
ITERATED LOCAL SEARCH

Lourenço, H.R., Martin, O. and Stützle, T. (2003), Iterated Local Search.
In Handbook of Metaheuristics, F. Glover and G. Kochenberger, (eds.),
Kluwer Academic Publishers, International Series in Operations Research
& Management Science, pp. 321-353.
ISBN 978-1-4020-7263-5.

Link to publication

http://www.springer.com/math/book/978-1-4020-7263-5?detailsPage=toc�

Chapter 1

ITERATED LOCAL SEARCH

Helena R. Lourenc¸o
Universitat Pompeu Fabra, Barcelona, Spain
helena.ramalhinho@econ.upf.es

Olivier C. Martin
Universit́e Paris-Sud, Orsay, France
martino@ipno.in2p3.fr

Thomas Sẗutzle
Darmstadt University of Technology, Darmstadt, Germany
stuetzle@informatik.tu-darmstadt.de

1. INTRODUCTION

The importance of high performance algorithms for tackling difficult opti-
mization problems cannot be understated, and in many cases the only available
methods are metaheuristics. When designing a metaheuristic, it is preferable
that it be simple, both conceptually and in practice. Naturally, it also must
be effective, and if possible, general purpose. If we think of a metaheuristic
as simply a construction for guiding (problem-specific) heuristics, the ideal
case is when the metaheuristic can be used withoutany problem-dependent
knowledge.

As metaheuristics have become more and more sophisticated, this ideal case
has been pushed aside in the quest for greater performance. As a consequence,
problem-specific knowledge (in addition to that built into the heuristic being
guided) must now be incorporated into metaheuristics in order to reach the state
of the art level. Unfortunately, this makes the boundary between heuristics
andmetaheuristics fuzzy, and we run the risk of loosing both simplicity and
generality. To counter this, we appeal to modularity and try to decompose
a metaheuristic algorithm into a few parts, each with its own specificity. In
particular, we would like to have a totally general purpose part, while any

1

2

problem-specific knowledge built into the metaheuristic would be restricted
to another part. Finally, to the extent possible, we prefer to leave untouched
the embedded heuristic (which is to be “guided”) because of its potential
complexity. One can also consider the case where this heuristic is only available
through an object module, the source code being proprietary; it is then necessary
to be able to treat it as a “black-box” routine. Iterated local search provides a
simple way to satisfy all these requirements.

The essence of the iterated local search metaheuristic can be given in a
nut-shell: oneiteratively builds a sequence of solutions generated by the em-
bedded heuristic, leading to far better solutions than if one were to use repeated
random trials of that heuristic. This simple idea [10] has a long history, and
its rediscovery by many authors has lead to many different names for iterated
local search likeiterated descent [9, 8], large-step Markov chains [49], iter-
ated Lin-Kernighan [37], chained local optimization [48], or combinations of
these [2] ... Readers interested in these historical developments should consult
the review [38]. For us, there are two main points that make an algorithm an
iterated local search: (i) there must be a single chain that is being followed (this
then excludes population-based algorithms); (ii) the search for better solutions
occurs in a reduced space defined by the output of a black-box heuristic. In
practice, local search has been the most frequently used embedded heuristic,
but in fact any optimizer can be used, be-it deterministic or not.

The purpose of this review is to give a detailed description of iterated local
search and to show where it stands in terms of performance. So far, in spite of its
conceptual simplicity, it has lead to a number of state-of-the-art results without
the use of too much problem-specific knowledge; perhaps this is because
iterated local search is very malleable, many implementation choices being
left to the developer. We have organized this chapter as follows. First we
give a high-level presentation of iterated local search in Section 2 Then we
discuss the importance of the different parts of the metaheuristic in Section 3,
especially the subtleties associated with perturbing the solutions. In Section 4
we go over past work testing iterated local search in practice, while in Section 5
we discuss similarities and differences between iterated local search and other
metaheuristics. The chapter closes with a summary of what has been achieved
so far and an outlook on what the near future may look like.

