) for all measurable

A ⊂ S. The distribution of the latter is characterised by its cumulant function

Ku(A) := −K(u; Φ(A)) = − log E{e−uΦ(A)}, u > 0. (5.30)

It is easy to show that Ku(·) is a positive measure on S for all u > 0. Under the assumption

that Φ is non-atomic measure and that Ku(·) is σ-finite (see p.80 of Kingman (1993)) an

elegant argument from measure theory (see p.81 of Kingman (1993)) shows that the dis-

tribution of the positive random variable Φ(A) is infinitely divisible (see Section 1.8 for a

definition). The Lévy-Khinchine representation for positive infinitely divisible distributions

(see Kingman (1993), Feller (1971)) can be used to show that

Ku(A) = β(A)u +

∫
(0,∞]

(1 − e−uz)W (A, dz) (5.31)

where β(·) is a measure on S, W (A, ·) is a measure on (0,∞] for each A ⊂ S, W (·, B) is a

measure on S for each B ⊂ (0,∞] and W must make the integral in (5.31) converge for all

u > 0. Both measures β and W are uniquely determined in terms of Ku by (5.31).

Ignoring the deterministic measure β(·) for the moment, the similarity between (5.31)
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and (5.3) from Campbell’s theorem is not coincidental. It can actually be shown (see Section

8.2 of Kingman (1993)) that Φ(A) has the same distribution as β(A) + CA, where CA is the

sum

CA =
∑

i

Ei1l[Ci ∈ A]

where (Ci, Ei) ∈ Ψ and Ψ is a Poisson process on S × (0,∞] with mean measure W ∗, such

that

W ∗(A × B) = W (A,B), A ⊂ S,B ⊂ (0,∞]. (5.32)

It is often possible to represent Ψ as a marked Poisson process. One option is described

below. Suppose that the measure defined as

μ(A) = W (A, (0,∞]) (5.33)

is σ-finite. Then, for every y > 0, the measure

μy(A) = W (A, (0, y]) ≤ μ(A)

is absolutely continuous with respect to μ. Since both measures are σ-finite, the Radon-

Nikodym theorem (see for example Section 5.14 of Williams (1991)) establishes the existence

of a density F (x, y) such that

μy(A) =

∫
A

F (x, y)μ(dx).

Clearly, for every x ∈ S, 0 ≤ F (x, y) ≤ 1, F (x, 0) = 0 and limy→∞ F (x, y) = 1. It is not

surprising therefore that F (x, y) is the distribution function of a random variable with values

in (0,∞] for all x, although some measure-theoretic care is necessary to derive this result.

Hence, when μ in (5.33) is σ-finite, the Poisson process Ψ corresponding to the completely

random measure, can be represented as a marked Poisson process. The points of the process

form a Poisson process on S with mean measure μ. The distribution function of the mark of

a point at x is F (x, y). There are interesting examples where W (A, (0, y]) = ∞ for all y > 0

and all sets A of positive measure, hence the σ-finiteness assumption fails. In such cases

the representation is not true anymore, since essentially there does not exist a conditional

distribution of the mark y for a given point x. Nevertheless, when S is a subset of the real

line, there might still exist an alternative marked Poisson process representation, even when

μ in (5.33) is not σ-finite. This construction is shown in the next section.
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5.8 Positive independent increments processes, subor-

dinators and representations

Independent increments processes were defined in Section 1.8, and denoted by z(t), t ≥ 0.

The increments of a positive independent increments process are positive random variables,

therefore the stochastic process has non-decreasing sample paths. Such processes can be

explicitly constructed from completely random measures on the real line. We focus on

random measures Φ on the positive half-line and define

z(t) = Φ((0, t]), t ≥ 0. (5.34)

It is easy to verify that the definition in (5.34) ensures that the increments

z(t + s) − z(t), t, s > 0 (5.35)

are positive and independent random variables. When the distribution of the increments in

(5.35) is independent of t, z is called a subordinator.

The kinship between completely random measures and Poisson processes uncovered in

the previous section, suggests that we can write (see Figure 5.2)

z(t) =
∑

i

Ei1l[Ci ≤ t] (5.36)

where (Ci, Ei) ∈ Ψ and Ψ is a Poisson process on (0,∞) × (0,∞] with mean measure W ∗

defined by (5.32). This representation guides the choice of the augmentation scheme for

latent subordinators in Chapter 6.

We now try to find a marked Poisson process representation of positive independent

increments processes. A first step is to write down the measure

μ(A) = W (A, (0,∞])

and check if it is σ-finite. In this case, the previous section suggests a marked Poisson process

representation. However, in many interesting examples this measure is not σ-finite. Never-

theless, an alternative representation exists and it is outlined below.

Without loss of generality we take t ∈ [0, 1], that is we focus on Ψ ∩ ([0, 1] × (0,∞]),

which will be denoted simply as Ψ. With a slight abuse of notation, we define the family of

measures on (0,∞], such that for B ⊂ (0,∞],

Wt(B) = W ((0, t], B), 0 ≤ t ≤ 1. (5.37)
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In view of Theorem 5.1.2, the integral in (5.31) converges if and only if Wt((y,∞]) < ∞ for

all y > 0 and t ≥ 0, although it may still be possible that Wt((0, y]) = ∞. Thus, W1 is σ-

finite, since we can write, for example, (0,∞] = ∪∞
n=1(1/n,∞] where W1(1/n,∞] < ∞ for all

n > 0. Clearly Wt is absolutely continuous with respect to W1 and by the Radon-Nikodym

theorem there exists a density

nt(y) =
dWt

dW1

(y). (5.38)

For every y, nt(y) is a non-decreasing function of t, n0(y) = 0, n1(y) = 1, therefore it behaves

as a distribution function of a random variable on [0, 1]. Thus, Ψ can be simulated as a

marked Poisson process, by first simulating a Poisson process on (0,∞] with mean measure

W1, and for each point y of this process, we simulate a mark from the distribution function

nt(y) on [0, 1].

In the literature, the measures defined in (5.37) are known as Lévy measures. When the

Lévy measure Wt(·) possesses a Lebesgue density, usually denoted by wt, it is termed a Lévy

density. When z is a subordinator the mean measure of Ψ is a product measure and

Wt(B) = W ((0, t], B) = tW1(B).

The stochastic volatility models developed by Barndorff-Nielsen and Shephard (2001) are

solely concerned with such Lévy measures. As an example of a subordinator, consider the

compound Poisson process introduced in Section 5.1.3 (although using a different notation)

which is specified as in (5.36) with the further assumption that the Cis form a Poisson process

in time with a finite rate r > 0 and that the Eis are positive, IID from some distribution

P (dx) and also independent from the Cis. The stationarity of its increments can be easily

verified and the Lévy measures are

Wt(B) = t rP (B); (5.39)

see for example Section 2.2.2 of Barndorff-Nielsen and Shephard (2004) for a derivation of

this result, which can however be shown easily from first principles. Consequently,

nt(y) = t, for all y > 0.

On the other hand, the Bayesian non-parametric literature is more interested in non-

homogeneous processes, that is where the distibution of the increments in (5.35) varies with

t. An important example is the non-homogeneous gamma process (see for example Ferguson
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(1973) and Example 1 of Walker and Damien (2000)) for which

dWt(y) = α(t)y−1 exp(−y)dy, t ≥ 0

where α(·) is a bounded non-decreasing function on (0,∞) and α(0) = 0. This process is

explicitly involved in the construction of the Dirichlet process, which plays a prominent role

in Bayesian non-parametrics (see for example Ferguson (1974)). Notice that for all t > 0

and y > 0, Wt((0, y]) = ∞, while Wt((y,∞]) < ∞. Therefore, the gamma process can be

represented as a marked Poisson process, as described in this section.

5.8.1 The Ferguson-Klass representation and approximations

Ferguson and Klass (1972) proposed a representation of processes with independent and

positive increments having no Gaussian components and fixed points of discontinuity. The

purpose of this representation is both theoretical, to assist the investigation of almost sure

sample path properties of these prossesses, but also practical in terms of simulating positive

independent increments processes. Here we argue that there is another aspect in this rep-

resentation, it can be viewed as a non-centered transformation of the positive independent

increments process, which relates to the CDF-NCP constructed in Section 5.4.

Recall from Section 5.7 that completely random measures can be constructed by means

of Poisson processes. Section 5.8 showed how this construction specialises for positive inde-

pendent increments processes, in particular (5.36) expresses the value z(t) as the sum over

all “marks” Ei of the “marked Poisson process” Ψ with points Ci in [0, t] (we will explain

the use of quotations in the next lines). We would then typically take the Cis ordered in

time, that is C1 < C2 < . . ., and then the index i of Ei would just denote which point Ci it

corresponds to.

Of course, we noted in Section 5.8 that this interpretation of Ψ as a marked Poisson process

is not valid if the measure W (·, (0,∞]) defined in (5.33) is not σ-finite; this explains the use

of the quotation marks in the sentence above. Essentially, when this finiteness condition

fails we cannot talk about the conditional distribution of Ei given Ci, or equivalently we

cannot talk about the marginal distribution of the Eis. However, since the conditional

distribution of the Ci given Ei exists and is given in (5.38), Section 5.8 gave an alterna-

tive marked Poisson process representation of Ψ, one where the marginal Poisson process

{Ei, i = 1, 2, . . .}, with mean measure W1(·), is marked by the Cis. In this representation,

the Eis are ordered in (0,∞), which can be thought of as “time”. Moreover, when the

σ-finiteness condition fails, then for any t > 0 there will be an infinite number of terms in

the sum (5.36). This suggests that it is both very convenient and valid to order the Eis

by taking E1 to be the largest value. Section 5.8 (see in particular the discussion after ex-

pression (5.37)) argued that W1((y,∞]) < ∞ for all y > 0, which ensures that the largest
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Ei in the Poisson process Ψ = {(Ci, Ei), i = 1, 2 . . .} is finite almost surely. Actually, the

smallest Ei is not well defined in this setting since 0 is a limit point of the marginal process

{Ei, i = 1, 2, . . .}.
The mean measure of the Poisson process {Ei, i = 1, 2, . . .} satisfies the conditions (5.18)

and Section 5.4 gave an algorithm for obtaining the points of this process in a decreasing

order, that is where E1 > E2 > . . . via a decreasing transformation (given in (5.20)) of

a unit rate Poisson process. This is exactly the representation proposed by Ferguson and

Klass (1972) and it is described below, where we mainly follow Walker and Damien (2000).

We use the notation set up in the previous section.

Let M(x) = W1([x,∞)), which is finite for all x > 0, although it is possible that M(0) =

∞. Then define the non-negative random variables E1, E2, . . . by

P [E1 ≤ x1] = exp{−M(x1)}
P [Ei ≤ xi | Ei−1 = xi−1] = exp{−M(xi) + M(xi−1)} (xi < xi−1).

It can be seen that E1 > E2 > · · · , actually we can obtain Ei by solving the equation

Ẽi = M(Ei), (5.40)

where Ẽ1, Ẽ2, . . . are the arrival times of a unit rate Poisson process on (0,∞). If Ẽi > M(0)

then Ei is defined to be 0 (which is the same convention adopted in Section 5.4). The

Ferguson and Klass (1972) representation is given by

z(t) =
∑

i

M−1(Ẽi)1l[Ui ≤ nt(M
−1(Ẽi))], t ∈ [0, 1] (5.41)

where M−1 denotes the inverse function of M , the Uis are independent and identically

distributed random variables distributed as Un[0, 1]. We showed earlier and in Section 5.8

that Ci conditionally on Ei has a distribution function nt(Ei), t ∈ [0, 1] defined in (5.38).

Therefore, a draw from this conditional can be obtained by the inverse CDF method (see

Ripley (1987)) using a Un[0, 1] random variable Ui. It is then immediate that the condition

1l[Ui ≤ nt(Ei)] is the same in distribution as 1l[Ci ≤ t] where Ci is a random variable with

distribution function nt(Ei), t ∈ [0, 1]. Thus, (5.41) could be written equivalently as

z(t) =
∑

i

Ei1l[Ci ≤ t], t ∈ [0, 1]. (5.42)

As an example consider the compound Poisson process

z(t) =
∑

i

Ei1l[Ci ≤ t] (5.43)
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where Ei ∼ Ex(φ) and the points Ci form a Poisson process with rate r on [0, 1]. The

Poisson process Ψ = {(Ci, Ei), i = 1, 2, . . .} has intensity function given in (5.26). Specialis-

ing the general result (5.39), the Lévy density of z is given by

wt = t rφ exp{−φx}, x > 0 (5.44)

and

M(x) = r exp{−φx}
M−1(x) = −1

φ
log{x/r}, x ≤ r.

Then

z(t) =
∑

i

−1

φ
log{Ẽi/r}1l[Ci ≤ t], t ∈ [0, 1] (5.45)

where Ci ∼ Un[0, 1] and are independent of the Ẽis and where we take the sum over all

Ẽi < r.

It should be recognisable the similarity of the Ferguson-Klass representation with the

CDF-NCP of Section 5.4. In fact, the Ferguson-Klass representation can be thought of as a

non-centered transformation. Let Θ denote any parameters of the Lévy measures Wt. Then

the collection of points {(Ui, Ẽi), i = 1, 2, . . .} is independent of Θ and it can be transformed

to yield the Poisson process Ψ, which the independent increments process is constructed

from, by first finding the Eis from the Ẽis and then the Cis from the Uis by inverting their

distribution function. When, for example, z is a subordinator, this transformation coincides

with the MPP-CDF-NCP constructed in Section 5.5 and illustrated through an example in

Section 5.5.1. In particular, the Poisson process {(Ci, Ẽi), i = 1, 2, . . .} is the X̃ defined for

the MPP-THIN-NCP in Section 5.5.1 and its transformation to yield Ψ (and consecutively

z) is given in the algorithm proposed there.

When the Lévy density w1 is not integrable, the point process Ψ corresponding to the

process z(·) is not locally finite and has an infinite number of points on the sets [0, 1]× (0, y]

for all y > 0. In turn, this means that there are infinite number of terms in the Ferguson-

Klass sum (5.41) for all t ∈ (0, 1]. If we are interested in using this expansion to simulate

the Lévy process, for example its value at time one z(1), we need to do some truncation

and use only a finite number of terms. This problem is investigated in several papers, for

example Barndorff-Nielsen and Shephard (2001), Rosinski (2002), Bondesson (1982), Walker

and Damien (2000), Damien et al. (1995). For many processes the series of decreasing jumps

{Ei, i = 1, 2, . . .} is quite quickly converging to 0 allowing for easy truncation, however, care

generally must be taken. Bondesson (1982) discusses several methods of truncation and also
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possible approximations to the terms not included in the expansion. We will not go into any

more detail here, since this thesis only considers integrable Lévy measures.

5.8.2 Applications to Bayesian non-parametrics

Typically, Bayesian non-parametric modelling is concerned with constructing priors over

spaces of distributions and functions; for a review of this area see Walker et al. (1999). The

models often have a hierarchical structure, where the latent process is either a completely

random measure or a positive independent increments process. For example, in the context

of survival analysis Ferguson and Phadia (1979) introduced the neutral to the right random

distribution function F (t), t ≥ 0, which can be written in the form

F (t) = 1 − e−z(t)

where z is a positive independent increments process. Then, conditionally on F , the data

Y1, . . . , Ym are independent and identically distributed according to F .

The underlying independent increments process or more generally the random measure

depend on certain parameters Θ, which often control important characteristics of the random

measure, and it is sensible to try to be least informative about them. Therefore we would

like to assign a prior on Θ, thus giving rise to a three-stage hierarchical model, and make

inferences about it based on its posterior distribution. It is of course of interest whether the

data (or more appropriately, what kind of data) contain sufficient information about Θ and

there are suggestions (see for example Walker and Damien (1998)) that in some cases these

parameters might be weakly identified. In any case, it is necessary to be able to sample from

the posterior distribution of Θ to address such questions appropriately.

However, sampling from the joint distribution of Θ and the random measure is far from

straightforward. Current ongoing work with G. Roberts and M. Sköld reveals that for

many common problems componentwise-updating algorithms are essentially reducible, when

a centered parameterisation is used. This is consequence of the fact that the random measure

might contain infinite information about its parameters (see for example Section 1.8). When

the random measure is discretised (see for example Walker et al. (1999) for an illustration),

which is common practice when working with infinite activity (i.e non-compound Poisson)

Lévy processes, reducibility is avoided, nevertheless the finer the discretisation (and hence

the approximation to the true random measure) the worse the performance of the centered

algorithm. This bears a strong similarity to the situation encountered in the inference for

partially observed diffusions, see Roberts and Stramer (2001). Non-centered techniques are

particularly relevant in this context since they avoid the problem of reducibility. When the

measure is expressed via a positive Lévy process, the representation of the latter as a Poisson

process can be exploited to find an NCP as described in Section 5.3 and in Section 5.4.
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Chapter 6

Inference for Non-Gaussian OU

models

6.0 Introduction

This chapter begins with a short introduction to financial modelling and stochastic volatility

(SV). We present a model introduced by Barndorff-Nielsen and Shephard (2001), where the

latent volatility process is modelled by a non-Gaussian Ornstein-Uhlenbeck (OU) process.

Such processes are described by stochastic differential equations driven by Lévy processes.

We consider Bayesian inference for these models, we introduce a data augmentation method

based on marked Poisson processes and a corresponding centered parameterisation. We then

employ the methods developed in Chapter 5 to develop various non-centered parameterisa-

tions for this augmentation scheme. We compare all methods using simulated data. We also

describe algorithms which can be used to infer about the more general SV model based on

superpositions of OU processes. We propose a new graphical model diagnostic tool, which is

used to investigate whether certain aspects of the latent structure can be identified from the

data. We apply our methods to a series of DM/US$ exchange rates. We finish by discussing

further extensions of our work. The work in this chapter is based on Roberts et al. (2003).

The notation used in this chapter differs slightly from that used in the rest of the thesis;

see Section 1.2 for more details. This is done to keep consistency with Roberts et al. (2003)

and generally the chapter is written in a self-contained manner, so that no confusion due to

notation is caused.

6.1 Financial markets and stylised facts

Financial data consist, among others, of currency exchange rates, share prices and stock

market index values. The data typically take the form of a discrete time series of asset values
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{Pn, n = 1, 2, . . .} obtained at times {tn, n = 1, 2, . . .}. It is usually assumed that the time

points are equally spaced and then Δ = tn − tn−1 is the data frequency. Most applications,

including those in this thesis, take Δ = 1 to be one day, but there is an increasing interest

in analysing high-frequency data, for which Δ = 1 can be as small as five minutes. Such

analyses can be found for example in Barndorff-Nielsen and Shephard (2002a) and Andersen

et al. (2001). On the other hand, market micro-structure characteristics complicate the

analysis of finer than five-minute transaction data, see for example Rydberg and Shephard

(1998). When we deal with daily data, the year consists of approximately 261 trading days,

after the removal of weekends and bank holidays, when no transactions happen. Thus,

Monday and Friday are treated as consecutive days, see Section 2.5 of Taylor (1986) for

details on this issue and its effect on modelling.

It is widely accepted that the price series {Pn} is non-stationary, see for example Taylor

(1986), Mikosch (2002), Mills (1999). Instead, once Δ has been fixed, it is more interesting

to study the series of log-returns {yn, n = 1, 2, . . .} defined as

xn = log{Pn} (6.1)

yn = xn − xn−1. (6.2)

A Taylor-series argument shows that this series is close to the series of relative returns,

(Pn − Pn−1)/Pn−1, n = 1, 2, . . ., which describes the relative change over time of the price

process. Both series are free of scale and thus comparable among different financial assets.

However, it is mathematically more convenient to work with the {yn} series for several

reasons (see p.13 of Taylor (1986) and p.9 of Campbell et al. (1997)). From a modelling

perspective, the log-returns have an additive structure and are therefore easier to model.

On top of that, continuous time generalisations of the discrete time series, as for example in

Section 6.2, are easier when working with log-returns. It is generally believed that {yn} can

be modelled by a stationary stochastic process. For example the stochastic volatility (SV)

models discussed in Section 6.2 all satisfy this assumption.

Figure 6.1, Figure 6.2 and Figure 6.3 show three different data sets, which are going to

be used in this chapter. The first two are currency exchange rates and the third is stock

index values. All series take Δ = 1 to be one day and are closing prices. We plot both the

original series of values and the log-returns series, for each of the assets.

Extensive empirical work has revealed characteristics that the returns series {yn} cor-

responding to different financial assets have in common, the so-called ’stylised facts’. As

Mikosch (2002) points out, these similar properties depend on the time scale chosen, that

is on the size of Δ = 1. Depending on whether the latter is a week, a day or five minutes

qualitative differences in the returns series are expected. A review of the stylised facts of

daily returns series can be found in Chapter 2 of Taylor (1986). More recent reviews include
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Figure 6.3: Series of daily prices and log-returns for the Dow Jones index.

135



the Chapter 5 of Mills (1999), Mikosch (2002), Chapter 1 of Campbell et al. (1997) and

Chapter 1 of Barndorff-Nielsen and Shephard (2004). The latter also discusses stylised facts

of high-frequency data, see also Andersen et al. (2001). We now briefly review the stylised

facts of daily series and relate them to the data sets we have introduced in this section.

There are certain characteristics of the marginal distribution of the daily log-returns

that seem to be shared by most financial series. The sample mean is close to zero, and it

is much larger for shares and indices than currencies. The sample variance is very small,

of the order 10−4 or even smaller. There is some evidence for skewness, but it is not very

large. Typically skewness is negative (although Taylor (1986) finds the opposite in many

stock-price series he studies) and its magnitude is much larger for equities than currencies.

The negative skewness is a peculiar characteristic from an economic theory viewpoint, since

investors should have preference for positively skewed returns, as a compensation for the

risk they take (see also Section 6.17). The most profound stylised fact is the heavy tailed

nature of the returns distribution, as for example measured by kurtosis. One thing all studies

agree with, is that returns over short periods, for example daily, are much more heavy tailed

than Gaussian. This is illustrated in Figure 6.4, where a non-parametric estimate of the

log-density of the log-return distribution is plotted for each of the series, with the Gaussian

log-density fitted to the data superimposed. Mikosch (2002) points out that the tails can be

successfully modelled by distributions with power law tails. It has been suggested that the

stable distributions (see Section 4.3 for some definitions), which do have power tails but also

imply an infinite variance for the log-returns, could be used for the marginal distribution.

This has been advocated by Mandelbrot and Fama, see Mills (1999). However, these models

are not consistent with another observed feature: “aggregation to Gaussianity”. That is,

returns over long time horizons, for example weekly or monthly, “look” much more Gaussian

than daily data and can be satisfactorily modelled by the normal distribution; see for example

Figure 1.7 of Barndorff-Nielsen and Shephard (2004). Stable distributions do not obey such

a central limit type result.

Some facts about the dependence structure of the log-returns series also seem to be

agreed upon in the literature. There is very little autocorrelation in the {yn} series, usually

all but the first lags are negligible. On the other hand, the log-returns are not independent in

time. Mandelbrot (see Barndorff-Nielsen and Shephard (2004) for references) was the first to

observe that large changes in the returns tend to be followed by large changes of either sign.

In terms of the observed series, there is positive and significant autocorrelation over many

lags in the {|yn|} and {y2
n} series. This is known as ”volatility clustering”. This feature is

apparent in Figure 6.5, where estimated autocorrelations are plotted for each of our series.