2. ITERATING A LOCAL SEARCH

2.1 GENERAL FRAMEWORK

We assume we have been given a problem-specific heuristic optimization
algorithm that from now on we shall refer to as a local search (even if in fact it is
not a true local search). This algorithm is implemented via a computer routine
that we callLocalSearch. The question we ask is “Can such an algorithm

Iterated Local Search 3

be improved by the use of iteration?”. Our answer is “YES”, and in fact
the improvements obtained in practice are usually significant. Only in rather
pathological cases where the iteration method is “incompatible” with the local
search will the improvement be minimal. In the same vein, in order to have
themost improvement possible, it is necessary to have some understanding of
the way theLocalSearch works. However, to keep this presentation as simple as
possible, we shall ignore for the time being these complications; the additional
subtleties associated with tuning the iteration to the local search procedure will
be discussed in Section 3 Furthermore, all issues associated with the actual
speed of the algorithm are omitted in this first section as we wish to focus
solely on the high-level architecture of iterated local search.

Let C be the cost function of our combinatorial optimization problem;C is
to beminimized. We label candidate solutions or simply “solutions” bys, and
denote byS the set of alls (for simplicity S is taken to be finite, but it does
not matter much). Finally, for the purposes of this high-level presentation,
it is simplest to assume that the local search procedure is deterministic and
memoriless:1 for a given inputs, it always outputs the same solutions� whose
cost is less or equal toC(s). LocalSearch then defines a many to one mapping
from the setS to the smaller setS� of locally optimal solutionss�. To have a
pictorial view of this, introduce the “basin of attraction” of a local minimums�

as the set ofs that are mapped tos� under the local search routine.LocalSearch

then takes one from a starting solution to a solution at the bottom of the
corresponding basin of attraction.

Now take ans or ans� at random. Typically, the distribution of costs found
has a very rapidly rising part at the lowest values. In Figure 1.1 we show the
kind of distributions found in practice for combinatorial optimization problems
having a finite solution space. The distribution of costs is bell-shaped, with
a mean and variance that is significantly smaller for solutions inS� than for
those inS. As a consequence, it is much better to use local search than to
sample randomly inS if one seeks low cost solutions. The essential ingredient
necessary for local search is a neighborhood structure. This means thatS is a
“space” with some topological structure, not just a set. Having such a space
allows one to move from one solutions to a better one in an intelligent way,
something that would not be possible ifS were just a set.

Now the question is how to go beyond this use ofLocalSearch. More precisely,
given the mapping fromS to S�, how can one further reduce the costs found
without opening up and modifyingLocalSearch, leaving it as a “black box”
routine?

1The reader can check that very little of what we say really uses this property, and in practice, many successful
implementations of iterated local search have non-deterministic local searches or include memory.

4

cost

pr
ob

ab
il

it
y

de
n

si
ty

s

s*

Figure 1.1 Probability densities of costs. The curve labeleds gives the cost density for all
solutions, while the curve labeleds� gives it for the solutions that are local optima.

2.2 RANDOM RESTART

The simplest possibility to improve upon a cost found byLocalSearch is
to repeat the search from another starting point. Everys

� generated is then
independent, and the use of multiple trials allows one to reach into the lower
part of the distribution. Although such a “random restart” approach with
independent samplings is sometimes a useful strategy (in particular when all
other options fail), it breaks down as the instance size grows because in that limit
the tail of the distribution of costs collapses. Indeed, empirical studies [38] and
general arguments [58] indicate that local search algorithms on large generic
instances lead to costs that: (i) have a mean that is a fixed percentage excess
above the optimum cost; (ii) have adistribution that becomes arbitrarily peaked
about the mean when the instance size goes to infinity. This second property
makes it impossible in practice to find ans� whose cost is even a little bit lower
percentage-wise than the typical cost. Note however that there do exist many
solutions of significantly lower cost, it is just thatrandom sampling has a lower
and lower probability of finding them as the instance size increases. To reach
those configurations, a biased sampling is necessary; this is precisely what is
accomplished by a stochastic search.

Iterated Local Search 5

2.3 SEARCHING IN S�

To overcome the problem just mentioned associated with large instance
sizes, reconsider what local search does: it takes one fromS whereC has a
large mean toS� whereC has a smaller mean. It is then most natural to invoke
recursion: use local search to go fromS� to a smaller spaceS�� where the
mean cost will be still lower! That would correspond to an algorithm with one
local search nested inside another. Such a construction could be iterated to as
many levels as desired, leading to a hierarchy of nested local searches. But
upon closer scrutiny, we see that the problem is precisely how to formulate
local search beyond the lowest level of the hierarchy: local search requires
a neighborhood structure and this is notà priori given. The fundamental
difficulty is to define neighbors inS� so that they can be enumerated and
accessed efficiently. Furthermore, it is desirable for nearest neighbors inS� to
be relatively close when using the distance inS; if this were not the case, a
stochastic search onS� would have little chance of being effective.

Upon further thought, it transpires that one can introduce a good neigh-
borhood structure onS� as follows. First, one recalls that a neighborhood
structure on a setS directly induces a neighborhood structure onsubsets of
S: two subsets are nearest neighbors simply if they contain solutions that are
nearest neighbors. Second, take these subsets to be the basins of attraction of
thes�; in effect, we are lead to identify anys� with its basin of attraction. This
then immediately gives the “canonical” notion of neighborhood onS�, notion
which can be stated in a simple way as follows:s

�

1 ands�2 are neighbors inS�

if their basins of attraction “touch” (i.e., contain nearest-neighbor solutions in
S). Unfortunately this definition has the major drawback that one cannot in
practice list the neighbors of ans� because there is no computationally efficient
method for finding all solutionss in the basin of attraction ofs�. Nevertheless,
we canstochastically generate nearest neighbors as follows. Starting froms

�,
create a randomized path inS, s1, s2, ...,si, wheresj+1 is a nearest neighbor
of sj. Determine the firstsj in this path that belongs to a different basin of
attraction so that applying local search tosj leads to ans�0 6= s

�. Thens�0 is a
nearest-neighbor ofs�.

Given this procedure, we can in principle perform a local search2 in S�.
Extending the argument recursively, we see that it would be possible to have
an algorithm implementing nested searches, performing local search onS, S�,
S��, etc... in a hierarchical way. Unfortunately, the implementation of nearest
neighbor search at the level ofS� is much too costly computationally because
of the number of times one has to executeLocalSearch. Thus we are led to

2Note that the local search finds neighbors stochastically; generally there is no efficient way to ensure that
one has testedall the neighbors of any givens�.

6

abandon the (stochastic) search fornearest neighbors in S�; instead we use a
weaker notion of closeness which then allows for a fast stochastic search in
S�. Our construction leads to a (biased) sampling ofS�; such a sampling will
be better than a random one if it is possible to find appropriate computational
ways to go from ones� to another. Finally, one last advantage of this modified
notion of closeness is that it does not require basins of attraction to be defined;
the local search can then incorporate memory or be non-deterministic, making
the method far more general.

2.4 ITERATED LOCAL SEARCH

We want to exploreS� using a walk that steps from ones� to a “nearby”
one, without the constraint of using only nearest neighbors as defined above.
Iterated local search (ILS) achieves this heuristically as follows. Given the
currents�, we first apply a change or perturbation that leads to an intermediate
states0 (which belongs toS). ThenLocalSearch is applied tos0 and we reach
a solutions�0 in S�. If s�0 passes an acceptance test, it becomes the next
element of the walk inS�; otherwise, one returns tos�. The resulting walk is a
case of a stochastic search inS�, but where neighborhoods are never explicitly
introduced. This iterated local search procedure should lead to good biased
sampling as long as the perturbations are neither too small nor too large. If
they are too small, one will often fall back tos� and few new solutions ofS�

will be explored. If on the contrary the perturbations are too large,s
0 will be

random, there will be no bias in the sampling, and we will recover a random
restart type algorithm.

The overall ILS procedure is pictorially illustrated in Figure 1.2. To be
complete, let us note that generally the iterated local search walk will not be
reversible; in particular one may sometimes be able to step froms

�

1 to s
�

2 but
not froms

�

2 to s�1. However this “unfortunate” aspect of the procedure does not
prevent ILS from being very effective in practice.