Mikosch (2002) also reviews findings about the dependence in the tails of the series and thus

clustering of extreme absolute or squared returns. Black (1976) was the first to observe that

the returns of equities are negatively correlated with future volatilities. This is known as
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Figure 6.4: The logarithm of the estimate of the unconditional density of the log-returns
using kernel density estimation (blue lines), for the three financial datasets introduced in
Section 6.1. We superimpose the log-density of the Gaussian distribution (red lines) which
has the same first two moments as the data.

the leverage effect and it is supported by some economic arguments, which also explain why

similar pattern is not observed in the exchange rates market. The leverage effect suggests

that low returns tend to be followed by high volatility.

6.2 Stochastic volatility modelling

There is a strong interest in developing statistical models which can capture the observed

characteristics of financial data. However, the non-linearity and non-Gaussianity which

characterises such data and was exposed in Section 6.1, complicates the modelling task. For

instance, the classical ARMA-type time series models, as for example developed in Brockwell

and Davis (1991), cannot capture any of the features of financial returns. On the other hand,

it is desirable to construct stochastic models which describe the evolution of prices in order

to solve problems in theoretical finance, as for example the pricing of financial derivatives.

For a thorough presentation of this theory see Duffie (1992). Typically the two tasks are

conflicting since models which are satisfactory from an econometric point of view might be

too complicated to allow for analytic solutions to mathematical finance problems.

An empirically and mathematically attractive class of models for financial returns is

the stochastic volatility (SV) model. These are essentially hierarchical models which con-

struct the distribution of the observed price process conditionally on an unobserved (latent)

stochastic process of conditional variances (volatilities). SV models are constructed either

in continuous or discrete time, although often there exist equivalent representations of the

same model in either framework.

For example, the log-Gaussian SV model is widely studied and extensively used in prac-
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Figure 6.5: Sample autocorrelations for the series of daily log-returns (yn), their absolute
values (|yn|) and their squares (y2

n) for the German DM-US Dollar exchange rate (left), the
UK Sterling-US Dollar exchange rate (middle), and the Dow Jones index (right).

tice, and it is usually encountered in a discrete time form as

yn = (v∗
n)1/2εn, εn ∼ N(0, 1)

log{v∗
n+1} = μ + φ(log{v∗

n} − μ) + σzn, zn ∼ N(0, 1)

log{v∗
1} ∼ N

(
μ,

σ2

1 − φ2

)
.

The series {v∗
n, n = 1, 2, . . .} contains the conditional variances of the log-returns and it is

independent of the white-noise series {εn, n = 1, 2, . . .}. The stationarity assumption |φ| < 1

is usually made and then the marginal distribution of the log-volatility is given by the last

expression in the above model. There are many review papers discussing the econometric

properties and the statistical estimation of such SV models, see for example Taylor (1986),

Kim et al. (1998), Shephard (1996), Ghysels et al. (1996), Jacquier et al. (1994).

In continuous time, SV models are most often described by stochastic differential equa-

tions (SDEs). In particular, the log-price of an asset is the solution to an SDE of the form

dx(t) = (α + βv(t))dt + v(t)1/2dB(t), t ∈ [0, T ] (6.3)

where B(·) is a standard Brownian motion, α is the drift and β is the risk premium. These

two parameters will be ignored for the moment and will be reconsidered in Section 6.17. The
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returns series {yn} is obtained through aggregation,

yn =

∫ nΔ

(n−1)Δ

dx(t) = x(nΔ) − x((n − 1)Δ). (6.4)

When v(t) is constant in time, (6.3) collapses to the so-called Black-Scholes model (which was

also proposed by Samuelson and Merton though). A great deal of the mathematical finance

theory has been based on this model to develop pricing formulae for contingent claims.

However, the Black-Scholes model is inappropriate to model financial data, since it implies

that returns are Gaussian and independent in time, two assumptions which contradict the

empirical findings of Section 6.1.

Instead, v(·) is modelled as a stationary stochastic process, latent and independent of

B(·). It is also usually assumed that v(·) is cadlag (right-continuous with limits from the

left). This is enough to ensure that x(·) has continuous sample paths (see Section 6.2 of

Barndorff-Nielsen and Shephard (2004)). The model is completed by deciding on a specific

form for the stochastic volatility v(·), which typically depends on some parameters.

The integrated volatility process is defined through

v∗(0, t) =

∫ t

0

v(s)ds, t ≥ 0 (6.5)

from which the so-called actual volatilities are obtained as

v∗
n = v∗(0, nΔ) − v∗(0, (n − 1)Δ). (6.6)

It follows that

yn | v∗
n ∼ N(αΔ + βv∗

n, v
∗
n)

so the marginal distribution of the returns is a scaled mixture of normals, and therefore

it can exhibit heavy tails and skewness. The dependence in the returns series is implicitly

induced by the dependence in the volatility process. Moreover if v(·) is ergodic then it can

be shown that the log-returns over long lags tend to normality, but the rate will depend

on the memory of the volatility process. See Section 4 of Barndorff-Nielsen and Shephard

(2001) for general aggregation results and proofs of the above statements, and Section 6.1

of the same paper for the connection between stochastic volatility and subordination. In

Barndorff-Nielsen and Shephard (2001) and Barndorff-Nielsen and Shephard (2002a) it is

shown that the second order properties of the actual volatility series (6.6) solely depend on

the second order properties of the volatility process. Barndorff-Nielsen and Shephard (2001)

recently introduced a continuous-time SV model based on Lévy processes, which is reviewed

in Section 6.3.

In applications of SV models to financial data, smoothing, filtering and prediction of the
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volatilities, as well as parameter estimation are major goals of the statistical analysis. Of

particular interest are the parameters which control the memory of the volatility process and

thus the volatility clustering. Likelihood-based inference for SV models is complicated, since

likelihood functions are not available in closed form, and computer intensive methods such

MCMC and the EM algorithm have to be employed. Considerable progress has been made

though in the inference for the log-Gaussian discrete time model. A lively discussion on

the available estimation methods can be found in Jacquier et al. (1994). The most effective

computational algorithm seems to be the one reviewed by Kim et al. (1998), where lots of

other issues are resolved, such as filtering and smoothing using particle filters and model

selection. However, this technology is not applicable to the class of models described in

Section 6.3.

6.3 The Barndorff-Nielsen and Shephard model

A new class of SV models was introduced by Barndorff-Nielsen and Shephard (2001), where

volatility is modelled as a linear but non-Gaussian Ornstein-Uhlenbeck (OU) process. This

paper, together with a series of other papers by the same authors, develops the relevant

theory, derives the econometric properties and deals with lots of other issues regarding these

SV models; some important references include Barndorff-Nielsen and Shephard (2002a),

Barndorff-Nielsen and Shephard (2003), Barndorff-Nielsen et al. (2002), Barndorff-Nielsen

and Shephard (2002b), and Barndorff-Nielsen and Shephard (2004) for a book-length review

of this area. This section reviews the main results in order to prepare the ground for the main

contribution of this chapter, which is Bayesian inference for non-Gaussian OU SV models

using MCMC.

6.3.1 Construction of the model

A stationary stochastic process v(t), t ≥ 0 is of OU type if it can be represented as

v(t) = e−μt

{
v(0) +

∫ t

0

eμsdz(s)

}

where z(·) is a Lévy process, that is a process with stationary and independent incre-

ments and such that z(0) = 0 almost surely; see Section 1.8 for the basic definitions of

Lévy processes and Sato (1999) for a detailed exposition of the area. The initial volatility

v(0) is a random variable assumed to be distributed according to the stationary distribution

of v(t). That is, we assume that the process v(·) is started in stationarity.
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The OU process is often expressed as an SDE

dv(t) = −μv(t)dt + dz(t). (6.7)

Some conditions on z(·) need to be imposed to ensure the existence of a stationary solution

of (6.7). This will be considered after the statement of Theorem 6.3.1. The process z(·) is

termed the background driving Lévy process (BDLP), due to its role in the above SDE. The

OU process is a continuous time generalisation of the well known discrete time autoregressive

(AR) process. It is not surprising therefore that when second moments exist,

r(t) = Corr(v(0), v(t)) = exp(−μt), t > 0. (6.8)

The specification in (6.7) is such that the stationary distribution of the OU process, when it

exists, it depends on μ. It is mathematically and statistically desirable to parameterise v(·)
in terms of its stationary and transient characteristics separately, therefore it is preferable to

rewrite the model in a way that the stationary distribution of v(·) is independent of μ. This

can be achieved using the time-change suggested in p.2 of Barndorff-Nielsen and Shephard

(2001),

dv(t) = −μv(t)dt + dz(μt) (6.9)

which implies that

v(t) = e−μt

{
v(0) +

∫ μt

0

esdz(s)

}
. (6.10)

This solution has marginal distribution independent of μ, a result which follows from equation

(11) of Barndorff-Nielsen and Shephard (2001).

When z(·) is a subordinator (see Section 5.8) v(t) is positive for all t ≥ 0 and Barndorff-

Nielsen and Shephard (2001) suggested using OU processes driven by subordinators as mod-

els for the volatility.

Section 5.8 established the representation of subordinators as sums over Poisson processes.

This representation is mathematically and computationally convenient for the treatment of

OU processes. For example, properties of the stochastic integrals

∫ t

0

f(s)dz(s)

which play a prominent role in the theory of OU processes, can be derived using Campbell’s

Theorem 5.1.2. On the other hand, simulations from these random variables can be per-

formed by using a direct extension of the Ferguson-Klass representation (see Section 5.8.1).

Moreover, our data augmentation methods in Section 6.6 are based on this representation.

The marginal distribution of v(·) defined as the solution to (6.9) cannot be arbitrary. In
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fact, the following theorem, which is Theorem 1 of Barndorff-Nielsen and Shephard (2001),

describes exactly the family of possible distributions. We begin with a definition.

Definition 6.3.1. Let φ be the characteristic function of a random variable V . V is self-

decomposable if for all c ∈ (0, 1)

φ(u) = φ(cu)φc(u) (6.11)

where φc is a valid characteristic function for all c ∈ (0, 1).

Theorem 6.3.1. If V is self-decomposable, then there exists a stationary stochastic process

v(t) and a Lévy process z(t), linked by (6.10), such that V
d
=v(t) for all μ > 0 in (6.10).

Conversely, if v(t) is a stationary stochastic process and z(t) is a Lévy process such that

v(t)
d
=V and v(t) and z(t) satisfy (6.10) for all μ > 0, then V is self-decomposable.

Before exploring the modelling aspects of this theorem, we explain briefly self-decomposability.

Self-decomposable distributions are also infinitely divisible, see Section 1.8 for a definition of

the latter. For a proof of this property we refer to Barndorff-Nielsen and Shephard (2002b)

(in particular their Theorem 4.1). Therefore, self-decomposable distributions are charac-

terised by a Lévy measure (see Section 5.8), and we will use the generic notation U(dx) for

the Lévy measure of the distribution of v(t). Notice that Definition 6.2.1 implies that for all

c ∈ (0, 1)

V
d
=cY + ε

where Y has the same distribution as V , the characteristic function of the random variable ε

is φc (and thus depends on c), and ε is independent of Y . It is therefore not surprising that

such distributions appear as the only choice for marginals of stationary OU processes, recall,

for example, that a stationary discrete-time AR process {Vn, n = 1, 2, . . .} is represented as

Vn = cVn−1 + ε. (6.12)

Important examples of self-decomposable distributions on the positive half-line are the

log-normal and the generalised inverse Gaussian family (see for example Barndorff-Nielsen

and Shephard (2003)). The latter contains the gamma, the inverse Gaussian, the inverse

gamma and the positive hyperbolic distributions as special cases.

Theorem 6.3.1 suggests two alternative modelling approaches when working with non-

Gaussian OU processes. The first is to specify the marginal distribution D of v(t), which has

to be self-decomposable, and then find the Lévy process z(t) for which the solution to (6.10)

is distributed as D. Barndorff-Nielsen and Shephard (2001) term these D-OU processes.

Alternatively, we can choose the Lévy process z(t), by specifying its Lévy measure W (·) (see

Section 5.8 for a definition of W ) or equivalently its (infinitely divisible) distribution D at
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time 1, and then find the corresponding marginal for v(t). In fact,

∫ ∞

1

log(x)W (dx) < ∞

has to be satisfied for (6.10) to have a stationary solution. The resulting process is termed

OU-D. (D is a generic notation, it is not assumed that the same distribution D is used in

the D-OU and the OU-D construction.) In discrete-time these approaches correspond to

choosing either the marginal or the error distribution in (6.12).

Assuming the existence of densities w, u for the measures W and U respectively,

w(x) = −u(x) − xu′(x) (6.13)

(see formula (15) of Barndorff-Nielsen and Shephard (2001)) assuming differentiability of

u(x). This simple formula makes both modelling approaches equally tractable. However,

empirical studies (see for example Andersen et al. (2001)) provide some information about

possible forms for the stationary distribution of the variance, therefore the D-OU approach is

very attractive. Nevertheless, most of the empirical evidence refers to the actual volatilities,

not to the volatility process directly, an issue that will be discussed in Section 6.3.2. For

details on these constructions and explicit forms for the cumulants of v(t) in various situations

see Section 2 of Barndorff-Nielsen and Shephard (2001) and Chapter 4 of Barndorff-Nielsen

and Shephard (2004).

A simulation from the gamma-OU model is shown in Figure 6.6. It can be easily shown

using (6.13) that the Lévy density of z(1) is integrable for this model, thus the Lévy process

is a compound Poisson process (see Section 5.8). Therefore simulation from this process

proceeds in a straightforward way, by first simulating the compound Poisson process and

then using (6.25); see Section 6.4 for details.

6.3.2 Integrated volatility

The integrated volatility process was defined in (6.5). For the OU SV processes it has a very

simple form

v∗(0, t) =
1

μ
{z(μt) − v(t) + v(0)} (6.14)

which can be derived directly from (6.9). Although both z(t) and v(t) are jump processes,

v∗(0, t), t ≥ 0, has continuous sample paths, see Barndorff-Nielsen and Shephard (2003).

Chapter 5 of Barndorff-Nielsen and Shephard (2004) and Barndorff-Nielsen and Shephard

(2003) contain many results about closed forms of conditional (on v(0)) and unconditional

cumulants of the integrated volatility process. These quantities are very important in finan-

cial mathematics, for example in pricing of derivatives, and in the study of the marginal
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distributions of the log-returns.

Section 6.1 of Barndorff-Nielsen and Shephard (2001) and Chapter 6 of Barndorff-Nielsen

and Shephard (2004) link SV with subordination. In particular, they introduce the notion

of a chronometer, defined to be a positive, non-decreasing process starting from 0 at time 0.

Such processes can be used as a random time-change in the Brownian motion, a procedure

known as subordination. The subordinators introduced in Section 5.8 are an example of

chronometers with independent increments. On the other hand, the integrated volatility

process (6.14) is an example of a chronometer with continuous sample paths and dependent

increments. It can be shown, that when α = β = 0 in (6.3) the SV model can be written

equivalently as a subordinated Brownian motion, that is

x(t) = B(v∗(0, t)).

The interpretation of SV as a random time-change is empirically appealing, since financial

markets sometimes seem to speed up, an observation that goes at least as back as Taylor

(1986) (but see Chapter 2 of that book for more and even earlier references). There are also

mathematical conveniences associated with this interpretation, since for example it can be

used to show that the sample paths of the log-price x(t) in an SV model are continuous. For

an exposition of subordination in the context of SV see Chapter 6 of Barndorff-Nielsen and

Shephard (2004), for a brief discussion and references of its role in the problem of local time

for Brownian motion see Section 8.4 of Kingman (1993).

An interesting question (which was raised in the discussion of Barndorff-Nielsen and

Shephard (2001)) is, how ’close’ is the distribution of integrals of the volatility, for exam-

ple over a single day, to the distribution of the instantaneous volatility. This point was

highlighted earlier, when we noted that there is some empirical evidence concerning such in-

tegrated quantities, see for example Andersen et al. (2001) for a study of the distribution of

daily exchange rate actual volatility. This problem is investigated in Section 3 of Barndorff-

Nielsen and Shephard (2003), where it is found that inverse Gaussian OU processes yield

actual volatilities that have distributions which can be well approximated by the inverse

Gaussian. On the contrary, actual volatilities of log-normal OU processes do not behave like

log-normal variables.

The integrated volatility processes corresponding to the OU processes plotted in Fig-

ure 6.6, are shown in Figure 6.7. It can be seen that they have continuous sample paths,

although their gradient changes in a discontinuous manner.

6.3.3 Aggregation results

Section 4 of Barndorff-Nielsen and Shephard (2001) and Chapter 5 of Barndorff-Nielsen

and Shephard (2004) derive analytic results concerning the marginal distribution and the
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Figure 6.7: The integrated volatility processes corresponding to the OU processes plotted in
Figure 6.6.

dependence structure of the log-returns series (6.4). They treat general SV models, but par-

ticularly simple forms arise when considering non-Gaussian OU models. Of great importance

for analytic calculations is the derivation of the cumulant of the stochastic integral

∫ ∞

0

f(s)dx(s)

for arbitrary functions, which is achieved in formulae (36)-(38) of Barndorff-Nielsen and

Shephard (2001).

They also show that if ξ, ω2 are the mean and the variance of v(t) respectively, and the

volatility process has an exponentially decaying autocorrelation function as in (6.8), then

Corr(v∗
n, v

∗
n+s) = d exp{−μΔ(s − 1)}

Corr(y2
n, y

2
n+s) = c exp{−μΔ(s − 1)}, s > 0 (6.15)

where

d =
(1 − exp{−μΔ})2

2(exp(−μΔ) − 1 + μΔ)

c =
(1 − exp{−μΔ})2

6(exp(−μΔ) − 1 + μΔ) + 2(μΔ)2(ξ/ω2)

1 ≥ d ≥ c ≥ 0.

These expressions are useful when estimating these models (see Section 6.3.5) but they also

imply that, if we believe in the SV model, the observed autocorrelation in the squared returns

is smaller than the autocorrelation of the actual volatility series.
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6.3.4 Superposition of OU processes

Barndorff-Nielsen and Shephard have shown (see for example Barndorff-Nielsen and Shep-

hard (2001) and in particular Barndorff-Nielsen and Shephard (2002a)) that the OU SV

models described in Section 6.3.1 are able to capture many of the marginal stylised charac-

teristics of financial returns, while retaining mathematical tractability. However, the depen-

dence structure observed in financial time series is more complicated than that implied by

the model and is given in (6.15). It is typically observed a fast initial decay of the autocorre-

lation in the squared or absolute returns series, followed by a slower decay for many lags; see

also Figure 6.5. Instead, the OU model implies an exponential decay for the autocorrelation

of squared returns.

A way to construct models which capture this dependence structure without sacrificing

analytic tractability, is by superimposing OU processes as suggested in Section 3 of Barndorff-

Nielsen and Shephard (2001). In particular, we write for some m > 0

v(t) =
m∑

i=1

vi(t) (6.16)

with

dvi(t) = −μivi(t)dt + dzi(t) (6.17)

where zi(·) are independent Lévy processes. The autocorrelation function of the volatility is

now

r(t) =
m∑

j=1

wje
−μjt where wj =

Var(vj(t))∑m
i=1 Var(vi(t))

. (6.18)

The integrated volatility process is simply

v∗(0, t) =
m∑

j=1

v∗
j (0, t) (6.19)

where each v∗
j is obtained from (6.14) in an obvious way.

For example, with m = 2, we can capture both short-term variation, represented by an

OU process with high decaying rate μ1 and also long-term movements in the volatility mod-

elled as an OU processes with smaller decaying rate. Therefore we typically take μ2 < μ1.

The empirical findings of Barndorff-Nielsen and Shephard (2002a) suggest that a superposi-

tion of two OU processes seems to be enough to model financial data, thus we will restrict

attention to models where m = 2 in (6.16).

The distribution of the zis might not be the same among i = 1, . . . ,m, i.e the OU

processes might have different stationary distributions. However, it is convenient and possible
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to construct models where v and the vis have stationary distributions in the same family.

For example, we can construct a gamma-OU model which is the superposition of m processes

vi(t) ∼ Ga(νi, θ), i = 1, . . . ,m, where
∑m

i=1 νi = ν. The same modelling approach can be

adopted for processes with inverse Gaussian marginal laws.

6.3.5 Existing estimation methods

Here we review some of the existing methods which can be used for inference about the

non-Gaussian OU SV models. We argue that our preferred likelihood-based inference is a

very challenging problem which demands involved computer intensive methodology. We will

address this problem in the following sections where we show how the reparameterisation

strategies developed in Chapter 5 can be used in this context. We begin by reviewing the

second-order estimation sketched in Barndorff-Nielsen and Shephard (2001) and described

in much greater detail in Barndorff-Nielsen and Shephard (2002a). We then discuss the

problems encountered when considering likelihood-based inference.

Second-order estimation

Barndorff-Nielsen and Shephard have developed second-order methods for estimating the

underlying volatility and its parameters in rather general SV models. The most relevant

reference is Barndorff-Nielsen and Shephard (2002a).

The starting point is that the integrated volatility process v∗(0, t) can, in theory, be

recovered entirely using continuous observations from the price process x(t), using the well-

known quadratic variation identity from stochastic analysis:

p-limq→∞
∑

{x(tqi+1) − x(tqi )}2 = v∗(0, t). (6.20)

The limit in (6.20) is in probability and holds for any sequence of partitions tq0 = 0 < tq1 <

· · · < tqmr
= t with supi(t

q
i+1 − tqi ) → 0 as q → ∞. This is a powerful “non-parametric”

identity, which, however, cannot be used in practice. Even when extremely finely-spaced

data exist for a financial asset, the general SV model would then be a poor approximation

to its dynamic structure, due to market micro-structure effects. For instance, the assumed

continuity of sample paths for x(t) would easily collapse, when looking at prices obtained in

very short intervals of time even for thickly traded assets.

Instead, Barndorff-Nielsen and Shephard (2002a) recognise that (6.20) can be used as

an indication that the actual, daily say, volatility can be estimated using sums of squared

returns over short periods of time, for example where Δ = 1 is in the range of five minutes

to a few hours. Nevertheless, there is error in this estimation and they study the exact

second-order properties of this error and its asymptotic distribution.
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More precisely, suppose that M intra-day observations exist for each day, for example

M = 288 corresponds to five-minute transaction data. The realised volatility series is defined

as

{y}n =
M∑

j=1

{x[(n − 1)Δ + Δj/M ] − x[(n − 1)Δ + Δ(j − 1)/M ]}2 .

For M = 1 this coincides with the squared daily log-returns series. Then we write

{y}n = v∗
n + un, where un = {y}n − v∗

n. (6.21)

The series {un} contains the errors in the estimation of v∗
n by {y}n and it is not hard to show

that it is a weak white noise uncorrelated with (but not independent of) the actual volatility

series {v∗
n}. It is also easy to show that {y}n is an unbiased and consistent estimator of v∗

n.

Barndorff-Nielsen and Shephard (2002a) (Section 2) derive the exact second order structure

of the error series {un} for an arbitrary SV model when α = β = 0 in (6.3). Moreover, they

find the asymptotic distribution of this error, which is a mixed normal and is independent

of α, β.

They have also derived (in Barndorff-Nielsen and Shephard (2001) and Barndorff-Nielsen

and Shephard (2002a)) the second-order structure of volatility processes with autocorrelation

function as in (6.8). In particular, it corresponds to a (constrained) ARMA model. We note

here that other SV models share this correlation structure, for example the constant elasticity

of variance model (see for example Section 2.2 of Barndorff-Nielsen and Shephard (2002a)

for a description and references).

Knowledge of the second-order properties of the “signal” process {v∗
n} and the noise

process {un} is enough to allow the adoption of the Kalman filter to provide unbiased and

efficient estimations of the actual volatilities by prediction and smoothing. As a by-product

quasi-likelihood estimation of the parameters of the SV model is feasible. These methods

can easily be extended to cover the superposition of OU models. Details can be found in

Section 3 of Barndorff-Nielsen and Shephard (2002a). Section 5 of the same paper discusses

some ideas about the estimation of α, β when they are assumed to be unknown.