Since deterministic perturbations may lead to short cycles (for instance of
length 2), one should randomize the perturbations or have them be adaptive
so as to avoid this kind of cycling. If the perturbations depend on any of the
previouss�, one has a walk inS� with memory. Now the reader may have
noticed that aside from the issue of perturbations (which use the structure on
S), our formalism reduces the problem to that of a stochastic search onS�.
Then all of the bells and whistles (diversification, intensification, tabu, adaptive
perturbations and acceptance criteria, etc...) that are commonly used in that
context may be applied here. This leads us to define iterated local search
algorithms as metaheuristics having the following high level architecture:

Iterated Local Search 7

perturbation

solution space S

co
st

s* s*’

s’

Figure 1.2 Pictorial representation of iterated local search. Starting with a local minimums
�,

we apply a perturbation leading to a solutions0. After applyingLocalSearch, we find a new
local minimums

�0 that may be better thans�.

procedure Iterated Local Search
s0 = GenerateInitialSolution
s
�

= LocalSearch(s0)
repeat

s
0

= Perturbation(s�; history)
s
�0

= LocalSearch(s0)
s
�

= AcceptanceCriterion(s�; s�0; history)
until termination condition met

end

In practice, much of the potential complexity of ILS is hidden in the history
dependence. If there happens to be no such dependence, the walk has no
memory:3 the perturbation and acceptance criterion do not depend on any of
the solutions visited previously during the walk, and one accepts or nots

�0 with
a fixed rule. This leads to random walk dynamics onS� that are “Markovian”,
the probability of making a particular step froms�1 to s

�

2 depending only ons�1
ands�2. Most of the work using ILS has been of this type, though recent studies
show unambiguously that incorporating memory enhances performance [61].

Staying within Markovian walks, the most basic acceptance criteria will use
only the difference in the costs ofs� ands�0; this type of dynamics for the walk is
then very similar in spirit to what occurs in simulated annealing. A limiting case

3Recall that to simplify this section’s presentation, the local search is assumed to have no memory.

8

of this is to accept only improving moves, as happens in simulated annealing at
zero temperature; the algorithm then does (stochastic) descent inS�. If we add
to such a method a CPU time criterion to stop the search for improvements, the
resulting algorithm pretty much has two nested local searches; to be precise,
it has a local search operating onS embedded in a stochastic search operating
onS�. More generally, one can extend this type of algorithm to more levels of
nesting, having a different stochastic search algorithm forS�, S�� etc... Each
level would be characterized by its own type of perturbation and stopping rule;
to our knowledge, such a construction has never been attempted.

We can summarize this section by saying that the potential power of iterated
local search lies in itsbiased sampling of the set of local optima. The effi-
ciency of this sampling depends both on the kinds of perturbations and on the
acceptance criteria. Interestingly, even with the most naı̈ve implementations
of these parts, iterated local search is much better than random restart. But
still much better results can be obtained if the iterated local search modules are
optimized. First, the acceptance criteria can be adjusted empirically as in simu-
lated annealing without knowing anything about the problem being optimized.
This kind of optimization will be familiar to any user of metaheuristics, though
the questions of memory may become quite complex. Second, thePerturbation

routine can incorporate as much problem-specific information as the developer
is willing to put into it. In practice, a rule of thumb can be used as a guide: “a
good perturbation transforms one excellent solution into an excellent starting
point for a local search”. Together, these different aspects show that iterated
local search algorithms can have a wide range of complexity, but complexity
may be added progressively and in a modular way. (Recall in particular that all
of the fine-tuning that resides in the embedded local search can be ignored if
one wants, and it does not appear in the metaheuristic per-se.) This makes iter-
ated local search an appealing metaheuristic for both academic and industrial
applications. The cherry on the cake is speed: as we shall soon see, one can
performk local searches embedded within an iterated local searchmuch faster
than if thek local searches are run within random restart.

3. GETTING HIGH PERFORMANCE

Given all these advantages, we hope the reader is now motivated to go on
and consider the more nitty-gritty details that arise when developing an ILS for
a new application. In this section, we will illustrate the main issues that need
to be tackled when optimizing an ILS in order to achieve high performance.

There are four components to consider:GenerateInitialSolution, LocalSearch,
Perturbation, and AcceptanceCriterion. Before attempting to develop a state-
of-the-art algorithm, it is relatively straight-forward to develop a more basic
version of ILS. Indeed, (i) one can start with a random solution or one returned