Likelihood-based inference

We will consider here, and in the remainder of this chapter until Section 6.17, that α = β = 0

in (6.3). The main difficulty is in estimating the parameters of the volatility process and

any techniques developed for this purpose can be easily extended to infer for α, β. We will

discuss likelihood inference only for the single-OU SV models here. The main message is

that this is already very challenging and many of the existing computational techniques

are inappropriate to handle this problem. Inference for superposition of processes is much

more complicated. The parameters of interest are the stationary parameters of the volatility
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and its memory parameter μ. To simplify exposition and notation we will assume that the

marginal distribution of the volatility is described by two parameters only, ξ, ω2 (defined in

Section 6.3.3).

The data are discrete observations from the logarithmic price process X = {x(t1), . . . x(tn)}
at (possibly irregularly spaced) time points 0 = t1 < . . . < tn = T , where we take x(0) = 0.

According to the general SV model,

x(ti) − x(ti−1) | v∗(ti−1, ti) ∼ N(0, v∗(ti−1, ti)) (6.22)

and therefore the conditional density of the data given the integrated volatility process is

π(X | v∗) =
n∏

i=1

1√
2πv∗(ti−1, ti)

exp

{
−(x(ti) − x(ti−1))

2

2v∗(ti−1, ti)

}
. (6.23)

Likelihood-based inference requires the marginal likelihood π(X | μ, ξ, ω) which is obtained

by integrating (6.23) with respect to the prior measure of the integrated volatilities. In the

OU SV model this prior distribution is defined by (6.7), (6.14) and the specification of the

BDLP z(·). This integration is neither analytically nor numerically feasible, since it is over

a highly dimensional space.

The solution to these problems, already outlined in Chapter 1 and Chapter 2 is the

data augmentation and related Gibbs sampling methods. In particular, suppose that we

add to the SV hierarchical model one more level, by assigning a prior distribution on the

parameters (μ, ξ, ω). Then the well-rehearsed two-component Gibbs sampler alternates by

updating the collection of integrated volatilities {v∗(ti−1, ti), i = 1, . . . , n} conditional on the

data and the parameters, and the parameters given the integrated volatilities. According to

the terminology of Section 2.2 this is a centered parameterisation, since the data and the

parameters are independent conditionally on the augmented data, which are the integrated

volatilities.

This augmentation scheme has proved very successful in the context of log-Gaussian

SV models, especially when used in conjunction with efficient methods for updating the

volatilities conditionally on the parameters all in one block (rather than component-wise).

For a review of this methodology see Kim et al. (1998), but also Section 6.2 of this chapter

for more references.

Chapter 2 and Chapter 4 argued extensively about potential convergence problems of

the Gibbs sampler under a centered parameterisation. The augmentation scheme described

above for OU SV models is one more example where centered methods can have very poor

convergence properties due to the strong dependence between the missing data and the pa-

rameters, in particular between μ and the integrated volatilities. This was first observed in

Barndorff-Nielsen and Shephard (2001), where it was argued that knowledge of the integrated
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volatilities essentially determines uniquely μ in the single-OU model. Some theoretical justi-

fication is given, based on the related work of Nielsen and Shephard (2003) on the properties

of the MLE of the memory parameter in auto-regressions with exponential innovations. They

show that the MLE estimator is consistent with its standard deviation going to zero as the

sample size n → ∞ as n−1 (whereas the rate is n1/2 for Gaussian auto-regressions). This is

known as super-consistency. Moreover, the likelihood is zero for all values of the memory

parameter bigger than the MLE. These results are relevant to the OU case, since when it

is discretised it has a similar autoregressive structure (especially when the time intervals

ti − ti−1 are small). Thus the information contained in the imputed data about μ greatly

exceeds that contained in the observed data and consequently the data augmentation has

been found (see p.189 of Barndorff-Nielsen and Shephard (2001)) to have extremely poor

performance in exploring the posterior distribution.

The following sections develop centered and non-centered parameterisations which are

based on a different augmentation scheme from the one suggested above, and which avoid

the problem of super-consistency. Our augmentation is based on the Poisson process repre-

sentation of the BDLP; see Section 5.8 for a discussion on these representations.

6.4 OU models with compound Poisson BDLP

This chapter focuses on OU models for which the BDLP is a compound Poisson process.

Compound Poisson processes are characterised by integrable Lévy measures and admit rep-

resentations by means of locally finite Poisson processes (see Section 5.8). This chapter

considers inference for this class of models only. This is done mainly due to simplicity, since

it is easier to handle and to transform locally finite Poisson processes using the techniques

developed in Chapter 5. Nevertheless, our methodology could be extended to cover BDLPs

with non-integrable Lévy measures, which is briefly discussed in Section 6.17.

Compound Poisson processes were introduced in Section 5.1.3. In Section 5.8 they were

classified as a special case of subordinators which can be represented as

z(t) =

N(t)∑
j=1

Ej, z(0) := 0 (6.24)

where N(t) is the number of arrivals of a Poisson process with finite rate, λ say, in [0, t]

and the Ejs are IID random variables and also independent from the Poisson process. Since

we are restricting our attention to positive processes we will assume that the jumps of

the process Ej are positive random variables and denote their common distribution by

F (·). We denote the Poisson process arrivals in [0, t] as C1, C2, . . . , CN(t). An example

of a compound Poisson process is shown in the left column of Figure 5.2.
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We have already encountered an example of an OU process driven by a compound Poisson process.

Section 6.3.1 introduced the gamma-OU process and Figure 6.6 shows simulations from this

process. The marginal distribution of the volatility in this model is Ga(ν, θ) with mean

ξ = ν/θ and variance ω2 = ν/θ2. It is not hard to show (using (6.13)) that the BDLP is

a compound Poisson process, details can be found in Section 6.5. The gamma is the only

distribution in the generalised inverse Gaussian family for which the BDLP of the D-OU pro-

cess is compound Poisson. Nevertheless it is straightforward to construct OU-D processes

by specifying the distribution of the jumps Ej.

When the BDLP is compound Poisson, the instantaneous and integrated volatility pro-

cesses have simple expressions in terms of μ, the (unknown) initial volatility v(0), the jump

times and corresponding sizes of z(·) in (6.24). Specifically

v(t) = e−μtv(0) +

N(t)∑
j=1

e−μ(t−Cj)Ej (6.25)

and the integrated volatility becomes

v∗(0, t) =
1

μ

N(t)∑
j=1

Ej − 1

μ
(v(t) − v(0))

=
1

μ

N(t)∑
j=1

Ej − 1

μ

⎛
⎝v(0)(e−μt − 1) +

N(t)∑
j=1

e−μ(t−Cj)Ej

⎞
⎠ . (6.26)

Notice that this specification forces the volatility to move up entirely by jumps and then to

tail off exponentially. This feature is illustrated in Figure 6.6 and in terms of financial mod-

elling can be thought of as new information arriving in packets increasing the transactions

variability.

Section 5.8 established the connection between Lévy and Poisson processes, in partic-

ular, we showed that each subordinator z(t), t ∈ [0, T ] can be constructed in terms of a

Poisson process on S = [0, T ] × (0,∞), whose mean measure Λ(·) is given by the product

measure

Λ(dc × dε) = W (dε)dc, c ∈ [0, T ], ε > 0

where W (·) is the Lévy measure. When the Lévy process is a compound Poisson its Lévy measure

is given by

W (dε) = λF (dε); (6.27)

see Section 5.8 and specifically expression (5.39). Let Ψ be the Poisson process on S corre-
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sponding to the subordinator (6.24), thus

Ψ = {(Cj, Ej), j = 1, 2, . . .}

where the Cjs and Ejs are defined by (6.24), and its mean measure is

Λ(dc × dε) = λF (dε)dc, (c, ε) ∈ S. (6.28)

The relationship between Ψ and the BDLP is depicted in Figure 5.2.

6.4.1 Superposition of OU models with compound Poisson BDLP

Section 6.3.4 showed that more complicated dependence structures in the data can be cap-

tured by modelling the volatility process as the superposition of a number of independent

OU processes as described by (6.16) and (6.17).

In this section we assume that the BDLP in each of the components of the superposition

is a compound Poisson process. Therefore for i = 1, . . . ,m

vi(t) = e−μitvi(0) +

Ni(t)∑
j=1

e−μi(t−Cij)Eij (6.29)

where Ci1 < . . . < CiNi(t) are the arrival times of a Poisson process in [0, t] with rate λi,

Ni(t) is the corresponding number of arrivals, Eij are IID positive random variables with

distribution Fi(·) and vi(0) are assumed to be random and distributed according to the

stationary distribution of the vi(t) process. The integrated volatility process was shown in

(6.19) to satisfy

v∗(0, t) =
m∑

i=1

v∗
i (0, t)

where the v∗
i (0, t) can be derived from (6.26) in an obvious way.

To each of the background driving compound Poisson processes there corresponds a

Poisson process

Ψi = {(Cij, Eij), j = 1, 2, . . .}

with mean measure

Λi(dc × dε) = λiFi(dε)dc, (c, ε) ∈ S. (6.30)

The empirical findings of Barndorff-Nielsen and Shephard (2002a) suggest that a super-

position of two OU processes seems to be enough to model financial data, therefore we will

not consider more than two components in this thesis.
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6.5 Bayesian inference for the gamma-OU model

We now formalise the problem of Bayesian inference for the gamma-OU SV model. Actually,

the methodology developed in the following sections can be immediately extended to other

models with background driving compound Poisson processes. Nevertheless, for reasons

of clarity and exposition, as well as because it is by far the most widely used model with

integrable Lévy measure, we concentrate on the gamma-OU process. The single-OU model is

initially considered while Section 6.5.1 formalises the inference problem for the superposition

of gamma-OU processes.

The gamma-OU process has gamma marginal distribution Ga(ν, θ) with mean ξ = ν/θ

and variance ω2 = ν/θ2. We remarked earlier that the BDLP of this process has integrable

Lévy measure. In fact, it is easy to show using (6.13) that

W (dε) = λθe−θεdε

where λ = νμ. This Lévy measure was shown in Section 5.8.1 (see (5.44)) to corre-

spond to a compound Poisson process for which Ej ∼ Ex(θ) and the jump times Cj form

a Poisson process in time with intensity λ. The volatility process (6.25) driven by this

compound Poisson process is known as the shot-noise continuous time Markov process; see

for example Cox and Isham (1980). From (6.30) follows that the mean measure of Ψ is

Λ(dc × dε) = λθe−θεdc dε. (6.31)

The Poisson process with this mean measure was the subject of study in Section 5.5.1,

where, different marked Poisson process representations where suggested for Ψ. Following

the suggestion of Section 6.3.1 we assume that v(0) has a Ga(ν, θ) prior distribution.

The parameters of interest are ν, θ and μ. In the sequel, for notational convenience we

will work with both the (ν, θ, μ) and the (λ = νμ, θ, μ) parameterisation. When discussing

missing data transformations (in Section 6.10 and Section 6.11) the latter is more natural,

but when referring to posterior inference the former will be of interest.

6.5.1 Superposition of gamma-OU processes

We will also consider the model where the volatility is the superposition of two gamma-OU

processes. The main purpose of superpositioning OU processes is to model the dependence

structure and not the stationary distribution of the variance. Therefore, as suggested in

Section 6.3.4 we exploit the infinite divisibility of the gamma distribution, and assume that

vi(·) ∼ Ga(νi, θ), thus

v(t) ∼ Ga(ν, θ), ν =
2∑

i=1

νi.
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In the representation given in (6.29) for each vi(t), λi = νiμi, the jump sizes all are IID from

an Ex(θ) and vi(0) ∼ Ga(νi, θ).

The parameters of interest are ν1, ν2, μ1, μ2, θ.

6.5.2 Prior specification and posterior inference

For the single-OU model, we choose a Ga(αθ, βθ) prior for θ, a Ga(αμ, βμ) prior for μ and also

a Ga(αν , βν) prior for ν. These priors are adopted mainly for simplicity and computational

convenience (as we will see in the sequel). However, a discussion on the choice of the

hyperparameters and more general prior sensitivity issues will be made in Section 6.14.

The prior elicitation for the superposition of OU processes needs more careful considera-

tion, see also Section 6.14. As a general strategy, we choose to order the memory parameters

apriori, that is we assume that μ1 > μ2 almost surely. When both the single-OU and the

two-OU models are applied to a dataset a prior specification for the latter which is consistent

with the one suggested above for the former, is the following. We parameterise in terms of

(ν, w2, θ, μ1, μ2), where ν = ν1 + ν2 and w2 = ν2/(ν1 + ν2) (see (6.18)). Under this setting

(ν, θ) are the parameters of the stationary distribution of the volatility in both models, and

we specify a common prior. It is also reasonable to assume that w2 ∼ Un[0, 1]. Under this

scenario, the joint prior density for (ν1, ν2) becomes

π(ν1, ν2) ∝ (2ν2 + ν1)(ν1 + ν2)
αν−3 exp{−βν(ν1 + ν2)}. (6.32)

We construct the joint prior of (μ1, μ2) by imposing a Ga(αμ2 , βμ2) to μ2 and assuming that

μ1 − μ2 given μ2 is a Ga(αμ1 , βμ1) random variable. Therefore prior elicitation on (μ1, μ2) is

done by specifying the marginal prior distribution of μ2 and by quantifying our beliefs about

how much bigger μ1 is expected to be than μ2. This prior choice is adopted in the simulated

examples in Section 6.13.1 but also in analysis of the exchange rates data in Section 6.16.

We also note that the gamma prior chosen for θ is computationally convenient, since it leads

to conditional conjugacy (see Section 6.13).

We are interested in obtaining either in closed form or samples from the posterior distri-

bution of the parameters, that is from

π(ν, θ, μ | X) ∝ π(X | ν, θ, μ)π(ν, θ, μ)

in the single-OU model and from

π(ν1, ν2, μ1, μ2, θ | X) ∝ π(X | ν1, ν2, μ1, μ2, θ)π(ν1, ν2, μ1, μ2, θ)1l[μ1 > μ2]

in the two-OU model. This presupposes the existence of the marginal likelihoods π(X |
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ν, θ, μ) and π(X | ν1, ν2, μ1, μ2, θ) in closed form, but Section 6.3.5 showed that these quan-

tities are not available. Therefore we resort to MCMC methods and in particular data

augmentation type techniques, in order to obtain posterior samples. These augmentation

methods are described in the next section for the single-OU model, while Section 6.13 de-

velops MCMC methods for posterior inference for the two-OU model.

6.6 Augmentation based on marked Poisson processes

This section develops a missing data methodology to tackle the inference problem for the

gamma-OU model of Section 6.5.

It was observed in Section 6.4 that the integrated volatility process is a simple function

of the decaying rate of the OU process μ, the (random) initial volatility v(0) and the latent

Poisson process Ψ. Thus by (6.26)

π(X | v∗) = π(X | μ, v(0), Ψ).

Specialising the argument made in Section 6.3.5 to the case where we have a background

driving compound Poisson process

π(X | ν, θ, μ) =

∫
π(X | μ, v(0), Ψ)π(v(0) | ν, θ)π(dΨ | ν, θ, μ)dv(0), (6.33)

where π(dΨ | ν, θ, μ) denotes the measure of the Poisson process Ψ; see Section 5.1.4 and

later in this section.

Section 6.3.5 argued that it is infeasible to obtain the likelihood function π(X | ν, θ, μ)

either explicitly or numerically, due to the integration required in (6.33). Therefore we are

dealing with the typical situation in the so-called missing data problems, which were intro-

duced in Section 1.3: the likelihood is obtained through an integration over the distribution

of some random objects, Ψ and v(0) in (6.33). Therefore, the data augmentation methodol-

ogy suggests treating Ψ and v(0) as missing data, and thus making use of Gibbs sampling

techniques to sample from the joint posterior distribution of the parameters (ν, θ, μ) and

missing data; see for example Tanner and Wong (1987), Smith and Roberts (1993) and Sec-

tion 1.5.2 of this thesis. This is the data augmentation scheme proposed by Roberts et al.

(2003) in the context of the gamma-OU models.

Before discussing different parameterisations for this augmentation scheme, we resolve

one technical issue raised in the previous paragraph concerning the measure of the Poisson process

Ψ. Section 5.1.4 gave the measure-theoretic background for constructing measures on point

process spaces, therefore we refer to that section for any details. We recall that Ψ is a

Poisson process on S with mean measure given in (6.31) where λ = νμ. We choose as a
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basic reference measure Q that of a Poisson process on S with mean measure

e−εdc dε. (6.34)

By means of Lemma 5.1.4

π(dΨ | λ, θ) = e−(λ−1)T (λθ)Ψ(S) exp

⎧⎨
⎩−(θ − 1)

Ψ(S)∑
j=1

Ej

⎫⎬
⎭Q(dΨ) (6.35)

where (see Section 5.1.4) Ψ(S) is the number of points of Ψ on S, and the sum is replaced

by 0 if Ψ(S) = 0. It is now clear that the density of Ψ is

π(Ψ | λ, θ) = e−(λ−1)T (λθ)Ψ(S) exp

⎧⎨
⎩−(θ − 1)

Ψ(S)∑
j=1

Ej

⎫⎬
⎭ (6.36)

or π(Ψ | λ, θ) = exp{−(λ − 1)T} if Ψ(S) = 0.

6.7 A centered parameterisation

A straightforward parameterisation can be constructed by writing the posterior distribution

of the parameters and the missing data as

π(ν, θ, μ, Ψ, v(0) | X) ∝π(X | μ, v(0), Ψ)π(v(0) | ν, θ)π(Ψ | ν, θ, μ)π(ν, θ, μ)

∝π(X | μ, v(0), Ψ)
θν

Γ(ν)
v(0)ν−1e−θv(0)−(νμ−1)T

× (νμθ)Ψ(S) exp

⎧⎨
⎩−(θ − 1)

Ψ(S)∑
j=1

Ej

⎫⎬
⎭π(ν, θ, μ) (6.37)

where π(ν, θ, μ) is the joint prior density and Γ(·) is the gamma function. The dependence

structure between the parameters and the missing data is presented as a graphical model in

Figure 6.8.

There are two key features of this parameterisation. Firstly, it is a non-centered parame-

terisation in terms of the missing data and μ and therefore it circumvents the main drawback

of the augmentation scheme described in Section 6.3.5. There, the missing data were taken

to be the integrated volatilities conditionally on which μ was independent of the observed

data. This was shown to be very inefficient because the augmented information about μ

greatly exceeded the observed one. In fact, all the parameterisations we will consider are

non-centered as far as μ and the missing data are concerned.

On the other hand, the second important feature of this parameterisation is that the
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Figure 6.8: Graphical model of the first (centered) parameterisation

parameters ν and θ are conditionally independent of the data given μ and the missing data

Ψ, v(0). Put in another way, λ is independent of the observed given the missing data. It

is therefore centered in that respect, and we will call it the centered parameterisation. This

terminology is used to distinguish it from alternative parameterisations that we will consider

in the following sections for which the transformed missing data and λ lie at the same level

of the hierarchy.

6.7.1 MCMC implementation

We use a Hastings-within-Gibbs algorithm (see Section 1.5.2) to obtain samples from the

joint posterior distribution of the parameters and the missing data (6.37):

A Hastings algorithm to sample from (ν, θ, μ, Ψ, v(0)) | X

Iterate the following steps:

1. Update (ν, θ) according to π(ν, θ | Ψ, v(0), μ)

2. Update μ according to π(μ | X, Ψ, v(0), ν, θ)

3. Update v(0) according to π(v(0) | X, Ψ, ν, μ, θ)

4. Update Ψ according to π(Ψ | X, v(0), ν, μ, θ).
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The densities in steps 1− 4 are derived up to proportionality from (6.37). Direct simulation

is not feasible in Steps 2 − 3 but we can easily perform a Metropolis-Hastings updating

scheme on the logarithmic scale for the parameters involved.

In Step 1 we exploit the fact the full conditional distribution of θ is known,

θ | · ∼ Ga

⎛
⎝Ψ(S) + ν + αθ,

Ψ(S)∑
j=1

Ej + v(0) + βθ

⎞
⎠ (6.38)

due to the conditional conjugacy of the gamma prior for θ. This is one of the computational

advantages behind the choice of this prior, that we hinted at in Section 6.5.2. Consequently

we can derive

π(ν | v(0), Ψ, μ) ∝ Γ(ν + αθ + Ψ(S))

Γ(ν)

(
v(0)

βθ + v(0) +
∑Ψ(S)

j=1 Ej

)ν

× νΨ(S)+αν−1 exp{−(βν + μT )ν}. (6.39)

We update (ν, θ) by first using a Metropolis-Hastings step (on the logarithmic scale) with

target (6.39) and then conditionally on ν we simulate θ directly from (6.38). A less efficient

scheme in the Peskun ordering (see Section 3 of Tierney (1998)) is to propose new values for

ν and θ, first for ν from some proposal kernel and then for θ from (6.38) substituting ν with

its proposed value, and then jointly accepting the move. The acceptance ratio is the same

as the one for updating ν in the previous scheme.

Updating the conditional distribution of Ψ in Step 4 is more involved since it requires a

Metropolis-Hastings step which operates on a point process space. In particular, we want to

construct a Metropolis-Hastings Markov chain which has the conditional distribution of Ψ

as a stationary measure. This distribution is characterised by its density

π(Ψ | ν, θ, μ, v(0), X) ∝ π(X | μ, v(0), Ψ)π(Ψ | ν, θ, μ) (6.40)

with respect to the reference Poisson measure (see Section 6.6), where the first term is given

in (6.23) and the second in (6.36).

We use the general methodology presented in Section 5.1.5 together with some specific

ideas relevant in the gamma-OU context. At each iteration, we randomly choose between

two types of moves. The first move type is a dimension-changing move that proposes either

to add or to remove a point from the current configuration of the point process. The second

move type selects one of the existing points at random and proposes to displace it. The

probability of choosing a displacement move is fixed throughout the simulation and we

choose it by pilot tuning.
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Formally, let the current configuration of points be ψ = {(c1, ε1), . . . , (cm, εm)} where

(ci, εi) ∈ S, i = 1, . . . ,m.

Birth-or-death move

The details of this step can be found in Section 5.1.5. We choose the probability of a death

move to be a half. If we choose a birth move, we propose to move to ψ∪{(c, ε)}, where {(c, ε)}
is the new-born point. We generate it from the prior, therefore the proposal distribution has

density with respect to the reference mean measure (6.34)

b(c, ε) =
1

T
θ exp{−(θ − 1)ε}. (6.41)

When we choose a death move, we propose to move to the configuration ψ − {(c, ε)} by

removing {(c, ε)} uniformly among the existing points of ψ, that is

d(ψ − {(c, ε)}, (c, ε)) = 1/m (6.42)

Therefore, by (6.41), (6.42), (6.40) and (5.11) the Metropolis-Hastings acceptance probability

is

αbd(ψ, ψ ∪ {(c, ε)}) = min{1, r(ψ, c, ε)}

if π(ψ ∪ {(c, ε)} | ν, θ, μ, v(0), X) > 0, and 0 otherwise, and

αbd(ψ ∪ {(c, ε)}, ψ) = min{1, 1/r(ψ, c, ε)}

where

r(ψ, c, ε) =
π(ψ ∪ {(c, ε)} | ν, θ, μ, v(0), X))

π(ψ | ν, θ, μ, v(0), X)

T

(m + 1)θ exp{−(θ − 1)ε}
=

π(X | μ, v(0), ψ ∪ {(c, ε)})
π(X | μ, v(0), ψ)

νμT

m + 1
. (6.43)

Thus the birth-or-death move proceeds as follows.
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Birth-or-death move

Sample U ∼ Un[0, 1]

If U < 1/2 then

(birth) simulate (c, ε) ∼ b(·, ·)
move from ψ to ψ ∪ {(c, ε)} with probability min{1, r(ψ, (c, ε))}

Else

(death) choose (c, ε) ∈ ψ uniformly

move from ψ to ψ−{(c, ε)} with probability min{1, 1/r(ψ, (c, ε))}.

Displacement move

We construct the displacement transition kernel as a mixture of m Metropolis-Hastings tran-

sition kernels; the ith kernel is reversible with respect to the conditional posterior distribution

of the ith point {(ci, εi)} given ψ − {(ci, εi)}. This can be seen as a distribution on S with

Lebesgue density

π(c, ε | X,λ, θ, μ, v(0), ψ − {(ci, εi)}) ∝
π(X | μ, v(0), ψ − {(ci, εi)} ∪ {(c, ε)})θ exp{−θε}.

Each kernel is chosen with equal probability and it is adequate to describe how the ith kernel

is constructed. We propose to move from ψ to ψ − {(ci, εi)} ∪ {(c, ε)} and we suggest two

strategies to generate {(c, ε)}.
The first strategy uses independence sampling from the proposal density

q(c, ε) = T−1θ exp{−θε}, ε > 0, 0 < c < T. (6.44)

The calculation of the acceptance ratio is straightforward combining (6.44) and (5.10). Nev-

ertheless, we will not use this strategy in any of our examples.

The second is a strategy that achieves local change in the volatility process (see Figure 6.9)

and is used in our MCMC programs throughout this chapter. Assume, without loss of

generality, that c1 < c2 < . . . < cm. We generate c uniformly in [ci−1, ci+1] with c0 := 0 and
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Figure 6.9: The local displacement of the point {(ci, εi)}. The new jump time c is generated
uniformly in (ci−1, ci+1) and the new jump size ε is set so that the volatility process changes
only between time points c and ci. The new jump time c can lie either side of ci; both options
are shown in the diagram.

cm+1 := T , and we define the transformation

(εi, ci, c) → (ε, c, ci) = (εi exp{−μ(c − ci)}, c, ci).

This transformation is invertible and its Jacobian is exp{μ(c − ci)}. Intuitively, the invert-

ibility of the transformation can be seen by inspection of Figure 6.9. Thus, this updating

scheme can be made reversible with respect to the joint posterior density of (c, ε). However,

there is a slight technical obstacle in deriving the resulting Metropolis-Hastings acceptance

ratio αi[(ci, εi), (c, ε)], since we are updating a two-dimensional distribution but there is only

one degree of freedom. In other words, the proposal distribution is singular with respect

to the target measure, in fact it lives on a slice of the parameter space S, defined by the

function c → εi exp{−μ(c − ci)}. This setting is usually encountered in reversible-jump

MCMC algorithms and αi[(ci, εi), (c, ε)] can be calculated using the results of Green (1995).

We favour the more general approach of Tierney (1998) (see also Section 1.5) for deriving

such results, see Section 2 of his paper and specifically his Theorem 2 and Examples 2 and

3. It turns out that αi[(ci, εi), (c, ε)] is given by

min

{
1,

π(X | μ, v(0), ψ − {(ci, εi)} ∪ {(c, ε)})
π(X | μ, v(0), ψ)

exp{θ(εi − ε) − μ(c − ci)}
}

.

Therefore, the displacement move proceeds as follows.
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Displacement move

Sample i uniformly from {1, . . . , m}
Simulate c ∼ Un[ci−1, ci+1]

Set ε = εi exp{−μ(c − ci)}
Move from ψ to ψ−{(ci, εi)}∪{(c, ε)} with probability αi[(ci, εi), (c, ε)].

Apart from the well-documented advantages of local moves in reversible-jump type algo-

rithms (see for example Section 4 in Dellaportas et al. (2002)), this move results in increased

computational efficiency since it requires evaluation of only a small part of the likelihood

function (corresponding to the time between the current and proposed jump times).

To improve the mixing, at each iteration we simulate from the distribution of the jump

sizes conditional on the jump times using a random walk Metropolis step. Since the dimen-

sion of this vector changes with iterations we set the variance of the proposal distribution to

be inversely proportional to the the current number of jumps (see Roberts et al. (1997)).

6.8 Alternatives to the centered parameterisation

The parameterisation shown in Figure 6.8 is statistically natural, representing the hierarchy

in which the parameters (ν, θ, μ) are used to construct the latent process Ψ, which in turn

(together with μ and v(0)) determines the distribution of the observed data. In terms

of λ = νμ (which is not explicitly shown in the graphical model) and Ψ it is a centered

parameterisation.

Chapter 2 and Chapter 4 argued about the potential convergence problems of data aug-

mentation under a centered parameterisation. In particular, we showed that these algorithms

converge extremely slowly when the statistical information about the unknown parameters

contained in the latent (imputed) data is considerably greater than that actually contained

in the observed data.

In the hidden Markov process case (of which the model in Section 6.5 is a special case)

problems caused by dependence between the parameters and the hidden process itself can

be acute; see the relevant discussion in Section 5.2 in the context of latent Poisson processes.

This is particularly problematic for long time series where the prior structure will be bounded

by “ergodicity constraints” which link long term empirical properties of the hidden process
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with their stationary expectations (which are just functions of the parameters). For our

model, an example is the following

1

T

∫ T

0

v(s) ds ≈ λ

θμ
.

Thus, unless the data are sufficiently informative to override this relationship, extremely

high posterior correlation will exist between
∫ T

0
v(s) ds and λ/(θμ), or equivalently between

Ψ and λ, leading to very poor convergence of the centered algorithm proposed in Section 6.7.

This thesis has advocated the use of non-centered parameterisations to combat conver-

gence problems as those described above. Section 6.9 applies the general methodology for

non-centering Poisson processes developed in Chapter 5 in the context of the OU SV models.

Notice that the information of the observed data about the latent process increases

(i) the higher the number of data points per Poisson jump (small λ compared to data

frequency)

(ii) the higher the persistence in the volatility (small μ)

(iii) the smaller the variance of the volatility, when the mean is kept fixed.

(ii) and (iii) are empirically supported by the simulation study in Barndorff-Nielsen and

Shephard (2002a). Moreover, they are consistent with analytic convergence rate results

available for Gaussian models, see Chapter 2 of this thesis, Roberts and Sahu (1997), Pitt

and Shephard (1999) and Papaspiliopoulos et al. (2003) for a recent review. (ii) is intuitive,

since the posterior for each “location” of the latent process will be influenced not only by the

corresponding observed data point but also by the “neighbouring” ones. This phenomenon

was highlighted in Section 2.5 in the context of Gaussian state-space models. On the other

hand, the information about λ contained in the latent process Ψ, increases with T and

decreases with Ψ(S).

Section 6.12.1 investigates whether these characteristics are reflected in the behaviour of

the centered and non-centered algorithms when applied to different simulated datasets.

6.9 Non-centering for the the gamma-OU model

We first recognise that the missing data Ψ is a Poisson process with mean measure given

in (6.31), which depends on the parameters (ν, θ, μ). Moreover, it can be represented as a

marked Poisson process in a variety of ways, we refer back to Section 5.5 for a summary of

different available options for Poisson processes with product mean measures.

We wish to construct a non-centered parameterisation (λ, θ, Ψ) → (λ, θ, Ψ̃). A further

transformation, that turns out to be computationally very useful, as we will shortly see in
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Section 6.10, and makes θ a priori independent of v(0), is

v(0) → ṽ(0) = θv(0). (6.45)

The conditional independence structure under this parameterisation can now be written as

π(ν, θ, μ, Ψ̃, ṽ(0) | X) ∝ π(X | Ψ̃, ṽ(0), ν, μ, θ)π(ṽ(0) | ν)π(Ψ̃)π(ν, θ, μ) (6.46)

∝ π(X | Ψ̃, ṽ(0), ν, θ, μ)
1

Γ(ν)
ṽ(0)ν−1e−ṽ(0)

× π(Ψ̃)π(ν, θ, μ). (6.47)

and is depicted as a graphical model in Figure 6.10, where we choose the same prior π(ν, θ, μ)

as in the first parameterisation.

X

ν

v

θμ Ψ̃

ṽ(0)

Ψv(0)

Figure 6.10: The graphical model of the non-centered parameterisation.

Generally speaking, there is a collection of NCPs for the gamma-OU model with the

conditional independence structure represented by the graphical model in Figure 6.10. They

all result in the same expression for the posterior distribution of missing data and parameters

as given in (6.46), however they differ in the prior measure of Ψ̃ and the way (Ψ̃, ν, θ, μ) is

transformed to Ψ. The problem of finding non-centered transformations for Poisson and

marked Poisson processes was thoroughly investigated in Chapter 5. Actually, Section 5.5.1

describes three different constructions for latent Poisson processes with mean measure (6.31),

although a slightly different notation is used there (contrast for example (5.26) with (6.31)).

The next sections implement these ideas in the context of the gamma-OU model.

6.10 MPP-THIN-NCP for the gamma-OU model

Roberts et al. (2003) proposed a non-centered parameterisation for the data augmentation

designed in Section 6.6, which is exactly the MPP-THIN-NCP described in Section 5.5.
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Section 5.5.1 gave the details of this construction when the mean measure of Ψ is as defined

in (6.31). Therefore, in order to make this section self-contained and recast things using the

notation of this chapter, we just sketch the construction and refer to Section 5.5.1 for more

details. We take Ψ̃ to be a marked Poisson process with points {(Cj,Mj)} on [0, T ]× (0,∞)

and marks Ẽj on (0,∞) independent of each other and independent of the points. Its mean

measure is given by (see (5.27))

Λ̃(dc × dm × dε̃) = e−ε̃dc dm dε̃ (6.48)

and we retrieve Ψ from (Ψ̃, λ, θ) as follows (see also Figure 5.7).

MPP-THIN-NCP transformation (Ψ̃, λ, θ) → Ψ

Select all points from Ψ̃ for which Mj < λ.

Project these points to [0, T ] × (0,∞).

Transform {(Cj, Ẽj)} to {(Cj, Ej)} where Ej = Ẽj/θ.

Ψ consists of the transformed points.

The corresponding MCMC algorithm is as follows.

A Hastings algorithm to sample from (ν, θ, μ, Ψ̃, ṽ(0)) | X

Iterate the following steps:

1. Update (ν, θ, μ) according to π(ν, θ, μ | X, Ψ̃, ṽ(0))

2. Transform ṽ(0) → ṽ(0)/θ = v(0) and (λ, θ, Ψ̃) → Ψ

3. Update v(0) according to π(v(0) | X, Ψ, ν, μ, θ)

4. Update Ψ according to π(Ψ | X, v(0), ν, μ, θ)

5. Transform ṽ(0) = θv(0) and stochastically transform (λ, θ, Ψ) →
Ψ̃.
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Steps 3-4 are exactly the same as the corresponding steps of the centered algorithm given

in Section 6.7.1. The two algorithms differ in Step 1, where the parameters are updated

conditionally on the missing data, and in the two transformation Steps 2 and 5. Step 2 is

totally deterministic, ṽ(0) → v(0) is given in (6.45) and (λ, θ, Ψ̃) → Ψ is described above and

is illustrated in Figure 5.7. The transformation (λ, θ, Ψ) → Ψ̃ in Step 5 is actually stochastic,

however it is not necessary. Section 5.3.1 and Section 5.3.2 showed how to implement this

step incorporating in Step 1 of the algorithm; we skip details to avoid repetition. However,

we use a rather efficient scheme tailored to this problem in order to update the parameters.

A blocking scheme to update the parameters

We first establish the conditional joint density of ν and μ given the observed and imputed

data, but marginalised with respect to θ. The integrated volatility in [ti−1, ti), as given in

(6.26), can be written as

v∗(ti−1, ti) =
gi

θ

where

gi =

∑ti
ti−1

Ẽj

μ
− 1

μ

⎛
⎝(e−μti − e−μti−1)(ṽ(0) +

ti−1∑
0

eμCj Ẽj) +

ti∑
ti−1

e−μ(ti−Cj)Ẽj

⎞
⎠

where {(Cj, Ẽj)} are the resulting points from steps 1 and 2 of the transformation (λ, θ, Ψ̃) →
Ψ and where the sums

∑t
s, with s ≤ t, are interpreted as sums over all (if any) s ≤ Cj < t.

Hence, gi is known given ṽ(0), Ψ̃, ν and μ. Therefore

π(X | ν, μ, θ, Ψ̃, ṽ(0)) = d(ν, μ, Ψ̃, ṽ(0))θn/2 exp{−θ k(ν, μ, Ψ̃, ṽ(0), X)}

where

k(ν, μ, Ψ̃, ṽ(0), X) =
n∑

i=1

(x(ti) − x(ti−1))
2

2gi

d(ν, μ, Ψ̃, ṽ(0)) =
n∏

i=1

(gi)
−1/2. (6.49)

This implies that by choosing a Ga(αθ, βθ) prior on θ its full conditional posterior distribution

is

θ | · ∼ Ga(n/2 + αθ, k(ν, μ, Ψ̃, ṽ(0), X) + βθ).

167



Furthermore, by integrating out θ we deduce that

π(ν, μ | X, Ψ̃, ṽ(0)) ∝ ṽ(0)ν

Γ(ν)
d(ν, μ, Ψ̃, ṽ(0))

(
k(ν, μ, Ψ̃, ṽ(0), X) + βθ

)−(n/2+αθ)

π(ν)π(μ).

We will update (ν, θ, μ) by first updating (ν, μ) using a Metropolis-Hastings step on the log-

arithmic scale with target density π(ν, μ | X, Ψ̃, ṽ(0)), and then simulating θ directly from

its full conditional. Therefore, as we noted in Section 6.5.2 there are computational conve-

niences when using a gamma prior for θ. Moreover, it can be seen that the transformation

v(0) → ṽ(0) is necessary in order to be able to derive in closed form the full conditional

distribution of θ.

6.11 Alternative non-centered parameterisations

Section 6.9 remarked that it is possible to construct a variety of non-centered parameter-

isations corresponding to the same graphical model shown in Figure 6.10. Recall from

Section 6.6 that we augment a marked Poisson process Ψ with mean measure Λ given in

(6.31), which depends on some parameters (λ, θ in particular). Chapter 5 discussed a vari-

ety of non-centered parameterisations for marked Poisson processes, which can all be used to

construct an NCP for the OU model. The parameterisation proposed in Section 6.10 is the

MPP-THIN-NCP initially discussed in Section 5.5, where two more NCPs were suggested,

the MPP-CDF-NCP and the THIN-NCP. In particular, Section 5.5.1 constructed the latter

two NCPs for a Poisson process Ψ with mean measure as in (6.31). In the sequel we sketch

the constructions using the notation of this chapter, but we refer back to Section 5.5.1 where

more details can be found.

The MPP-CDF-NCP is related with the Ferguson-Klass representation. This construc-

tion takes Ψ̃ = {(Ci, Ẽi), i = 1, 2, . . .} to be a unit rate Poisson process on S and transforms

(λ, θ, Ψ̃) → Ψ as follows (see also Figure 5.8).

MPP-CDF-NCP transformation (Ψ̃, λ, θ) → Ψ

Select all points (Ci, Ẽi) ∈ Ψ̃ for which Ẽi < λ.

Set Ei = − log{Ẽi/λ}/θ.
Ψ consists of the transformed points.
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We highlight that the decreasing transformation (5.20) is used, therefore E1 > E2 > · · · in

the above transformation where E1 < ∞ almost surely.

The THIN-NCP is based on random thinning and takes Ψ̃ = {(Ci, Ei,Mi), i = 1, 2, . . .}
to be a unit rate Poisson process on S × (0,∞) and the transformation of (λ, θ, Ψ̃) to Ψ is

described below (see also Figure 5.9).

THIN-NCP transformation (Ψ̃, λ, θ) → Ψ

Select all points from X̃ for which Mi < λθ exp{−θEi}.
Project these points to [0, T ] × (0,∞).

Ψ consists of the projected points.

6.11.1 MCMC implementation

Both the MPP-CDF-NCA and the THIN-NCA iterate exactly the same steps as the MPP-

THIN-NCA, which are given in Section 6.10. However, the way the transformation Steps 2

and 5 (in the Hastings-within-Gibbs algorithm of Section 6.10) are carried out is different

for each of the proposed NCAs; specific details can be found in Section 5.3.1, Section 5.3.2

and Section 5.5. Moreover, Step 1 of the algorithm has a different implementation. Both the

MPP-CDF-NCA and the THIN-NCA lead to an intractable full conditional for θ, therefore

the blocking scheme proposed in Section 6.10 is not feasible anymore. Instead, we use an

alternative generic blocking scheme for both algorithms. Let (ν0, θ0, μ0) denote the current

values of the parameters when entering Step 1 of the algorithm. We compute (ξ0, ω
2
0, μ0)

where ξ, ω2 have been defined in Section 6.3.3 as the stationary mean and the variance of

the volatility process. For the gamma-OU model ξ = ν/θ and ω2 = ν/θ2. We then use

a random-walk proposal on the logarithmic scale to generate new values (ξ1, ω
2
1, μ1). The

covariance matrix of the proposal distribution is diagonal of the form

Σ = c

⎛
⎜⎜⎜⎜⎜⎝

σ2
ξ 0 0

0 σ2
ω2 0

0 0 σ2
μ

⎞
⎟⎟⎟⎟⎟⎠ (6.50)
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where the diagonal elements are pilot-run estimates of the variance of the corresponding

parameters (after a log-transformation), and c is a scaling constant which is tuned to yield

acceptance rates for this updating step around 0.3. The proposed values are then trans-

formed back to (ν1, θ1, μ1) and the acceptance ratio is calculated, which however takes into

account the Jacobian of the above transformation. We choose this strategy because of the a

priori belief, which is however supported by simulation results, that the dependence among

(ξ, ω2, μ) is less than among (ν, θ, μ), hence the spherical proposal distribution we use is more

likely to be successful in exploring the space.

6.12 Simulation study

This section attempts to assess the relative performance of the various algorithms proposed

in the previous sections under different kinds of datasets. Ideally, we would like to be able to

compute exact L2 rates of convergence, as we did in Chapter 2. However, this is infeasible

for any Gibbs sampler on a highly structured non-Gaussian target distribution. Instead, we

take a simulation-based approach. We apply our MCMC algorithms to a variety of simulated

datasets and we look at autocorrelation plots (under “stationarity”) of the marginal chains of

the parameters. In particular, we plot the estimated autocorrelation function for the MCMC

time series (remaining after removing the burn-in samples and thinning) corresponding to

λ = νμ for each algorithm, for each of the different datasets. The parameter λ was considered

since its dependence with Ψ is expected to have an impact on the convergence of the centered

algorithm. However, summaries for the other parameters (not included here) convey the same

message. See Section 2.1.2 for an argument for using estimated autocorrelations as a means

of assessing the speed of convergence of an MCMC chain.

We first examine how the MPP-THIN-NCA compares with its centered counterpart and

then we investigate the extent to which the efficiency of the different non-centering schemes

varies.

6.12.1 Comparison of CA vs NCA

In order to assess the performance of the two MCMC algorithms proposed in Section 6.7 and

Section 6.9, we applied them to a varied collection of data simulated from the OU model

of Section 6.5. Six experiments were conducted representing different types of dynamic

structure and stationary moments of the stochastic volatility process, and different time

series lengths. The aim of the study is to obtain an understanding of the kind of data for

which each algorithm is more suitable and consequently to provide guidelines on when each

should be preferred.

All experiments are done on the assumption that the data are daily. Having finer data
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would be equivalent to making μ smaller while fixing ν, and so variation in data frequency

is redundant in this comparison. Furthermore, variation in θ is also not necessary since

its impact can be removed by scaling the observed data. A different simulation design is

considered in Section 3 of Barndorff-Nielsen and Shephard (2002a), where the mean volatility

ξ (= ν/θ) is kept fixed, and ξ/ω2 (=θ) varies, in order to assess how different estimators

(non-parametric and model-based) of the integrated volatility perform, using high frequency

data.

Dataset θ ν μ Length of series Volatility stationary law

1 10 2/3 0.03 500 Ga(2/3, 10)

2 10 2 0.03 500 Ga(2, 10)

3 10 2/3 0.1 500 Ga(2/3, 10)

4 10 2 0.1 500 Ga(2, 10)

5 10 2/3 0.03 2000 Ga(2/3, 10)

6 10 2 0.1 2000 Ga(2, 10)

Table 6.1: Information about simulated datasets

Table 6.1 summarises the parameter values used in simulating the six datasets. The first

four use shorter (length 500) time series. The first two of these have the same memory decay

(μ = 0.03) but different stationary distribution for the volatility process. The situation is

similar in the Series 3 and 4, but where now μ = 0.1, therefore the volatility processes are

less persistent. Series 5 and 6 consist of longer sequences corresponding to the parameter

values in Series 1 and 4 respectively.

The purpose of this study is not to analyse real data but to compare the two proposed

algorithms. The choice of the hyperparameters for the priors on the parameters (see Sec-

tion 6.5.2) is considered in some detail in Section 6.14. Here we use values which lead to

relatively flat densities in the posterior modal area of the parameters, in order to test the

efficiency of our MCMC methods. Extremely informative priors could potentially mask con-

vergence problems in any of the algorithms. In particular, in all experiments, identical prior

distributions were assigned to the parameters, a Ga(1, 0.1) was chosen for θ and ν and a

Ga(1, 1) for μ.

For each of the 6 series each algorithm was run for 6 million iterations, where the first

50,000 iterations were removed as a burn-in period and subsequently parameter values were

stored every 100th iteration. For reasons which will be described later in this section, we

considered the following asymmetric initialisation of the two algorithms: the parameter

values were initiated at their known values for the centered algorithm and at their prior means
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for the non-centered algorithm. The computing time for the two algorithms is comparable,

1000 iterations (while chains were in stationarity) took 2.75 seconds of CPU time for the

centered algorithm for dataset 1 while 4.47 seconds for the non-centered on a Pentium III

450MHz processor (all programs are coded in Fortran).

The results are summarised in Figure 6.11. The estimated autocorrelation function for

the MCMC time series (remaining after removing the burn-in samples and thinning) corre-

sponding to λ = νμ is plotted for the centered and non-centered algorithm, for each of the

datasets.
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Figure 6.11: Estimates of the autocorrelation function of the marginal chain corresponding
to λ = νμ for the centered (solid) and the non-centered (dashed) parameterisations for each
of the simulated data sets described in Section 6.12.1. dataset 1 is in the top left corner
and the rest of the datasets are placed from left to right. T = 2000 in the two bottom right
plots, T = 500 in the rest. The estimates were calculated after thinning each of the chains
one every hundredth and discarding the 500 initial points.

Initial inspection of the results reveals considerable robustness of the non-centered algo-

rithm to a variety of different datasets, as opposed to the centered algorithm which seems to

be doing badly in some cases. Due to the complexity of the problem, it is a daunting task to

provide detailed explanation of the observed behaviour of the algorithms. Moreover, since

we cannot quantify the relative strength of the marginal and augmented information (see

Meng and van Dyk (1997)), it is difficult to know apriori which algorithm is to be preferred
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for a given dataset. For example, if the underlying Poisson rate is small, then although the

data are very informative about Ψ, as argued in Section 6.8, the prior dependence between

Ψ and λ increases and it is not clear whether the centered or the non-centered parameter-

isation should be used. Our experience suggests that the centered should be favoured for

high frequency data, otherwise the non-centered appears to be a more efficient and robust

algorithm. Notice however, that the computer algorithms for both are quite similar since

they differ only in the step of updating the parameters given the missing data, and it is not

much harder to code both than just one of them. This point was also made in Section 4.1.

Another advantage of the non-centered algorithm is that, compared to its centered coun-

terpart, it is considerably more robust to initial values. Figure 6.12a shows a run of both

algorithms on dataset 1 with all parameters started from their prior means. The difference
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Figure 6.12: MCMC traces for λ for dataset 1, when all parameters are initialised from their
prior means. (a): the centered (converging slowly) and the non-centered (converging rapidly)
algorithms described in Appendices 1 and 2 are used. (b): a modification of the centered
parameterisation is used, where 100 birth-death updates are performed for each update of
the parameters. All chains have been thinned one every hundredth.

is striking; λ, when started from the tails, it zooms immediately into the modal area for the

non-centered while it takes more than 106 iteration to reach near the mode for the centered.

The behaviour of the centered can be improved at the expense of large computational effort,

for example by doing multiple updates of Ψ for each update of the parameters (see Fig-

ure 6.12b). It appears that the posterior of the Poisson process depends less on λ as λ → ∞,

allowing the non-centered algorithm to return from the tails to the mode very quickly. We

are currently investigating how this behaviour relates to the findings of Chapter 3 about

uniform ergodicity of some NCAs. The instability to initial values of the centered-algorithm

is a serious problem since choosing reasonable starting values is particularly difficult in this

case where maximum likelihood estimates (for instance) are not available. Moreover, such

unstable excursions indicate problems of the sampler in exploring tail areas and therefore
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underestimating uncertainty, see for example Roberts (2003).

Figure 6.13 provides a visual summary to monitor the convergence of the high dimensional

Ψ for the non-centered algorithm for dataset 1. The current configuration of the jump times
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Figure 6.13: MCMC output for the point process Ψ for dataset 1, for the non-centered
algorithm. The configuration of the jump times {Ci} is plotted against every 1000th iteration
for the first 60,000 iterations of the algorithms. The degree of darkness of the points within
each configuration reflects their relative jump sizes Ei. In the far right the configuration of
the jump times used in the simulation of the data is plotted. The picture is similar for the
centered algorithm, although for this example convergence is not reached so quickly.

is being plotted against every 1000th iteration for the first 60,000 iterations. The degree of

darkness of the points within each configuration reflects their relative jump sizes on a four

colour grey scale (with black corresponding to the largest jumps). In the far right part of

the figure the true configuration of the jump times produced from the simulation, coloured

as described, is given. For this dataset the data are quite strong in identifying the hidden

jump times, as is evident in Figure 6.13.

6.12.2 Comparison of the different NCPs

This section compares the three different non-centered parameterisations we proposed in

Section 6.10 and Section 6.11. We look at estimated autocorrelations for λ, as in the simula-

tion study of Section 6.12.1. Figure 6.14 plots these estimates for each of the NCPs applied

to the simulated datasets 1 and 6. The results indicate that the MPP-THIN-NCP is slightly

better. We note that the computational cost associated with implementing the THIN-NCA

is greater than for the other two algorithms.

This simulation study revealed a very interesting scaling property of the MPP-CDF-

NCA. Recall that the blocking scheme used in this algorithm for updating the parameters is

the same as for the THIN-NCA and it is outlined in Section 6.11.1, and the same estimates
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Figure 6.14: Estimates of the autocorrelation function of the marginal chain corresponding
to λ = νμ for the MPP-THIN-NCP (red), the MPP-CDF-NCP (green) and the THIN-NCP
(blue) for simulated dataset 1 (left) and 6 (right). The estimates were calculated after
thinning each of the chains one every hundredth and discarding the 500 initial points. Runs
of length 1.5 × 106 were used for all algorithms.
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μ were used in both algorithms. The constant c was found to be very similar for

both in order to achieve similar acceptance rates when they were applied to the dataset 1.

Nevertheless, when they were applied to the dataset 6, the c chosen for the THIN-NCP was

about 10 times smaller than for dataset 1, while the one for the MPP-CDF-NCP remained

essentially unchanged. This means that the latter was attempting much larger steps on the

parameter space than the former with the same acceptance rates, thus we would expect

to see very different ACF plots from those presented in Figure 6.14. Intuitively, we would

anticipate that the ACFs for the MPP-CDF-NCP decay faster than for the THIN-NCP,

however this is not the case.

On the other hand, from the general results of Chapter 2, we know that a two component

Gibbs sampler converges not faster than any of its components. This suggests that a potential

explanation for this counter-intuitive algorithmic behaviour is that the mixing of Ψ is much

slower in the MPP-CDF-NCP. Ψ is updated twice in any of the NCPs: once explicitly in

Step 4 and once implicitly in Step 1 of the algorithm given in Section 6.10. By construction,

all our proposed NCPs share the updating Step 4. Clearly, the changes that both the MPP-

THIN-NCP and the THIN-NCP are attempting to make on Ψ in Step 1 are drastic, since

points are randomly deleted or added, generated from the prior distribution. Therefore,

when such moves are accepted, relatively large steps in the point process space are made. In

this respect, especially when λ is very large, Step 4 adds little to the mixing of the algorithm.

On the contrary, the MPP-CDF-NCP attempts local changes to Ψ while updating the

parameters in Step 1, since points corresponding to the smallest jump sizes are either removed

or added. Therefore more ambitious steps in the parameter space can be achieved without

changing the likelihood drastically, thus with high probability of acceptance. Nevertheless,

Ψ is not moving fast around the parameter space and the updating at Step 4 is not enough

for it to mix appropriately, since Ψ can change at most by one point, which is really not

enough when λ is large.

To test empirically the above considerations we re-run the THIN-NCP and the MPP-

CDF-NCP for dataset 6, but we performed 100 updates of Ψ at Step 4, for every update of

the parameters. The results shown in Figure 6.15 seem to support our claims, since now the

MPP-CDF-NCP is clearly converging much faster than the THIN-NCP.

Multiple updates of Ψ are computationally extremely expensive in our problem, and

should be avoided. We have experimented extensively with more sophisticated approaches

for updating Ψ, without significant success. However, if more efficient methods for this

updating step could be found, then the MPP-CDF-NCP would become a very attractive

option.

The observed behaviour of the different NCPs also relates with the success of the Metropolis-

Hastings step we use to update the parameters given the missing data in Step 1 of the MCMC

algorithm outlined in Section 6.10. We wish to get an impression of what log π(X | λ, θ, μ, Ψ̃)

176



0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
C

F

Lag

Figure 6.15: Estimates of the autocorrelation function of the marginal chain corresponding
to λ = νμ for the MPP-CDF-NCP and the THIN-NCP for simulated dataset 6. The green
and blue lines are the same as those in Figure 6.14. The two algorithms were re-run, perform-
ing 100 updates for Ψ, that is 100 birth-death-displacement steps, for every update of the
parameters. The light blue line corresponds to the estimated ACF of λ for the THIN-NCP
and the purple line for the MPP-CDF-NCP. The estimates were calculated after thinning
each of the chains one every hundredth and discarding the 500 initial points. Runs of length
1.5 × 106 were used for all algorithms.

“looks like” as a function of the parameters when Ψ̃ is kept fixed, for each of our proposed

NCPs. In particular, we want to investigate the smoothness of these functions. This issue

was investigated also in Section 4.3 for some state space expanded NCPs. For simplicity all

parameters are kept fixed except for λ, which is allowed to vary in the range [λmin, λmax],

containing the greatest part of its posterior mass. Actually, when θ is kept fixed the MPP-

THIN-NCP coincides with the THIN-NCP therefore the latter is not considered in the sequel.

To facilitate comparison among the different non-centering schemes, we simulate Ψ̃ for each

NCP, not from its marginal posterior, but from the conditional posterior given specific pa-

rameter values. Thus, when these values are used, all NCPs yield the same realisation of the

missing data Ψ. The experiment, which was conducted on the simulated datasets 1 and 6,

is described in detail in the following paragraph.

To simplify exposition we introduce the notation (λT , θT , μT ) to denote the true parameter

values used to simulate the datasets. Having fixed the parameters at their true values, we

simulated from the conditional posterior distribution of the missing data by running our

MCMC algorithm until “convergence” has been reached. Thus, a draw was obtained from

the posterior distribution of Ψ and v(0) conditional on the true parameter values, ψ and v

respectively say. We then produced 100 draws from the posterior distribution of Ψ̃ given

Ψ = ψ, v(0) = v and (λ, θ, μ) = (λT , θT , μT ), for both the MPP-THIN-NCP and the MPP-
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CDF-NCP. This is simply achieved by performing the stochastic transformation Step 5 of

the MCMC algorithm in Section 6.10. Specifically, for the MPP-THIN-NCP each draw is

obtained by simulating a collection of independent Un[0, λT ] marks, one for each of the

points in ψ, and by simulating the Poisson process {(Ci,Mi, Ẽi), λT < Mi < λmax} from the

prior. For the MPP-CDF-NCP we first need to transform Ei → Ẽi, so that Ẽi ≤ λT , and

subsequently to simulate {(Ci, Ẽi), λT < Ẽi < λmax} from the prior. Notice that for each

draw Ψ̃ produced for each of the algorithms, (Ψ̃, λT , θT ) → ψ, although this is not the case

for other parameter values. The aim of the experiment is to compute log π(X | λ, θT , μT , Ψ̃)

for each of the posterior draws Ψ̃ for each of the two algorithms.

Figure 6.16 and Figure 6.17 exhibit the results of the experiment for datasets 6 and

1 respectively. Top rows plot the conditional log-likelihood for a single realisation of Ψ̃,

emphasizing the smoothness of the target density. The bottom rows superimpose the log-

likelihoods for each of the draws. We have split the range of λ in three parts: the left tail

(left), the area around the mode (middle) and the right tail (right).

Initial inspection of the figures reveals some fundamental differences in the two algo-

rithms. All realisations of Ψ̃ for the MPP-CDF-NCP are transformed to the same Ψ for all

λ < λT . On the contrary, the MPP-THIN-NCP induces randomness when λ moves in either

direction of the current parameter value (λT in our example). The difference in smoothness

of log π in the two algorithms is remarkable. The MPP-CDF-NCP, especially when there are

many points in ψ, leads to very smooth target densities as opposed to the MPP-THIN-NCP.

All non-centered algorithms require a Metropolis-Hastings step for updating the param-

eters given the missing data. The experiment reveals that the target density of this step

is much smoother for the MPP-CDF-NCP than the MPP-THIN-NCP (and similarly the

THIN-NCP). It is known (Roberts and Yuen (2003)) that the performance of the Metropolis-

Hastings algorithm critically depends on the smoothness of the target density. In fact, al-

though it is known (Roberts et al. (1997)) that for high dimensional target densities on IRd

the random walk Metropolis has a mixing time of order O(d), Roberts and Yuen (2003)

recently showed that for sufficiently well behaved discontinuous densities the mixing time of

the algorithm is O(d2). Actually, when the density is as rough as those in the left panels of

Figure 6.16 and Figure 6.16, the mixing time can be even worse.

It remains to be explored whether the difference in the behaviour of the algorithms is due

to the efficiency of the Metropolis-Hastings step. This speculation seems to be supported by

another simulation result. The THIN-NCP and the MPP-CDF-NCP were re-run for dataset

1, performing 100 updates of Ψ at Step 4 for every update of the parameters. The results

in Figure 6.18 show that the difference in the performance in the two algorithms is not as

distinct as in Figure 6.15 and actually the THIN-NCP appears to be more efficient than the

the MPP-CDF-NCP. Thus, both algorithms behave in a similar way when there is not much

difference in the smoothness of the posterior density of the parameters given the missing
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Figure 6.16: log π(X | λ, θT , μT , Ψ̃) as a function of λ for dataset 6 for the MPP-THIN-NCP
((a) and (c)) and the MPP-CDF-NCP ((b) and (d)). The function for a single realisation of
Ψ̃ is plotted on the top panel ((a) and (b)). The bottom panel superimposes this function
calculated for 100 different realisations of Ψ̃. In both algorithms Ψ̃ is transformed to the
same Ψ when the parameters take the values λT , θT . All draws of Ψ̃ have been simulated
from its conditional distribution given the data and the true parameter values.
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Figure 6.17: log π(X | λ, θT , μT , Ψ̃) as a function of λ for dataset 1 for the MPP-THIN-NCP
((a) and (c)) and the MPP-CDF-NCP ((b) and (d)). The function for a single realisation of
Ψ̃ is plotted on the top panel ((a) and (b)). The bottom panel superimposes this function
calculated for 100 different realisations of Ψ̃. In both algorithms Ψ̃ is transformed to the
same Ψ when the parameters take the values λT , θT . All draws of Ψ̃ have been simulated
from its conditional distribution given the data and the true parameter values.
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Figure 6.18: Estimates of the autocorrelation function of the marginal chain corresponding
to λ = νμ for the MPP-CDF-NCP and the THIN-NCP for simulated dataset 1. The two
algorithms were run performing 100 updates for Ψ for every update of the parameters. The
blue line corresponds to the estimated ACF of λ for the THIN-NCP and the green line for
the MPP-CDF-NCP. The estimates were calculated after thinning each of the chains one
every fiftieth and discarding the 100 initial points. Runs of length 105 were used for both
algorithms.

We have just scratched the surface here. The following question needs to be investigated

and is currently part of ongoing work: whether the varying efficiency between different NCPs

is due to the different dependence between the parameters and the transformed missing data,

or due to the efficiency of the Metropolis-Hastings step used to update the parameters. If

the latter is true, then other unresolved issues raised in this thesis could be clarified. For

example, it would become clearer why the state-space expanded NCPs converge much slower

than the scale NCPs for the models in Section 4.3. Moreover, the finding that the MPP-

THIN-NCP works worse for the two-OU than for the single-OU model, as we shall see in

Section 6.13, could more easily be explained. Intuitively, we would expect the NCP to

be even better, since the more refined latent structure is harder to be identified from the

observed data, thus the NCP is likely to be even more successful for the two-OU model. On

the other hand, since more parameters are introduced the Metropolis-Hastings step has a

higher dimensional discontinuous target density, and its performance is bound to get worse.
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6.13 Augmentation and non-centered parameterisation

for the superposition of OU processes

In two-OU model of Section 6.5.1 the parameters of interest are ν1, ν2, μ1, μ2, θ and the aug-

mentation scheme of Section 6.6 is adopted, where the missing data are the initial volatilities

v1(0) and v2(0) and the two marked Poisson processes Ψ1 and Ψ2 on S where each Ψi, i = 1, 2

contains the points {(Cij, Eij)}. The MCMC mixing problems based on a centered param-

eterisation described for the single-OU model in Section 6.8 are expected to be even more

profound for the model based on the superposition of such processes. Therefore we directly

proceed to construct a non-centered parameterisation for this augmentation scheme.

We propose a non-centered parameterisation which is a direct extension of the MPP-

THIN-NCP which we constructed for the single-OU model in Section 6.9. It works with a

marked Poisson process Ψ̃ with points {(Cj,Mj)} on [0, T ] × (−∞,∞) and marks Ẽj on

(0,∞) independent of each other and independent of the points. We take

Λ̃(dc × dm × dε̃) = e−ε̃dc dm dε̃

to be the mean measure of Ψ̃. Notice that the marked Poisson process introduced in Sec-

tion 6.10 is the same as Ψ̃ defined above, but restricted on the subset [0, T ]×(0,∞)×(0,∞).

Transformation of (λ1, λ2, θ, Ψ̃) to (Ψ1, Ψ2) might be done as follows (see also Figure 6.19).

MPP-THIN-NCP transformation (Ψ̃, λ1, λ2, θ) → (Ψ1, Ψ2)

Select all points from Ψ̃ for which −λ2 < Mj < λ1.

Denote those with positive Mj as {(C1j,M1j, Ẽ1j)} and the rest as

{(C2j,M2j, Ẽ2j)}.
Project these points to [0, T ] × (0,∞).

Ψi = {(Cij, Eij), j = 1, 2, . . .}, where Eij = Ẽij/θ for i = 1, 2.
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Figure 6.19: The MPP-THIN-NCP of (Ψ1, Ψ2, λ1, λ2, θ). Current values of the parameters
are assumed to be λ1 = 0.2, λ2 = 0.1, θ = 1 and T = 100. Ψ̃ is a Poisson process on

[0, T ]× (−∞,∞)× (0,∞) with mean measure e−ε̃dc dm dε̃; choose all (Ci,Mi, Ẽi) ∈ Ψ̃ with
−λ2 < Mi < λ1 (denoted by circles as opposed to the points with Mi > λ1 or Mi < −λ2

denoted by asterisks).

We also transform vi(0) to ṽi(0) = vi(0)/θ, i = 1, 2 and the resulting posterior density is

π(ν1, ν2, μ1, μ2, θ, Ψ̃, ṽ1(0), ṽ2(0) | X)

∝ π(X | Ψ̃, ṽ1(0), ṽ2(0), ν1, ν2, μ1, μ2, θ)
ṽ1(0)ν1−1

Γ(ν1)

ṽ2(0)ν2−1

Γ(ν2)
e−ṽ1(0)−ṽ2(0)

× π(Ψ̃)π(ν1, ν2, μ1, μ2, θ)1l[μ1 > μ2] (6.51)

where π(ν1, ν2, μ1, μ2, θ) denotes the prior density of the parameters; see Section 6.5.2 for

guidelines on how to construct this prior, but also Section 6.14. Recall that we assume that

θ ∼ Ga(αθ, βθ), which is shown to be computationally convenient below, and that a bivariate

prior for (μ1, μ2) is used constrained on μ1 > μ2.

We use a component-wise Metropolis-Hastings algorithm to sample from the posterior

in (6.51), which is largely based on the MCMC algorithm described in Section 6.10 for the

single-OU model. We update the parameters (ν1, ν2, μ1, μ2, θ) all in one block, mainly to

reduce the amount of likelihood evaluations which are computationally expensive. The full

conditional distribution of θ is known, as in the case of the single-OU model,

θ | · ∼ Ga(n/2 + αθ, k(ν, μ, Ψ̃, ṽ(0), X) + βθ)
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since the jumps of two the Lévy processes are identically distributed with common parameter

θ and we use a gamma prior. In the expression above k is computed as in (6.49). Therefore

we can perform a blocking updating scheme as described in Section 6.10, with d given by

(6.49), but with gi replaced by the sum gi1 + gi2 and each gij, j = 1, 2 computed separately

for each process as in Section 6.10.

Although not considered in this thesis, alternative NCPs exist for the superposition of

the two-OU model, which are immediate extensions of those proposed in Section 6.11

6.13.1 Examples using simulated data

The efficiency of the MCMC algorithm described in the previous section is tested using the

two different simulated datasets described in Table 6.2. Both consist of 2000 daily data but

the parameter values used in the simulations differ across the datasets. The first dataset

was used in the simulation study contained in Roberts et al. (2003). The second dataset is

simulated using the parameter estimates obtained by Roberts et al. (2003) when fitting the

model to the US Dollar-Deutsch Mark exchange rate; see Section 6 of Roberts et al. (2003)

and Section 6.16 of this thesis.

Dataset θ ν1 ν2 μ1 μ2 Volatility stationary law

1 10 0.25 0.5 0.8 0.01 Ga(0.75, 10)

2 25 0.66 0.62 3 0.04 Ga(1.28, 25)

Table 6.2: Information about simulated datasets for the two-OU model

For each of the datasets the non-centered algorithm of Section 6.13 was used to sample

from the posterior distribution of the parameters. The algorithm was run for 6 million

iterations, the first 50,000 were removed as a burn-in period and then parameters were stored

every 100th iteration. The priors we used were chosen to be relatively flat in the posterior

modal area, a Ga(1, 0.1) for ν = ν1 + ν2, a Ga(1, 0.01) for θ, a Un[0, 1] for w2 = ν2/ν, a

Ga(1, 1) for μ2 and a Ga(1, 0.01) for μ1 − μ2 (see Section 6.5.2 for a discussion on the prior

specification for this model).

A significant feature is the slow mixing of the chains for the second dataset. Generally,

we would expect the non-centered algorithm to be much more suitable for the superposition

of the OU processes than for the single OU model, since the more complex latent structure

should be more difficult to be identified by the data. A potential explanation of the slow

convergence is the point made in Section 6.12.2 regarding the effect of the smoothness of

the target densities in the Metropolis-Hastings step used to update the parameters. We

have already seen that both the MPP-THIN-NCA and the THIN-NCA perform not very

satisfactorily when the underlying Poisson rate λ is high (see for example Figure 6.11), thus
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Figure 6.20: Estimates of the autocorrelation function of the marginal chain corresponding
to λ1 = ν1μ1 and λ2 = ν2μ2 for the dataset 1 (solid) and the dataset 2 (dashed), described
in Table 6.2. The estimates were calculated after thinning each of the chains one every
hundredth and discarding the 1000 initial points.

it is not surprising to see the MPP-THIN-NCA to perform poorly for the superposition

where λ1 is very high, and actually its performance to deteriorate the higher the λ1. We

are currently investigating these issues and exploring whether the MPP-CDF-NCP could

provide an improvement.

6.14 Posterior inference and sensitivity analysis

We now refrain from the computational issues and focus on posterior inference for the

gamma-OU models of Section 6.5 and Section 6.5.1. We initially consider the single-OU

and then the two-OU model.

Histograms of the posterior distributions of the parameters (ν, θ, μ) for the simulated

datasets 1,5 and 6 (see Table 6.1) are shown in Figure 6.21, Figure 6.22 and Figure 6.23 re-

spectively. Superimposed are the values that were used in the simulations and the prior den-

sity for each of the parameters. The histograms were produced using the function truehist

of R, thus the area under each histogram is 1.

It can be seen that the parameters are well identified in all datasets and the posterior

distributions are becoming more peaked around the true values the longer the time series.

An interesting feature is that the highly correlated datasets (simulated using small values of

μ) are very informative about the memory and less about the stationary parameters. The

opposite is true for datasets simulated using large values of μ. For example, the posterior

variances of log(μ) are 8.62×10−3 and 3.94×10−2 for datasets 1 and 6 respectively, although

the latter contains four times more data than the former. On the other hand, the posterior

variances of log(ξ) (where ξ = ν/θ is the stationary mean of the volatility) are 5.03 × 10−2
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Figure 6.21: Histograms of the posterior distribution for the parameters ν, θ, μ under dataset
1 (see Table 6.1). The black vertical lines indicate the values of the parameters used in the
data simulation. The prior density for each of the parameters is plotted in red.
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Figure 6.22: Histograms of the posterior distribution for the parameters ν, θ, μ under dataset
5 (see Table 6.1). The black vertical lines indicate the values of the parameters used in the
data simulation. The prior density for each of the parameters is plotted in red.
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Figure 6.23: Histograms of the posterior distribution for the parameters ν, θ, μ under dataset
6 (see Table 6.1). The black vertical lines indicate the values of the parameters used in the
data simulation. The prior density for each of the parameters is plotted in red.

and 7.12 × 10−3 for datasets 5 and 6 respectively. These results are very reasonable, since

when μ → ∞ the observed data are IID observations, thus they are very informative about

ν and θ, which control their common marginal distribution, while μ is not identifiable.

The priors can be seen to be flat in the posterior modal area for all the parameters except

for θ. The informativity of the prior on θ is mostly apparent in dataset 1. It is relatively easy

to choose flat gamma priors for ν and μ when analysing financial time series. The former

being the shape parameter of the stationary distribution of the volatility is expected to take

values no larger than 7 or 8, since the distribution is expected to be skewed and highly

non-Gaussian. Our experience suggests that when the single-OU model is fitted to real data

the long memory component is identified (see Section 6.16). Therefore, since financial series

exhibit volatility clustering, μ is typically very small, in the range 0.01 − 0.15. Thus, it is

feasible to choose the hyperparameters of the gamma priors so that the densities are flat in

the posterior modal area. On the contrary, this task is much harder for θ, since its magnitude

depends on the scaling of the data.

A problem with the prior specification for this model is that default improper priors

cannot be used blindly. For example, if ν, θ are kept fixed and μ → ∞, the likelihood does

not converge to 0; instead it corresponds to a model where the log-returns are independent

with the appropriate mixture of Gaussian distributions. Therefore, it is necessary to choose

a proper prior for μ. This necessity is well known in latent variable models and has attracted

the interest of many authors, especially in the area of finite mixture of densities; see Diebolt

and Robert (1994) and Roeder and Wasserman (1997). In this case, since even the use of

arbitrary vague proper priors is not adequate, there has been a series of attempts to propose
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“default” priors that are, somehow, data-dependent (Richardson and Green (1998), Robert

(1996)). On the other hand, it can be argued (see for example Section 2.5 of Griffin and

Steel (2002)) that a Ga(1, 1) is a non-informative prior for the memory parameter μ.

In order to to assess the sensitivity of the posterior distributions of the parameters to the

prior specification for θ, dataset 1 was re-analysed using a flatter prior for θ in the area of its

posterior mode. The posterior histograms shown in Figure 6.24 confirm that the Ga(1, 0.1)

prior used in the previous analysis for θ was quite informative about the right tail of its

posterior distribution. Notably, the inference for ν and especially for μ is quite robust to the

prior elicitation of θ.
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Figure 6.24: Kernel estimates of the posterior density for the parameters ν, θ, μ under dataset
1 (see Table 6.1), for two different prior specifications: ν ∼ Ga(1, 0.1), μ ∼ Ga(1, 1) and
θ ∼ Ga(1, 0.1) (light blue) and θ ∼ Ga(1, 0.01) (dark blue). Notice that the light blue lines
are density estimates of the same posterior distribution that is represented by histograms in
Figure 6.21. The black vertical lines indicate the values of the parameters used in the data
simulation.

We also analysed dataset 1 using exponential priors for all parameters with mean equal to

their true values. The estimates of the corresponding posterior densities for ν and μ plotted

in Figure 6.24, indicate reasonable robustness of the posteriors to very different priors. Notice

that results for θ are not included in the figure, since the new prior coincides with the one

used in the original analysis and the new posterior density is essentially identical to the one

plotted in Figure 6.21.

All density estimators have been produced using the R function density, with Gaussian

kernel and Silverman’s optimal bandwidth. This is a sensible choice, since the effect of the

rejections in our Hastings algorithms is eliminated by the thinning of the chains, however see

Sköld and Roberts (2003) for some results on optimal bandwidth selection for Metropolis-

Hastings Markov chains.
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Figure 6.25: Kernel estimates of the posterior density for the parameters ν, μ under dataset
1 (see Table 6.1), for two different prior specifications: ν ∼ Ga(1, 0.1), μ ∼ Ga(1, 1) (light
blue) and ν ∼ Ga(1, 3/2), μ ∼ Ga(1, 100/3) (dark blue). Notice that the light blue lines
are density estimates of the same posterior distribution that is represented by histograms in
Figure 6.21. The black vertical lines indicate the values of the parameters used in the data
simulation.

Figure 6.26 and Figure 6.27 show the posterior density estimates (using again the R

function density) for the parameters of the two-OU model for each of the datasets 1 and 2 of

Table 6.2. We have used the priors described in Section 6.5.2 and Section 6.13.1. As it can

be seen the priors are flat in the area of high posterior probability.

6.15 Model diagnostic tools

It is interesting to investigate the strength of the prior assumptions regarding the latent

structure, and how well it is identified from the data. To this end, this section introduces

some simple graphical diagnostics which use the MCMC output of Ψ to assess the Poisson

and exponential assumptions about the jump times and the jump sizes respectively under the

OU models in Section 6.5 and Section 6.5.1. Our diagnostics are based on ergodic properties

of the model, therefore they are informative when λT is rather large. These diagnostics are

the subject of current research, therefore we will not go into too much detail. Instead we

just present the main idea below and illustrate the method by applying it to simulated data.

Let C̃ = {λC1, λC2, . . .} and Ẽ = {θE1, θE2, . . .} where Cj, Ej are defined in Section 6.4.

Using MCMC samples from the posterior distribution of C̃ and Ẽ, we graphically examine

whether they are consistent with the prior assumptions, namely that λ(Cj − Cj−1) ∼ Ex(1)

and that θEj ∼ Ex(1). Our diagnostic plots rely on the property that if E ∼ Ex(1) then

− log P [E > t] = t, t > 0. Thus, systematic deviations from a straight line can inspected
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Figure 6.26: Posterior density estimates for the parameters ν, w2, θ, μ2, μ1−μ2 under dataset
1 (see Table 6.2). The black vertical lines indicate the values of the parameters used in the
data simulation. The prior density for each of the parameters is plotted in red.
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Figure 6.27: Posterior desnity estimates for the parameters ν, w2, θ, μ2, μ1−μ2 under dataset
2 (see Table 6.2). The black vertical lines indicate the values of the parameters used in the
data simulation. The prior density for each of the parameters is plotted in red.
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by plotting an empirical estimate of − log P [ε > t] against t. If the model is the “correct”

one, then due to the ergodic properties of the time series model, we would expect the sample

of the “residuals” in C̃ and Ẽ to be drawn from the prior distribution, since we implicitly

average over the empirical distribution of the observed data. We aim at two things: first,

to apply our diagnostics to real data as a method of assessing model fit; second, to apply

them to data simulated from a different model and examine whether the misspecification is

reflected in the posterior distribution of the parameters and the missing data.

In Figure 6.28 the diagnostics are tried for different simulated time series in [0, 2000].

Dataset 6 (Table 6.1) is used in the left column. The data used in the middle and right

columns have been simulated using the same underlying OU process for both but different

sampling frequency. The OU process has memory parameter μ = 0.1 and it is driven by a

compound Poisson process as in (6.24) where λ = 0.2 but the jump sizes have been simu-

lated from a Ga(0.1, 1). Daily and 100 data per day have been used for the middle and right

columns respectively. For daily data, the diagnostics provide weak evidence about mispe-

sification and we have found that the evidence varies considerably across different datasets

simulated for the same realisation of the OU process. This suggests that for this observation

frequency some aspects of the model cannot be identified. On the other hand, the diagnostics

strongly indicate model mispecification if high frequency data are used. These diagnostic

tools are adopted in the analysis of exchange rates data in Section 6.16. Nevertheless, careful

analysis of the applicability and interpretation of these diagnostics is ongoing work and will

be reported elsewhere.

6.16 A real data example

We fitted the models of Section 6.5 to the series of US dollar (US$) - Deutsch Mark (DM)

exchange rate. The data were obtained from JP Morgan and are daily closing prices that

span the period from 01/01/1986 to 01/01/1996 (2614 data points in total); they are plotted

in Figure 6.1. We have scaled the original log-prices by a multiplicative factor of 10001/2.

This transformation affects only the parameter that controls the distribution of the jump

sizes, that is θ in the models considered in this chapter.

This FX-market has been studied in detail by Andersen et al. (2001) and by Barndorff-

Nielsen and Shephard (2002a) for a similar period of time (01/12/86-30/11/96). However,

they use the Olsen high-frequency data (see for example Andersen et al. (2001)).

For the single-OU model, a Ga(1, 0.01) prior is chosen for θ, a Ga(1, 0.1) for ν and a

Ga(1, 1) for μ. For the two-OU model, we follow the suggestion made in Section 6.5.2 and

parameterise in terms of ν = ν1 + ν2 and w2 = ν2/(ν1 + ν2). We choose a Ga(1, 0.1) prior

for ν, a Un[0, 1] for w2, a Ga(1, 0.01) prior for θ, a Ga(1, 1) for μ2 and μ1 − μ2 is assumed to

be a Ga(1, 0.01) random variable.
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Figure 6.28: Model diagnostic plots for the single-OU model of Section 6.5: For each draw
of C̃ and Ẽ from the posterior distribution, we estimate empirically − log P [λ(cj − cj−1) > t]
and − log P [θε > t]. Each jagged line in the figures corresponds to such an estimator. If the
model is “true” the estimator has to coincide with the straight 45o line. Dataset 6 (Table 6.1)
was used in the left column. The underlying OU process used in the middle and right columns
has been generated under the specification λ = 0.2, μ = 0.1, T = 2000 but the jump sizes
have been generated from a Ga(0.1, 1), instead of an Ex(10) used for Dataset6. Daily data
were used in the middle column and 100 data per day in the right column. The posterior
means for the parameters (ν, θ, μ) are (1.97,9.86,0.09) (left), (0.59,2.43,0.089) (middle) and
(0.68,2.7,0.098) (right).

Tables 6.3 and 6.4 provide some posterior summaries for the parameters from fitting the

single-OU and the two-OU models respectively. In particular, we report summaries for the

mean and the variance of the volatility process, ξ and ω2 respectively (ξ = ν/θ, ω2 = ν/θ2,

where ν = ν1 + ν2 in the two-OU model), the decaying rates and w2.

Parameter Mean Median Standard deviation 95% Credible interval

ξ 5.08 × 10−2 5.07 × 10−2 3.49 × 10−3 (4.43, 5.81) × 10−2

ω2 8.55 × 10−4 8.39 × 10−4 1.72 × 10−4 (5.77, 12.5) × 10−4

μ 7.1 × 10−2 6.93 × 10−2 1.83 × 10−2 (4.07, 11.58) × 10−2

Table 6.3: Posterior parameter summaries for the US$/DM series under the single-OU model

Our results can be contrasted with those obtained by Barndorff-Nielsen and Shephard

(2002a). They fit superposition-based OU stochastic volatility models to the realised volatil-

ity time series constructed from high frequency data. The fit is based solely on second-order

characteristics using quasi-likelihood methods. Under this framework, OU and constant elas-

ticity of variance models are indistinguishable and Barndorff-Nielsen and Shephard (2002a)

make no specific assumptions about the form of the Lévy process in (6.7), and consequently

about the stationary distribution of the volatility process. However, the results summarised

193



Parameter Mean Median Standard deviation 95% Credible interval

ξ 5.19 × 10−2 5.16 × 10−2 4.55 × 10−3 (4.34, 6.17) × 10−2

ω2 2.43 × 10−3 2.32 × 10−3 6.7 × 10−4 (1.42, 3.99) × 10−3

μ1 4.012 3.789 1.43 (1.86, 7.36)

μ2 5.43 × 10−2 5.18 × 10−2 1.16 × 10−2 (2.99, 9.04) × 10−2

w2 0.467 0.469 8.27 × 10−2 (0.30, 0.62)

Table 6.4: Posterior parameter summaries for the US$/DM series under the two-OU model

in Table 3 of Barndorff-Nielsen and Shephard (2002a) are in agreement with ours. There,

μ1 is estimated as 3.74 and μ2 as 0.043, although w2 is estimated around 0.2 whereas our

estimated posterior median is much larger, around 0.48. Therefore, Barndorff-Nielsen and

Shephard (2002a) estimate a much sharper initial drop in the volatility autocorrelation than

us.

Figure 6.29 contains a collection of plots which assist in assessing the model adequacy

and fit. Recall the definitions of the series {v∗
n, n = 1, . . . , T} and {yn, n = 1, . . . , T} given in

Section 6.2 and Section 6.1 respectively. Figure 6.29a shows y2
n as points and the posterior

median of v∗
n under the single-OU (dashed line) and the two-OU (solid line) models, for

n = 1000, . . . , 1200. Figure 6.29b shows this smoothing for the whole period of 2614 days.

Figure 6.29c applies the diagnostics of Section 6.15 to the jump sizes from the single-OU

model. Our diagnostics, applied also to the two-OU model but not reproduced here, indicate

no significant model inadequacy. Figure 6.29d draws a kernel estimate of the log-density of

the predictive distribution of log(v∗
n). It is interesting to compare this with similar estimates

plotted in Figures 4b and 5b of Barndorff-Nielsen and Shephard (2002a). See also Figure 1 of

Andersen et al. (2001) for some non-parametric estimates of the distribution of v∗
n. Finally,

Figure 6.29e plots the posterior median of the autocorrelation function of the series {v∗
n}

from lag one onwards. Their theoretical forms as a function of the parameters have been

derived by Barndorff-Nielsen and Shephard (2002a) and is given for the single-OU model

in (6.15). Figure 6.29e shows that the two-OU model results in faster initial and slower

subsequent autocorrelation decay than the single-OU model.

All results were obtained using the non-centered algorithms of Section 6.9 and Sec-

tion 6.13. The mixing of the algorithm for the superposition of the OU processes is not

very satisfactory. This is not very surprising given that we have already commented (in

Section 6.13.1) that the algorithm mixes slowly for parameter values as those estimated for

the exchange rate data.
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Figure 6.29: Results from fitting the OU models to the US$/DM data. In all plots dashed
and solid lines corresponds to results obtained under the single-OU and the two-OU models
respectively. Top: pointwise posterior median v∗

n: (a) short period of time for the single-
OU and the two-OU models. (b) long period of time for the two-OU model; the grey dots
correspond to y2

n. Bottom: (c) diagnostic of Section 6.14 applied to the jump sizes from the
single-OU model. (d) kernel estimates of the log-predictive density of log(v∗

n). (e) posterior
median of the ACF of the series {v∗

n}.
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6.17 Extensions and further work

This section deals with issues not covered in this chapter. We discuss how the methodology

we have developed can be extended to cope with these problems.

6.17.1 Drift and risk premium

Our MCMC methodology can easily cope with the extension where the drift and risk pre-

mium terms have been added to the model. Thus, the SDE of the log-price conditionally

on the volatility process is given in (6.3) with non-zero α, β. For reasons of interpretabil-

ity and parameter orthogonality we consider the reparameterisation (α, β) → (u, β) where

u = α + βξ and ξ is the mean of the volatility process. The SDE of the price process can

now be written as

dx(t) = udt + β(v(t) − ξ)dt + v(t)1/2dB(t), t ∈ [0, T ]. (6.52)

This reparameterisation is common in regression models, see for example Chapter 9 of

O’Hagan (1994). It follows that (see Section 6.2 for definitions of the quantities appear-

ing below)

yn = uΔ + β(v∗
n − E{v∗

n}) + (v∗
n)1/2εn (6.53)

where εn, n = 1, 2, . . . is a sequence of independent standard normal random variables and

independent of the volatility process. Notice that the distribution of

v∗
n =

∫ nΔ

(n−1)Δ

v(s)ds

depends on the time lag Δ chosen. Therefore,

E(yn) = uΔ

Var (yn) = E(v∗
n) + β2Var (v∗

n)

Cov(yn, yk) = β2Cov(v∗
n, v

∗
k), k 	= n

Notice that when the β term is not zero then the returns are positively correlated. This de-

pendence is implicitly induced by their correlation with the actual volatility process. Specif-

ically,

Cov(yn, v
∗
n) = βVar (v∗

n) (6.54)
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thus

Cov(yn, yk) = βCov(yn, v
∗
n)Corr(v∗

n, v
∗
k), n 	= k.

(6.54) relates with the interpretation of β as a risk premium. The risk premium is

a measure of discrepancy between the marginal and the conditional characteristics of the

returns and it can be defined as the following function of the unobserved volatility:

risk premium =
E(yn) − E(yn | v∗

n)

E(v∗
n) − v∗

n

. (6.55)

In (6.52) the risk premium coincides with β. Under this formulation the risk premium is

not invariant under scaling of the data. In the discussion of Barndorff-Nielsen and Shep-

hard (2001) the authors argue that they use this specification (instead for example using

the standard deviation in the definition above) for reasons of analytical tractability; see

Barndorff-Nielsen and Shephard (2001) for more references and alternative models.

β also controls the skewness of the marginal distribution of the returns. The coefficient

of skewness of a random variable X is

skew(X) =
E{(X − E(X))3}

(Var (X))3/2

hence it can be shown by first conditioning on v∗
n that

skew(yn) = β
β2E[(v∗

n − ξΔ)3] + 3Var (v∗
n)

(E(v∗
n) + β2Var (v∗

n))2/3

which shows that the returns distribution is skewed in the presence of β 	= 0. Moreover, the

sign of the skewness is that of β.

It was first noted in Section 6.1 that economic theory suggests β > 0, so that investors

are compensated for the risks they undertake. On the other hand, the empirical studies

reviewed in Section 6.1 reveal negative skewness for many financial returns, which implies

a β < 0 for the model (6.52). Thus, it seems reasonable to assign a prior on β which gives

mass on the whole of the real line. We specify Gaussian priors for both u and β, a choice

which turns out to be computationally convenient as well.

Under the full model (6.52), together with the OU specification for the volatility (6.9),

Bayesian inference is concerned with the joint posterior distribution of the parameters of

the volatility process, u and β. When working with background driving compound Poisson

processes (Section 6.4) we adopt the augmentation scheme proposed in Section 6.6. We are

interested in designing an MCMC algorithm which samples from the joint distribution of the

missing data and the drift and volatility parameters. This can be done in a componentwise-

updating algorithm which updates the missing data and volatility parameters conditionally
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upon the drift parameters, and the drift parameters conditionally upon the rest. The first

step can be implemented as described in Section 6.7 or Section 6.9, depending on whether

a centered parameterisation is preferred or not. The second step can be done by direct

simulation. The missing data and the volatility parameters uniquely determine the integrated

volatility series {v∗
n}. Conditionally on this series, (6.53) defines a regression model with

heteroscedastic errors and where {v∗
n} is the vector of covariates. Under Gaussian priors,

the posterior distribution of u, β, which are the regression coefficients, is Gaussian and can

be easily derived as shown in Lindley and Smith (1972).

6.17.2 Leverage effect and non-integrable Lévy measures

Section 6.1 discussed the leverage effect observed and explained by Black (1976), according

to which low returns in equities markets increase future volatility. In terms of the observables

negative correlation exists between yn and subsequent y2
k, k > n. In an SV framework it is

not possible for the price process to feed into the variance process, therefore the leverage

effect has to be incorporated into the model in the reverse way: by modifying the model to

allow the feedback of the innovations of the volatility process into the price process. To this

end, Barndorff-Nielsen and Shephard (2001) propose the following model

dx(t) = udt + β(v(t) − ξ)dt + v(t)1/2dB(t) + ρdz(t), t ∈ [0, T ]

where

z(t) = z(t) − E(z(t)).

It is expected that ρ < 0, so that large positive innovations lead to negative returns. Notice

that z(·) is a Lévy process and a martingale. Since this construction works directly with the

BDLP, our augmentation methodology and parameterisations could naturally be extended

to cope with the leverage effect model.

A fascinating problem is inference for OU models driven by Lévy processes with non-

integrable Lévy measures. These processes do not correspond to compound Poisson processes,

thus our methodology needs to be carefully modified. The main complication is due to the

fact that the Poisson process Ψ corresponding to the Lévy process z(·) is not locally-finite,

which means that its mean measure is not σ-finite. It is not straightforward to handle

computationally these objects, neither is it simple to find the conditional distribution of

the parameters given the Lévy process. Often, Ψ will contain infinite information about

some of the parameters. This implies that an NCP is necessary, but Section 5.8.1 discussed

the difficulties which arise when constructing NCPs for Poisson processes with non-σ-finite

mean measure. The usual practice is to approximate Ψ with a finite process (see Wolpert
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and Ickstadt (1998) for an example) and Rosinski (2002) reviews some related methods.

Our methodology is directly applicable if such an approximation is adopted. Actually, the

findings of Section 6.12.2 are promising, since they suggest that an MPP-CDF-NCP might

be very efficient.
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Chapter 7

Partially Non-centered

parameterisations

7.0 Introduction

This chapter introduces partially non-centered parameterisations (PNCPs). This is a new

class of parameterisations which lie on a continuum between the CP and the NCP. This

construction is motivated by the aspiration to construct MCMC algorithms robust to the

information content of the data, so that the user does not have to choose beforehand whether

to use a CP or an NCP. In fact we show that in the context of normal hierarchical models,

there exist partially non-centered Gibbs sampling algorithms (PNCAs) which outperform

both the CA and the NCA and there is one which is the optimal Gibbs sampling algorithm

producing IID draws from the posterior distribution of (X, Θ). Moreover, PNCPs for general

non-Gaussian models are constructed. A discussion is provided on the relevance of this

methodology to other augmentation techniques proposed in the literature. In particular we

establish and explore the connections with parameterisations which minimise the posterior

correlation between X and Θ, and with the conditional and marginal augmentation. We

address the issue of optimisation of a PNCP and conclude the chapter with some examples

where this methodology has successfully been applied to. Some of the material in this chapter

is based on Section 4 of Papaspiliopoulos et al. (2003).

7.1 Partial non-centering of hierarchical models

We have extensively discussed two alternative parameterisations for hierarchical models: the

centered and the non-centered. The corresponding graphical models are shown in Figure 1.3

and Figure 1.6. These parameterisations were designed to be used in conjunction with data

augmentation methods, and we termed the corresponding Hastings-within-Gibbs sampling
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algorithms the centered (CA) and the non-centered (NCA) algorithm, see Section 4.1. The

CA is optimal in the limiting case where the data Y are very informative about the missing

data X. On the contrary, the NCA is optimal in the limiting case where there are no

observed data at all, since it produces IID observations from the joint prior distribution of

the transformed missing data X̃ and Θ.

A natural question is whether it is possible at all to construct a family of parameterisa-

tions which contains the CP and the NCP as special cases. We wish that this family contains

parameterisations which for a given dataset are preferable to both the CP and the NCP. It is

also desirable to develop techniques which allow the data to choose somehow automatically

a particular member of this family, so that for example the user does not have to choose

beforehand whether to use a CP or an NCP.

This chapter introduces such a family of parameterisations which lie on a continuum

between the CP and the NCP. We call the members of this family partially-non-centered

parameterisations (PNCP). Section 7.2 describes the methodology for the normal hierar-

chical model, where convergence rates of the proposed parameterisation can be analytically

computed. However, this model is used mostly for pedagogical purposes, since our aim is to

apply this methodology to non-Gaussian models and this is discussed in Section 7.5.

7.2 PNCP for the normal hierarchical model

We have already defined the CP and NCP for the normal hierarchical model in Section 2.3

(see (2.14) and (2.18) respectively). Section 2.3 showed that the rate of convergence of the

associated Gibbs sampler algorithms, the CA and the NCA respectively, depends on the

angle (in an L2 sense) between Θ and X (in the CA) and Θ and X̃ (in the NCA). It is easy

to show that when Θ has the improper uniform prior then Cov(X, X̃ | Y ) = 0, therefore X

and X̃ are orthogonal a posteriori . Hence, the angle between Θ and X is complementary

to that between Θ and X̃ (see Figure 7.1) and as a consequence ρc = 1−ρnc. This geometric

interpretation motivates the partially non-centered parameterisation (PNCP): some linear

combination between X and X̃, X̃(w) say, will be orthogonal to Θ a posteriori , and the

corresponding Gibbs sampler will produce IID samples; see Figure 7.1.

We now proceed to show how we can obtain such a reparameterisation. Consider the

following alternative parameterisation for the normal hierarchical model,

Yi = wΘ + X̃
(w)
i + σyεi

X̃
(w)
i = (1 − w)Θ + σxzi, i = 1, . . . ,m. (7.1)

where w is a fixed number in [0, 1]. We will refer to w as the working parameter, borrowing
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Figure 7.1: The geometry of the normal hierarchical model.

the terminology from the conditional augmentation literature, see Section 7.9.1. Therefore

X̃
(w)
i = Xi − wΘ (7.2)

and

X̃
(w)
i = (1 − w)Xi + wX̃i (7.3)

where Xi and X̃i are defined in Section 2.3, thus (7.1) defines a family of parameterisations

with the CP at one extreme, for w = 0 and the NCP at the other, for w = 1. Notice that

(7.1) is over-parameterised, since w is not identifiable from the observed data, in the sense

that Y | Θ, w is the same for all values of w.

The joint posterior distribution of X̃(w) = (X̃
(w)
1 , . . . , X̃

(w)
m ) and Θ is still Gaussian, since

X̃(w) is the linear transformation of X and Θ given in (7.2); see also Section 7.3.1 for some

useful relevant expressions. Therefore we can calculate the rate of convergence of the Gibbs

sampler under this parameterisation using the general results of Section 2.1.1, which is given

below and plotted against w (for a specific value of κ) in Figure 7.2:

ρpnc(w) =
(w − (1 − κ))2

w2κ + (1 − w)2(1 − κ)
; (7.4)

κ was defined in (2.16) as κ = σ2
x/(σ

2
y + σ2

x). Recall from (2.15) and (2.19) respectively that

ρc = 1 − κ and ρnc = κ. These two rates correspond, as we would expect from (7.3), to
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ρpnc(0) and ρpnc(1) respectively. It can be easily shown and is also depicted in Figure 7.2

0 1

0

1 1

w

ρ
w p
n
c

1 − κ

ρc

ρnc

Figure 7.2: Rate of convergence ρpnc(w) for the PNCP on the normal hierarchical model. In
this example we have taken σ2

x = 1, σ2
y = 3, thus κ = 1/4.

that

ρpnc(w) ≤ max(ρc, ρnc), ∀w ∈ (0, 1)

and

ρpnc(w) = 0 for w = 1 − κ.

Therefore the PNCA (7.1) can outperform both CP and NCP, but also it can be tuned

appropriately to produce IID samples, by setting w = 1−κ. Moreover, ρpnc(w) ≥ min(ρc, ρnc)

for all values of w outside the unit interval.

Clearly, since (X̃(w), Θ) are jointly Gaussian there exists linear transformations which

make them uncorrelated and consequently independent. One such transformation is exactly

described by (7.2), when w is set equal to 1 − κ. The fact that w = 1 − κ makes X̃(w)

and Θ independent is not surprising taking into account the weighed average form of the

expectation of Xi conditional on Yi and Θ given in (2.17).

Therefore, it may seem that the PNCP is just an alternative way to achieve the diagonal-

isation of the covariance matrix of a Gaussian vector. However, the novelty of this method

lies in the way that the optimal algorithm is found by “interpolating” between the CA and

the NCA, as in (7.3) or in (7.2). This construction can easily be extended to non-Gaussian

models, as we shall see in Section 7.5. In general, the PNCP will involve non-linear transfor-
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mations of the missing data X and Θ and will be suggested by the way (X̃, Θ) is transformed

to X.

7.3 PNCP for the general normal hierarchical model

We now extend the results of Section 7.2 to the general normal hierarchical model introduced

in Section 2.4. Consider the following alternative parameterisation for the model in (2.21)

Yi = C1i(X̃
(w)
i + WiΘ) + (σ2

i Ini
)1/2εi

X̃
(w)
i = (Ip − Wi)C2Θ + D1/2zi (7.5)

where Wi is a p × p matrix, which implies that

X̃
(w)
i = Xi − WiC2Θ (7.6)

When Wi is the identity (7.5) becomes the non-centered parameterisation while when it is

the null (7.5) becomes the centered. Using the results of (2.22) and (2.26) it can be easily

seen that

Cov(X̃
(w)
i , Θ | Y ) = 0, for all i = 1, . . . ,m, when

B−1
i = σ−2

y CT
1iC1i + D−1

Wi = BiD
−1 (7.7)

which suggests that the corresponding Gibbs sampler will produce IID samples for this choice

of the weight matrix. This can be formally proved by showing first that the inverse variance

matrix of (Θ, X̃(w)) is a block diagonal and therefore the corresponding B-matrix (defined

in Section 2.1.1) is the null matrix.

Section 2.4 highlighted the importance of the Wi matrix defined in (7.7) in assessing the

convergence properties of the CA for the general normal hierarchical model.

Notice that in (7.5) the proportion of Θ subtracted from each Xi varies with i unlike (7.1),

reflecting the varying informativity of each Yi about the underlying Xi present in (7.5).

7.3.1 Full conditional distributions

For completeness we give here the full conditional distributions that are essential for Gibbs

sampling under the PNCP for the general normal hierarchical model.

The X̃
(w)
i are conditionally independent given Θ and their distributions are readily avail-

able using (7.6) and the conditionals for the Xis given in (2.25). More involved is the

derivation of the conditional distribution for Θ. We begin by giving the precision matrix of
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(X̃(w), Θ):

Qpnc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q1 0 . . . 0 −(Q1W1 + D−1)C2

0 Q2 . . . 0 −(Q2W2 + D−1)C2

...
...

. . . . . .
...

0 0 . . . Qm −(QmWm + D−1)C2

−Ct
2(W

t
1Q

t
1 + D−1) −Ct

2(W
t
2Q

t
2 + D−1) . . . −Ct

2(W
t
mQt

m + D−1) QΘ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(7.8)

where

QΘ = Ct
2

m∑
i=1

{
W t

i QiWi + D−1Wi + W t
i D

−1 + D−1
}

C2; (7.9)

see Section 2.4 for definitions of the matrices involved in the above expressions. This result

can be obtain by first noticing that (X̃(w), Θ) is a linear transformation of (X, Θ), whose

precision matrix is given in (2.30), and then using the standard results for deriving covariance

matrices of linear transformations. The conditional posterior of Θ is Gaussian, with precision

QΘ and mean vector MΘ which is derived from (7.8), (2.22) and (2.26) after some algebra.

7.4 PNCP with proper priors

An issue which was raised in the discussion of the paper of Papaspiliopoulos et al. (2003),

where the PNCP was first introduced, concerns the effect of the prior on Θ on the construc-

tion and the rate of convergence of the PNCP. This issue is addressed here in the context

of the simple normal hierarchical model of Section 2.3. The prior we assumed for Θ in

Section 7.2 was the improper uniform, π(Θ) ∝ 1. Suppose that we choose the proper and

conjugate prior

Θ ∼ N(μ, τ 2)

instead, where by convention the limit of this distribution as τ−2 → 0 is taken to be the

improper uniform. See Section 2.3.2 for a convergence rate analysis of the CA and the NCA

for this model.

The PNCP remains the same as in (7.2), but the rate of convergence of the Gibbs sampler

under this parameterisation changes with respect to (7.4), and becomes

ρpnc(w) =
(w − (1 − κ))2

w2κ + (1 − w)2(1 − κ) + σ2
x(1 − κ)(1/τ 2)

(7.10)
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where κ is defined in (2.16). From this it follows that the optimal value of w, which is 1−κ,

is not affected by the choice of the prior, however the convergence rate is uniformly better

for all w the smaller the prior variance of Θ. This is graphically depicted in Figure 7.3,

where we plot ρpnc(w) against w for fixed κ but different values of τ .

0 1
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1 1

w

ρ
w p
n
c

1 − κ

ρc

ρnc

Figure 7.3: Rate of convergence ρpnc(w) different values of 1/τ 2 = 0, 1, 2, 5, 10, 100, when
σx = 1, κ = 0.4. Curves that lie above others correspond to smaller values of 1/τ 2.

7.5 PNCP outside the Gaussian context

Partial non-centering can be used for many models outside the Gaussian context. In general

there is no unique way of defining a continuum of partial non-centering strategies. However

often there will be a natural one suggested strongly by the model structure, and the way

(X̃, Θ) is transformed to X. For example, when Θ is a location parameter for the prior

distribution of X then we typically take

X = X̃ + Θ

X = X̃(w) + wΘ

while if Θ is a scale parameter we could choose

X = ΘX̃

X = ΘwX̃(w)

with w ∈ [0, 1] in both cases. Such choices become less obvious when working with state-

space expanded NCPs but Section 7.6 gives some ideas in that direction.
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Outside the Gaussian context, it is rare that pure Gibbs sampling can be used in conjunc-

tion with a PNCP, so that as with the NCP and often the CP, appropriate Hastings-within-

Gibbs strategies will be necessary. Thus the PNCP cannot be expected to produce IID

observations from the target distribution for any w. The general MCMC single-component

updating algorithm based on the PNCP is described below.

A Hastings-within-Gibbs to sample from (Θ, X̃(w)) | Y

Iterate the following steps:

1. Update Θ according to π(Θ | X̃(w), Y )

2. Transform (Θ, X̃(w), w) → X

3. Update X according to π(X | Θ, Y )

4. Transform (Θ, X, w) → X̃(w).

When working with non-Gaussian models, it turns out that the really challenging problem

is how to find values of w which lead to substantially better algorithms than both the CA

and the NCA. This choice is straightforward for the normal model, since we can carry out

analytic calculations. In more general contexts though, this choice is less obvious. We note

however, that sensitivity of algorithmic performance to data is very common in many classes

of hierarchical models, since it is often the case that the information about Xi contained

in Yi will depend on Yi. Therefore, to extend the PNCP to other models in an efficient

way, we will need to allow w to vary across i, as in (7.5), and possibly be a function of the

corresponding data Yi. This problem will be investigated in Section 7.10 after we establish

the connection between the PNCP and the so-called conditional augmentation. Examples

of the PNCP methodology applied to non-Gaussian models will be given in Section 7.11.

We close this section by highlighting an advantage of seeking PNCPs for complex models,

rather than just working with the CP or the NCP. For the simple normal hierarchical model

of Section 2.4 we showed that ρc = 1 − ρnc, which implies that when the one algorithm is

very good the other is very poor. Therefore in such a scenario, for example when κ is close

to 0 or 1, there is not a big advantage in using the PNCP instead of the best between the

CP and the NCP.

When the CA and the NCA have similar rate of convergence then they are both doing very

well, since their convergence rates are around 0.5. Of course we are not interested in investing
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a lot of set up and computational time to improve on an algorithm whose convergence rate

is as good as 0.5. This is why we argued in Section 7.1 that the construction for the simple

normal model serves mostly as an illustration and motivation to the PNCP, rather than as

a means to itself. However, in other models it is not true that ρc = 1 − ρnc, even inside

the Gaussian family, see Section 2.4 and in particular model (2.38) for an example. In

these models, it might be the case that both algorithms are poor and therefore substantial

improvements can be achieved by using a PNCP.

7.6 State-space expanded PNCPs

Designing parameterisations which lie on a continuum between a centered and a state-space-

expanded non-centered parameterisation, is rather challenging as this section demonstrates.

Moreover, “obvious” choices might lead to a reducible Gibbs sampler and such an example

will be given in the sequel. The results of this section are at a preliminary stage, therefore

we will just focus on a specific example.

Suppose that X ∼ Ga(Θ, 1) and the state-space-expanded NCP proposed in Section 4.2

has been adopted, that is X̃(·) is a gamma process and X = X̃(Θ). This construction is

thoroughly studied in Section 4.2, where details can be found. Therefore the NCP takes X̃

to be a standard gamma process and X is obtained as its value at the unknown time Θ. We

could instead obtain X as the value of a gamma process with unknown shape parameter Θ

at the fixed time 1. This observation suggests that a PNCP could be constructed by taking

X̃(w)(·) to be a gamma process with rate Θw and

X = X̃(w)(Θ1−w);

see also Figure 7.4. However, this parameterisation would lead to a reducible Gibbs sampler,

since it can be shown that X̃(w) contains infinite information about Θ, see Section 1.8.

An alternative parameterisation which can be easily implemented is based on the obser-

vation that, due to the infinite divisibility of the gamma distribution,

X = X1 + X2, X1 ∼ Ga(wΘ, 1), X2 = Ga((1 − w)Θ, 1).

We then take X̃(·) be a standard gamma process, X2 be as defined above and the PNCP is

given by

X = X̃(wΘ) + X2.

Therefore, X is obtained as the value of a gamma process at time wΘ started from a random

point X2 at time zero; see Figure 7.4 for a graphical illustration of this method. Intuitively,

if the information in the data Y about X is large compared to that about Θ, then there is
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Figure 7.4: Different ways to simulate X ∼ Ga(Θ, 1) using gamma processes. We use the
general notation X̃α,β for a gamma process with shape parameter α and scale parameter
β. X = X̃1,1(Θ) (top left), X = X̃Θ,1(1) (top right), X = X̃Θw,1(Θ

1−w) (bottom left),
X = X̃1,1(wΘ) + X2, X2 ∼ Ga((1 − w)Θ, 1) (bottom right). In this example we have taken
Θ = 8 and w = 1/2.

much more information about where to start the gamma process from, that is about X2,

rather than about which time we should stop X̃, that is wΘ. In this case a w close to 0

is preferable. If the marginal information about Θ is large compared with the information

about the value of X, a value of w close to 1 will be preferred. Clearly, the CP is obtain for

w = 0 and the NCP for w = 1.

Implementation of this scheme is simple; we would typically use a three-component Gibbs

sampler, which updates in turn Θ, X2 and X̃ from their full conditionals. The conditional

distributions of X̃ and X2 are known explicitly, and a Metropolis-Hastings step is used to

update Θ. The algorithm is very similar to the one described in Section 4.2.

Choosing a w which results in an algorithm with faster convergence than both the CA

and the NCA is rather difficult. We are currently at a preliminary stage, and although

Section 7.10 makes some suggestions, considerable more work has to be done in this direction.

7.7 PNCP and correlation analysis

Section 7.2 constructed the PNCP for the simple normal model and showed that it is opti-

mised when w = 1 − κ. For this value, X̃
(w)
i is uncorrelated with Θ a posteriori . Thus,

it is of interest to know how the PNCP relates to parameterisations which try to achieve
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posterior uncorrelated-ness between the missing data and the parameters by means of linear

transformations. This issue was raised in the discussion of Papaspiliopoulos et al. (2003),

where it was suggested that in many cases it is sufficient to consider the posterior correlation

structure when constructing a reparameterisation.

In this thesis, our approach is different. We are primarily interested in constructing and

assessing the performance of CPs and NCPs. Of course there are many situations where

neither of these methods is adequate, and when a CP and an NCP exist, we try to find ways

to construct intermediate parameterisations that adapt according to the information in the

data, so that the user does not have to choose apriori between the two extremes.

It is true that the PNCP for the normal hierarchical model in Section 7.2 and Section 7.3

can also be obtained using a posterior uncorrelated-ness argument because in the Gaussian

context the maximal correlation described in Amit (1991) (see also Section 2.1 of this thesis)

is attained by linear functions. The PNCP coincides with parameterisations which are based

on a posteriori uncorrelated-ness in other applications as well. This is for example the case

with the reparameterisation designed for the geostatistical model in Section 7.11, which

mimics the construction for the normal hierarchical model.

However, outside the Gaussian context it is possible for posterior correlations to be very

unreliable for the purposes of predicting convergence properties; see for example Roberts

(1992), where it is shown that a two-component Gibbs sampler with uncorrelated compo-

nents can be reducible, while if correlation is induced between the updated components

irreducibility is achieved. Of course that example is extreme and contrived, since the target

distribution for the Gibbs sampler is the uniform on two disjoint subsets of the IR2.

Section 7.8 gives a much more realistic example where posterior uncorrelated-ness is not

enough to improve on the convergence of the CA. In particular, we study reparameterisations

for generalised hierarchical mixed models. Such models are described in Section 3 of Gelfand

et al. (1996), for example. We show that there exist parameterisations under which the

missing data and the parameters are uncorrelated, but which possess convergence properties

inferior to the CP (due to higher order dependence between the random effects and the

parameters).

As a final general remark, we find unclear how to generalise the construction based on

minimising posterior correlation to models where the missing data live on non-Euclidean

spaces, as for example those considered in Chapter 5 and Chapter 6.

7.8 Reparameterisations for GLHM

This section proposes a reparameterisation of (X, Θ) in the context of generalised linear

hierarchical models (GLHM). It is based on the weighted average form that the posterior

expectation of Xi given the parameters Θ and the data Yi takes. Before giving the details of
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this construction we review some relevant theory about exponential families and generalised

linear hierarchical models.

7.8.1 Natural exponential family with quadratic variance function

In this section we will give a brief summary of the main ideas underlying the models we will

be interested in, that is models in the Natural Exponential Family with Quadratic Variance

Function (NEF-QVF). The material of this section is based on Morris (1983).

A random variable Y has a distribution in the NEF with natural parameter ω ∈ Ω ⊂ IR

if

P [Y ∈ A] =

∫
A

exp{yω − b(ω)}F (dy)

for some Stiltjes measure F (·) independent of ω and A ⊂ R.

E(euY ) =

∫
R

exp{uy} exp{yω − b(ω)}F (dy)

=

∫
R

exp{y(ω + u) − b(ω)}F (dy)

therefore

K(u; Y ) = log E(euY ) = b(u + ω) − b(ω)

E(Y | ω) = b′(ω) =: X

Var (Y | ω) = b′′(ω) =: V (X).

The Variance Function (VF) V (·) characterises the sub-family of NEF. The NEF-QVF is

characterised by the property

V (X) = v0 + v1X + v2X
2

and includes the following distributions: Gaussian, Poisson, gamma, binomial and negative

binomial; see table 1 of Morris (1983). The family is closed under convolution and location

and scale transformations.

7.8.2 GLHM

We will look at models where Yi comes from the one-parameter NEF with convolution

parameter ni (thus, this setting incorporates the possibility of multiple observations) and
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scale parameter 1/φi considered either known or intrinsically specified

π(Yi | zi) ∝ exp{ni[Yizi − b(zi)]/φi}.

These models are considered in Gelfand et al. (1996). The random effects zi are assigned

the typical conjugate prior in the NEF

π(zi | Θ) ∝ exp{n0[Θzi − b(zi)] − g(Θ, n0)}.

We transform zi → Xi, where Xi = b′(zi) and since this transformation is generally non-

linear the resulting distribution for Xi is in the exponential family but not in the NEF.

Then under some conditions (Theorem 5.2 of Morris (1983)) and assuming that Yi is in the

NEF-QVF, it follows that

E(Xi | Θ) = Θ

Var (Xi | Θ) = E(
1

n0

V (Xi)) = (n0 − v2)
−1V (Θ).

It is also true that the posterior mean of Xi conditional on Θ admits a weighted average

form

E(Xi | Θ, Yi) = wiΘ + (1 − wi)Yi (7.11)

wi =
n0

n0 + ni/φi

(7.12)

while the posterior variance takes the form

Var (Xi | Θ, Yi) = V (wiΘ + (1 − wi)Yi)/(n0 + ni/φi − v2).

An example of the weighted average form for the posterior mean in (7.12) was given in

Section 2.3 for Gaussian models, see (2.17) (where wi = 1 − κ and κ is given in (2.16)).

7.8.3 Reparameterisation based on posterior correlations

Gelfand et al. (1996) term (X, Θ), (X − Θ, Θ) the centered and the non-centered parame-

terisation respectively, although the latter is clearly not an NCP according to our definition

in Section 4.1; X − Θ is independent of Θ only for Gaussian models.

It is intriguing to consider the parameterisation (X̃(w), Θ) where

X̃
(w)
i = Xi − wiΘ (7.13)

which is motivated by the PNCP for the normal hierarchical model proposed in Section 7.2.
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(7.13) does not qualify as a PNCP, since the definition in Section 7.1 requires that it has

an NCP as a limit, although we do recover the CP when wi = 0. On the other hand, for the

special case of normal hierarchical models it is exactly the PNCP proposed in Section 7.2.

To simplify exposition and avoid the introduction of unnecessary terminology, we will refer

to (X̃(w), Θ) as a PNCP in this section.

A natural choice, driven by its role in (7.12) is to set

wi =
n0

n0 + ni/φi

. (7.14)

We shall shortly show that the posterior correlation between the missing data X̃(w) and Θ

is zero, for this choice of wi.

Direct calculations show that

Cov(Xi, Θ | Y ) = wiVar (Θ | Y ).

Defining b(n0) := Var (Θ | Y ), and ci(n0) := E(Var (Xi | Θ, Yi)) then

Corr(Xi, Θ | Y ) =
wiVar (Θ | Y )

[Var (Θ | Y )Var (Xi | Y )]1/2

=
wiVar (Θ | Y )

[Var (Θ | Y )(ci(n0) + w2
i Var (Θ | Y ))]1/2

=
1

[ci(n0)/(b(n0)w2
i ) + 1]1/2

which is formula (3.4) of Gelfand et al. (1996). We can easily derive that

Cov(X̃
(w)
i , Θ | Y ) = Cov(Xi, Θ | Y ) − wiVar (Θ | Y ) = 0 (7.15)

which shows that this parameterisation manages to make the transformed random effects

and the parameter uncorrelated. Nevertheless, is this enough to guarantee better conver-

gence properties of the resulting sampler than the CA in a non-Gaussian model? Analytic

convergence rates cannot be computed therefore we will try to empirically investigate this

question in the context of a specific example.

7.8.4 Simulation results

Suppose we are interested in the following model written in a canonical form

π(Yi | zi) ∝ exp{c[Yizi + log(−zi)]}, zi ≤ 0
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together with the natural conjugate prior

π(zi | Θ) ∝ exp{n0[ziΘ + log(−zi)] + (n0 + 1) log(Θ)}

and where Θ is assigned a Gamma prior with known hyperparameters α, β. If we define

Xi = −1/zi then we can re-write the model in the more familiar form

Yi ∼ Ga(c, c/Xi)

X−1
i ∼ Ga(n0 + 1, n0Θ)

V (Xi) = X2
i /c, i = 1, . . . ,m. (7.16)

Due to conditional conjugacy the CP is very easy to implement since

1 X−1
i | Yi, Θ ∼ Ga(n0 + 1 + c, cYi + n0Θ)

2 Θ | X ∼ Ga(m(n0 + 1) + α, n0

∑
i(1/Xi) + β).

We also consider the (X̃(w), Θ) parameterisation, where X̃
(w)
i = Xi − wΘ. We use a

common w for all i = 1, . . . ,m, since for the model (7.16) the expression (7.14) does not

depend on i. The joint posterior distribution of (X̃(w), Θ) can be derived by a simple change

of variables. Implementation of the Gibbs sampler under the (X̃(w), Θ) parameterisation as

described in Section 7.5 is not as straightforward as the one for the CP, since π(Θ | X̃(w), Y )

is not of known form, neither is it log-concave, therefore we simply use a Metropolis-Hastings

step to update Θ, although more efficient and sophisticated methods could potentially be

employed. Notice that for this very simple model we can integrate the random effects out

and derive the likelihood function

log π(Y | Θ) ∝
m∑

i=1

{(n0 + 1) log(Θ) − (c + no + 1) log(cYi + n0Θ). (7.17)

The results of Figure 7.5 suggest that the convergence rate of CP is not just a function of

w. We wish to investigate the extent to which w affects the relative performance of the CA

and the PNCA, although as suggested earlier w does not characterise the convergence rate

uniquely. Some simulation results are presented in Figure 7.6. From this analysis appears

that the CA always outperforms the PNCA.

Of course when c and n0 have high values so that the model is more “Gaussian-like”,

the PNCP is successful, especially when combined with multiple Metropolis-Hastings steps

to imitate a Gibbs algorithm, as shown in Figure 7.7. Nevertheless, the poor behaviour of

PNCA is not solely explained by the use of the Metropolis-Hastings step. This is brought

out in Figure 7.8, where it is seen that although the multiple Metropolis-Hastings steps are

improving the algorithm, it still is much worse than the CA.
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We have shown in (7.15) that Θ and Sw =
∑

i X̃
(w)
i are uncorrelated, which is graph-

ically illustrated verified in Figure 7.9. However, the maximal correlation in (2.7), which

characterises the L2 rate of convergence, is clearly attained by functions of the missing data

other than Sw.
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Figure 7.9: Contour plot of the estimated joint distribution of θ, Sw =
∑

i X̃
(w)
i when n0 = 3

and c = 0.2 (w = 0.9375).

7.8.5 Higher order PNCP

As we have shown the parameterisation constructed in (7.13) based on posterior correlation

analysis is not particularly successful. An improvement could be made if we tried to re-scale

the X̃
(w)
i s so that their variance does not depend on Θ, i.e we set

X̃
(w)
i =

1

[Var (Xi | Θ, Yi)]1/2
(Xi − wiΘ) (7.18)

=

(
n0 + ni/φi − v2

V (wiΘ + (1 − wi)Yi)

)1/2

(Xi − wiΘ). (7.19)

Clearly, X̃
(w)
i and Θ are still uncorrelated but also the variance of X̃

(w)
i does not depend on

Θ.

We apply this parameterisation to the model (7.16) (assuming n0 + c > 1)

X̃
(w)
i =

√
n0 + c − 1

wiΘ + (1 − wi)Yi

(Xi − wiΘ) (7.20)

wi = w =
n0

n0 + c
. (7.21)

We implement the Gibbs sampler based on this parameterisation and the simulation results

plotted in Figure 7.10 suggest a big advantage over both the CA and the PNCA of the

previous section.
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every update of the missing data in the two PNCAs.

7.9 Conditional and marginal augmentation

This section discusses two recently developed augmentation techniques. Our aim is to in-

vestigate their relevance to the PNCP. Both of these methods were initially used for the

EM algorithm (Meng and van Dyk (1997), Meng and van Dyk (1999) and Liu et al. (1998))

however they have been successfully extended to Gibbs sampling as well (Meng and van

Dyk (2001) and Liu and Wu (1999)). Before presenting the methods, we remind ourselves

of the terminology introduced in Section 1.3 where missing, observed and augmented data

correspond to X, Y , and (Y,X) respectively.

7.9.1 Conditional augmentation

Conditional augmentation is in many ways very similar to the PNCP. It is based on the

introduction of a so-called (see p.5 of Meng and van Dyk (2001)) “working parameter”, w

say, which is not identifiable from the observed but only from the augmented data, therefore

the marginal likelihood π(Y | Θ) is the same for all values of w. The introduction of w

essentially implies a transformation of the missing data X → X̃(w) and the Gibbs sampler

corresponding to this parameterisation simulates iteratively from the conditional distribution

of Θ | X̃(w), Y and X̃(w) | Θ, Y . The motivation behind this augmentation scheme is to find

a w such that the maximal correlation between Θ and X̃(w) is smaller than between Θ and

X. If this is achieved, then Section 2.1 shows that the Gibbs sampler based on the (X̃(w), Θ)

parameterisation will converge faster than the one which updates X and Θ. Typically, as for

the PNCP, an improvement in the convergence rate is not guaranteed for all possible values

of w.

An example often used in the literature (see for example Section 5 of Meng and van Dyk

(2001) and Section 2.2 of Meng and van Dyk (1997)) to illustrate the method is that of a

t-model. Y given X is assumed to be normally distributed with variance 1/X, and X ∼
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Ga(ν/2, Θν/2) where ν is assumed to be known. Notice that we have expressed the model

using a CP. Meng and van Dyk (1997) propose the reparameterisation X → X̃(w), where

X = ΘwX̃(w) for some w and for w = 0 we recover the original (centered) parameterisation.

Thus, Y | X̃(w), Θ ∼ N(0, Θw/X̃(w)) and X̃(w) | Θ ∼ Ga(ν/2, Θ1−wν/2).

As the example demonstrates, the conditional augmentation has many similarities to the

PNCP, and in many cases the two augmentation schemes coincide. Specifically, in the exam-

ple above the choice w = 1 results in a non-centered algorithm (see for example Section 4.1)

and the conditional augmentation designed is exactly a PNCP. The connection between the

non-centered methodology and the conditional augmentation has been established by Pa-

paspiliopoulos et al. (2003). In our approach, X̃(w) is chosen so that it creates a continuum

of parameterisations between the CP and the NCP, which was argued to be desirable in

Section 7.1 and Section 7.2. On the contrary, this choice is more arbitrary in many of the

examples where conditional augmentation has been used effectively. Moreover, conditional

augmentation has solely been concerned with scale and location transformations. Our re-

sults suggest that it might be interesting and feasible to consider much more complicated

transformations, as those suggested in Section 7.6. Such extensions will allow the conditional

augmentation to be used for complex models with hidden stochastic processes, such as those

considered in Chapter 5 and Chapter 6 for example, whereas up to now it has largely been

applied to relatively simple random-effects type models. Therefore, we believe that our work

on PNCP is complimentary to the conditional augmentation methodology.

An important issue in both the conditional augmentation and the PNCP is the choice of

w. This will be tackled in Section 7.10. The next section describes an alternative to choosing

a specific value for w: integrating out of the problem.

7.9.2 Marginal augmentation

Instead of conditioning on a specific value of the so-called working parameter in a conditional

augmentation, it has been suggested that a prior distribution is assigned to it and then it is

marginalised. This scheme is known as marginal augmentation, sometimes called parameter

expanded data augmentation, and it has been proposed independently by Liu and Wu (1999)

and Meng and van Dyk (1999), although this idea arose initially in the context of the EM

algorithm, see for example Liu et al. (1998). Since the working parameter is first introduced

in the augmentation and then it is integrated out, it might seem that nothing has been

achieved, nevertheless this is not the case.

We first show how the method works for the simple normal hierarchical model. This

example is used for pedagogical purposes by Liu and Wu (1999) and this section reproduces

their construction.

The NCP for this model was constructed in Section 2.3 and is given in (2.18). To retain
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consistency with Liu and Wu (1999) we assume that σ2
y = 1 and denote σ2

x =: D. Thus κ in

(2.16) equals D/(1 + D) and the model writes as

Yi = Xi + εi

Xi = Θ + D1/2zi, i = 1, . . . ,m. (7.22)

A consideration which we find motivating for the marginal augmentation is that the

constraint imposed by the data that Θ + X̃i = Yi + “error”, results in slow convergence of

the Gibbs sampler, when D is large compared to 1, as it was shown in Section 2.3. Thus, it

would be desirable if there was some added remaining uncertainty in this constraint, which

could be achieved if for example X̃i was the sum of two random variables and we were

conditioning on just one of those when updating Θ. Liu and Wu (1999) suggest using the

over-parameterised model

Yi = Θ + Zi − α + εi

Zi ∼ N(α,D), i = 1, . . . ,m (7.23)

where we have transformed

X̃i → Zi, where X̃i =: Zi − α. (7.24)

Moreover, suppose that we specify the prior α ∼ N(0, B) and define Z := (Z1, . . . , Zm).

Since Z is a linear transformation of X̃ we can easily find that (Z, Θ) conditionally on α

and Y are normally distributed. Due to the conjugate prior of α, the same holds for the

posterior distribution of (Z, Θ) when α is integrated out. This integration is done simply,

since α is not identifiable and its conditional distribution given Y is the same as its prior.

The marginal augmentation proceeds by performing Gibbs sampling on the joint posterior

of (Z, Θ), that is α is integrated out rather than kept fixed throughout the simulation.

Abstracting from the specific example, the starting point for the marginal augmentation

is to express the hierarchical model as a missing data problem, usually using either a centered

or a non-centered parameterisation. For the sake of simplicity and clarity, this section violates

the notation established in this thesis and uses X̃ as a generic notation for the missing data,

even if a centered parameterisation is employed. Thus, the augmented data are (Y, X̃), which

we refer to as the ordinary data augmentation. Marginal augmentation proceeds by finding

a non-identifiable (by the observed data) parameter α, some function tα and constructs a

transformation of the original missing data X̃ → Z where X̃ = tα(Z). For instance, in the

normal example introduced earlier tα(Z) = Z − α, see (7.24). A (possibly improper) prior

is chosen for α, which however guarantees that the joint posterior of (Z, Θ) is proper. The
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two main assumptions of the marginal augmentation methodology, which will be shortly

motivated, are the following:

Condition (a): tα is a one to one differentiable mapping.

Condition (b): α and Θ are a priori independent.

We can then easily find (by a change of variables argument) the joint posterior distribution

of (Z, Θ, α)

π(Z, Θ, α | Y ) ∝ π(Y | Z, Θ, α)π(Z | Θ, α)π(α)π(Θ) (7.25)

from which α is integrated out and Gibbs sampling is used to simulate from the joint posterior

of (Z, Θ).

This is the main idea behind the marginal augmentation, we try to “collapse” some part

of the missing data X̃, for example by taking X̃ = Z − α and integrating out α, while still

being able to do Gibbs sampling. Clearly these two tasks are competing, since the more

we collapse the more difficult Gibbs sampling becomes. For example, if we collapse all of

X̃ by integrating it out of the problem, then most likely we will not be able to sample

from the posterior distribution of Θ. Actually, X̃ was originally introduced to simplify this

simulation. There are many issues remaining to be resolved, such as the choice of the prior

on α, the transformation tα to be used, the implementation of the Gibbs sampling algorithm,

the relevance of this methodology with the PNCP and a proof that the marginal is superior

to the ordinary augmentation under conditions (a) and (b) above. We start by addressing

the latter.

We will present a simple and intuitive argument which has not appeared in the literature

before and it shows that under the conditions stated above the marginal is guaranteed to

have better convergence rate than the ordinary augmentation. Our argument motivates

these conditions naturally, however it assumes that a proper prior is chosen for α. Thus it

cannot be used as a general proof, since it is not valid when an improper prior is assigned to

α, a choice which turns out to be optimal in many cases. The proof of the general theorem,

which is based on the characterisation of the convergence rate of the two-component Gibbs

sampler as the maximal correlation between the updated components (see Section 2.1 and

(2.7)), can be found in Liu and Wu (1999).

Notice that the ordinary augmentation corresponds to the Gibbs sampler which simulates

iteratively from the conditional distributions

1. (Z, α) | Θ, Y

2. Θ | Y, (Z, α). (7.26)

Since X̃ is a one-to-one transformation of α and Z its value is uniquely determined by the
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value of the pair (Z, α). Moreover, by condition (b) Θ is a priori independent of α, thus

the distribution of Θ | Y, X̃, α coincides with that of Θ | Y, X̃. Therefore, the second step

of (7.26) simulates Θ given Y and X̃, as in the ordinary data augmentation. Since α is

non-identifiable and a priori independent of Θ, its distribution conditional on Θ and Y is

the same as the prior. Since the latter is assumed to be proper, we can easily simulate a

draw from it and conditionally on that value we can simulate from Z given Θ, Y, α. This

can be achieved for example by drawing first X̃ given Θ, Y as in the ordinary augmentation,

and then setting Z = t−1
α (X̃). The existence of t−1

α is ensured by the condition (a) above.

Once Z and α have been drawn, we set X̃ = tα(Z). Thus, the first step of (7.26) is the same

as the first step of the ordinary data augmentation.

The algorithm described in (7.26) is known as blocked (Roberts and Sahu (1997)) or

grouped (Liu et al. (1994)) Gibbs sampler, since the random variables Z and α are updated

in one block. On the other hand, the marginal augmentation simulates iteratively from

1. Z | Θ

2. Θ | Z (7.27)

which is with respect to (7.26) a collapsed (Liu (1994a)) Gibbs sampler, since α has been

integrated out. Hence, when a proper prior is used for α, and conditions (a) and (b) hold,

our argument shows that the marginal has better convergence rate than the ordinary aug-

mentation as long as the collapsed has better convergence rate than the grouped Gibbs

sampler. However, Theorem 5.1 of Liu et al. (1994) proves that, for any Z, α, Θ, the spectral

radius of the grouped Gibbs sampler (7.26) is greater or equal than the spectral radius of the

collapsed Gibbs sampler (7.27). Therefore, they show what it is also intuitive, that scheme

(7.27) is converging faster than scheme (7.26). Therefore, it is straightforward to prove that

the marginal augmentation leads to a faster converging Gibbs sampler when π(α) is proper.

The general proof can be found in Liu and Wu (1999). Notice that the result presupposes

that exact simulations from the conditionals are feasible and no Metropolis-Hastings within

Gibbs steps are used.

It turns out however that an improper prior is often optimal. We return to the example

we introduced in the beginning of this section. Since (Z, Θ) is jointly Gaussian, it is easy

to calculate the rate of convergence of the Gibbs sampler with this target, using the general

results summarised in Section 2.1. This is done in p.1265 of Liu and Wu (1999) where it is

found that

ρpxda =
D − (B−1 + D−1)−1

1 + D
; (7.28)

this is plotted against the prior precision B−1 for different values of D in Figure 7.11. Notice

that for all B ρpxda ≤ ρnc = 1/(1 + D−1) and that as B−1 → 0 the algorithm improves its

rate, actually only for this limiting case does it give considerable improvement. Since by
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Figure 7.11: ρpxda for D = 2, 1, 0.5. The asymptote in each of these curves is ρnc.

convention we associate the limiting measure of a N(0, B) as B → ∞ with the improper

uniform, the results imply that this is the optimal prior for α in this problem. Liu and

Wu (1999) argue intuitively that it might be better to ”let the imputed data decide α

at each iteration” (see p.1266 of their paper) and therefore a non-informative improper

prior should generally be preferred. There are many results about the choice of such priors

and the implementation of the corresponding marginal augmentation. Nevertheless, these

considerations are outside the scope of this chapter and we simply refer to Liu and Wu (1999)

for details and insightful discussion. We finish this review of the marginal augmentation by

discussing its relevance to the PNCP.

Notice that the PNCP can be obtained as a special case of the marginal augmentation,

where the prior distribution of α depends on Θ. For example, the PNCP of Section 7.2 used

the transformation X̃ → Z := X̃+(1−w)Θ. This can be put into the marginal augmentation

framework discussed above, where tα(Z) = Z − α and the prior distribution of α is a point

mass centered at (1 − w)Θ. This prior violates condition (b), which is necessary to show

that the marginal is superior to ordinary augmentation. Actually, we have already seen in

Section 7.2 that this prior can lead to algorithms which converge slower than the ordinary

data augmentation. Generally, we find it inappropriate to construct parameterisations which

are meaningful inside the conditional augmentation context and then assigning a prior to

the working parameter with view to integrating it out. On the one hand, they are not

guaranteed to lead to faster convergence since they typically violate condition (b). On the

other hand, our experience even with the simplest of models suggests that they are very

difficult to implement.

7.10 Optimising the PNCP

The conditional augmentation literature has contributed with some suggestions about the

choice of optimal values for the working parameter w. There are three most commonly used
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methods, which are reviewed in Section 2 of Meng and van Dyk (2001). The first is to find

the value of w which minimises the geometric rate of convergence of the Gibbs sampler, or

equivalently (see Section 2.1) which minimises the maximal correlation between X̃(w) and Θ

γw(X̃(w), Θ) := sup
h:Var [h(Θ)|Y,w]=1

Var 1/2[E[h(Θ) | X̃(w), Y, w] | Y,w] (7.29)

This is a very sensible criterion since it selects the w which leads to the fastest converging

Gibbs sampler in an L2 sense, nevertheless it is hardly ever possible to perform this optimi-

sation for non-Gaussian models. Theorem 2.1.1 states that the maximal correlation between

the updated components equals the maximal lag-1 autocorrelation of the marginal chains.

Thus the above method is equivalent to maximising the maximal lag-1 autocorrelation in

the Θ marginal chain. The second method proposed by Meng and van Dyk (2001) as more

feasible is to minimise the maximal lag-1 autocorrelation over linear combinations in the

Θ marginal chain. When Θ is a scalar, this method is equivalent to optimising (7.29) over

linear functions h only, which however can lead to undesirable results, as Section 7.8 showed.

The third method is the most practically appealing. It consists of finding the w which min-

imises the convergence rate of the deterministic counterpart of the Gibbs sampler, i.e the

EM algorithm. We mentioned in Section 7.9.1 that conditional augmentation was originally

developed for the EM algorithm and this method, known as the EM criterion, has proved

successful in that context. Given the augmentation scheme (X̃(w), Θ) the EM algorithm

(Dempster et al. (1977), Meng and van Dyk (1997)) for locating the posterior mode of Θ,

Θ∗ say, has a theoretical convergence rate which when Θ is a scalar is given by (Dempster

et al. (1977))

rEM(w) = 1 − IobsI
−1
aug(w) (7.30)

where

Iaug(w) = E

[
−∂2 log π(Θ | Y, X̃(w), w)

∂Θ2
| Y, Θ, w

] ∣∣∣∣∣
Θ=Θ∗

(7.31)

is the expected augmented Fisher information and

Iobs = −∂2 log π(Θ | Y )

∂Θ2

∣∣∣
Θ=Θ∗

is the observed Fisher information for Θ. The EM criterion selects the w which minimises

(7.30), or equivalently minimises (7.31). There is an added technical complexity when Θ

is a vector. Although the above definitions are extended in a natural way, (7.30) defines

a matrix whose the spectral radius has to be minimised. Moreover, minimising (7.31) is
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not necessarily equivalent to minimising (7.30) in the vector case, see Meng and van Dyk

(2001) for more details and references. An advantage of the EM criterion is that in many

applications it is not necessary to compute Θ∗ in order to calculate (7.31), see Sections 6-8

of Meng and van Dyk (2001).

All methods are equivalent for Gaussian models, but the last two are essentially based on a

Gaussian approximation of any given model. It is not clear whether criteria and constructions

which are suitable for mode-hunting algorithms such as the EM, are suitable for algorithms

which explore distributions, particularly in the presence of heavy tails. Relevant discussion

can be found in Meng and van Dyk (2001).

Section 7.5 argued that it might be desirable to let w depend upon the observed data.

The following example illustrates how this might be achieved. Consider the random effects

model:

Yi ∼ π(·|Xi)

Xi = Θ + σxzi, i = 1, . . . ,m . (7.32)

for some class of densities or probabilities π(·|·) and zi ∼ N(0, 1). A quadratic expansion of

the log-likelihood, � = log π gives a rough indication into the information content present

in Yi about Xi. We set I(Yi) = −∂2�(Yi|Xi)/∂X2
i evaluated at the MLE X̂i (ignoring the

latent structure). Other approximations of information may be more appropriate in certain

cases. In the normal hierarchical model, I(Yi) = σy
−2, but more generally I(Yi) will depend

on Yi. Data-dependent non-centering then sets

X̃
(w)
i = Xi − wi(Y )θ (7.33)

where wi(Y ) = (1+ I(Yi)/σ
2
x)

−1. This is a crude and easy method for selecting w, but as the

geostatistical example of Section 7.11 shows, it can be rather effective. Another important

example of a PNCP with data dependent w can be found in the spatial application of Higdon

(1998).

7.11 Examples

This chapter has focused on developing methodology regarding the PNCP and establishing

the connections with alternative augmentation schemes suggested in the literature. There

have already been attempts to apply this methodology to complex statistical models, among

which we describe an application in the modelling of spatial variation in some detail.
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7.11.1 Spatial GLMM

The results of this section originally appeared in Papaspiliopoulos et al. (2003) but the

problem is thoroughly investigated in Christensen et al. (2003).

We consider a special case of the generalised linear mixed model (GLMM) introduced

in Breslow and Clayton (1993) and proposed in the spatial context by Diggle et al. (1998).

Similar modeling approaches have received much attention recently but strong posterior

correlation between parameters and latent variables makes a fully Bayesian approach difficult

without the use of complex MCMC algorithms and careful reparameterisations. We will here

consider a spatial Poisson log-Normal model also studied in Diggle et al. (1998) for modeling

radioactive counts and in Christensen and Waagepetersen (2003) for modeling counts of

weed. For a more detailed description of the model refer to Diggle et al. (1998).

The data consists of recorded observations Y = (Y1, . . . , Ym) with

Yi ∼ Pn(exp(Xi))

X ∼ N(Θ1, σ2R). (7.34)

Here X = (X1, . . . , Xm) = (X(t1), . . . , X(tm)) are (unobserved) values from a stationary

isotropic Gaussian random field X = {X(t), t ∈ IR2} with mean Θ, standard deviation σ

and correlation function r(u) = Corr(X(s1), X(s2)) = exp(−u/α), u = ‖s2 − s1‖ (Euclidean

distance), and 1 is a m × 1 vector of 1s. In the limiting case where α → ∞ this reduces to

the random effects case described by (7.32), with Yi ∼ Pn(exp(Xi)).

Thus the unknown components in this model are the parameters Θ, α and σ, together

with the underlying field X. It is beyond the scope of this section to fully describe partially

non-centered methods which can be applied effectively to this problem; considerably more

detail can be found in Christensen et al. (2003). We shall instead concentrate on part of the

algorithm, in which the partial non-centering is applied to Θ while the remaining parameters

σ and α remain fixed. Similar non-centering strategies can be applied to σ and α and also

directly to X in order to break down the posterior correlation structure present in the field

X. This is reported in Christensen et al. (2003).

Both Diggle et al. (1998) and Christensen and Waagepetersen (2003) use the NCP for Θ,

i.e. they alternate between updating X̃ = X − 1Θ and Θ. Diggle et al. (1998) use a single

site Gibbs updating of X̃ and Christensen and Waagepetersen (2003) use the Metropolis

adjusted Langevin algorithm (MALA, see for example Roberts and Tweedie (1996a)) which

can give considerable convergence advantages for large m. Here we shall extend the data-

dependent partial non-centering ideas of Section 7.3, Section 7.5 and Section 7.10 to the

present case of spatially varying X.

In the absence of covariates, the partial non-centering parameters for the general normal
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hierarchical model with m = 1 are given in Section 7.3 as

W = BD−1 = (diag(σ−2
x ) + D−1)−1D−1

where D is the n×n prior variance matrix and diag(σ−2
x ) is the n×n matrix with σ−2

x on the

diagonal and zeros elsewhere. The latter matrix being constant along the diagonal reflects

the fact that the variance of the error distribution Y |X is independent of X and thus the

loss of information about Θ is equal along the components of Y . This is a feature not shared

by model (7.34) since here the error-distribution depends on X in a nonlinear way through

the logarithmic link-function and large values in Y tend to be more informative about the

mean than small ones.

Outside the Gaussian context, there is no direct analogue of the Bi matrices in (7.7), but

a quadratic expansion of the likelihood as in Section 7.10 suggests we set

B̂−1 =:
d2

dX2
log π(X|Y, θ)|X=X̂ = −(diag(exp(X̂)) + σ−2R−1) = −(diag(Y ) + σ−2R−1)

(7.35)

(where X̂ is the MLE from the observation equation alone) leading to the partial non-

centering for Θ

X̃w = X − WΘ. (7.36)

with W = B̂σ−2R−1.

A simulation study involving 100 observations equally spaced on the unit square was

carried out. It involved using two different combinations of Θ and σ each under two levels of

dependence. Although updates of X̃w need to be carried out by a suitable Hastings algorithm

in this context for each of our parameterisations, our comparison is based on pure Gibbs

updates (approximated by running multiple MALA steps for X̃w and Θ). This eliminates

the possibility that any difference between simulation performance could be due to varying

efficiency of the MALA updates. ACFs summarising our results are given in Figure 7.12.

The CP performs better in relation to the NCP as the dependence in X becomes stronger

(as measured by α), which is in agreement with our results for the state-space model in

Section 2.5 and for the OU volatility model in Section 6.8 and Section 6.12. Moreover,

while the performance of the CP and NCP vary considerably as the parameters change, the

data-dependent PNCP performs extremely well in all cases.
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Figure 7.12: The spatial GLMM of Section 7.11.1 and its special case, the random effects
model of Section 7.10 (showed in the bottom two plots). ACF for Θ using CA (dotted),
NCA (dashed) and data-dependent PNCA (solid) for various parameter values.
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