Iterated Local Search 9

by some greedy construction heuristic; (ii) for most problems a local search
algorithm is readily available; (iii) for the perturbation, a random move in a
neighborhood of higher order than the one used by the local search algorithm
can be surprisingly effective; and (iv) a reasonable first guess for the acceptance
criterion is to force the cost to decrease, corresponding to a first-improvement
descent in the setS�. Basic ILS implementations of this type usually lead to
much better performance than random restart approaches. The developer can
then run this basic ILS to build his intuition and try to improve the overall
algorithm performance by improving each of the four modules. This should
be particularly effective if it is possible to take into account the specificities of
the combinatorial optimization problem under consideration. In practice, this
tuning is easier for ILS than for memetic algorithms or tabu search to name but
these metaheuristics. The reason may be that the complexity of ILS is reduced
by its modularity, the function of each component being relatively easy to
understand. Finally, the last task to consider is the overall optimization of the
ILS algorithm; indeed, the different components affect one another and so it is
necessary to understand their interactions. However, because these interactions
are so problem dependent, we wait till the end of this section before discussing
that kind of “global” optimization.

Perhaps the main message here is that the developer can choose the level of
optimization he wants. In the absence of any optimizations, ILS is a simple,
easy to implement, and quite effective metaheuristic. But with further work on
its four components, ILS can often be turned into a very competitive or even
state of the art algorithm.

3.1 INITIAL SOLUTION

Local search applied to the initial solutions0 gives the starting points�0 of
the walk in the setS�. Starting with a goods�0 can be important if high-quality
solutions are to be reachedas fast as possible.

Standard choices fors0 are either a random initial solution or a solution
returned by a greedy construction heuristic. A greedy initial solutions0 has
two main advantages over random starting solutions: (i) when combined with
local search, greedy initial solutions often result in better quality solutionss

�

0;
(ii) a local search from greedy solutions takes, on average, less improvement
steps and therefore the local search requires less CPU time.4

4Note that the best possible greedy initial solution need not be the best choice when combined with a local
search. For example, in [38], it is shown that the combination of the Clarke-Wright starting tour (one of the
best performing TSP construction heuristics) with local search resulted in worse local optima than starting
from random initial solutions when using3-opt. Additionally, greedy algorithms which generate very high
quality initial solutions can be quite time-consuming.

10

3880

3900

3920

3940

3960

3980

4000

4020

4040

1 10 100 1000 10000

NEH start
Random start

3720

3740

3760

3780

3800

3820

3840

3860

3880

1 10 100 1000 10000

NEH start
Random start

Figure 1.3 The plots show the average solution quality (given on they-axis) as a function
of the number of iterations (given on thex-axis) for an ILS algorithm applied to the FSP on
instancesta051 andta056.

The question of an appropriate initial solution for (random restart) local
search carries over to ILS because of the dependence of the walk inS� on
the initial solutions�0. Indeed, when starting with a randoms0, ILS may take
several iterations to catch up in quality with runs using ans

�

0 obtained by a
greedy initial solution. Hence, for short computation times the initial solution
is certainly important to achieve the highest quality solutions possible. For
larger computation times, the dependence ons0 of the final solution returned
by ILS reflects just how fast, if at all, the memory of the initial solution is lost
when performing the walk inS�.

Let us illustrate the tradeoffs between random and greedy initial solutions
when using an ILS algorithm for the permutation flow shop problem (FSP) [60].
That ILS algorithm uses a straight-forward local search implementation, ran-
dom perturbations, and always appliesPerturbation to the best solution found so
far. In Figure 1.3 we show how the average solution cost evolves with the num-
ber of iterations for two instances. The averages are for10 independent runs
when starting from random initial solutions or from initial solutions returned
by the NEH heuristic [57]. (NEH is one of the best performing constructive
heuristics for the FSP.) For short runs, the curve for the instance on the right
shows that the NEH initial solutions lead to better average solution quality
than the random initial solutions. But at longer times, the picture is not so
clear, sometimes random initial solutions lead to better results as we see on the
instance on the left. This kind of test was also performed for ILS applied to
the TSP [2]. Again it was observed that the initial solution had a significant
influence on quality for short to medium sized runs.

In general, there will not always be a clear-cut answer regarding the best
choice of an initial solution, but greedy initial solutions appear to be recom-

Iterated Local Search 11

mendable when one needs low-cost solutions quickly. For much longer runs,
the initial solution seems to be less relevant, so the user can choose the initial
solution that is the easiest to implement. If however one has an application
where the influence of the initial solution does persist for long times, probably
the ILS walk is having difficulty in exploringS� and so other perturbations or
acceptance criteria should be considered.

3.2 PERTURBATION

The main drawback of local descent is that it gets trapped in local optima
that are significantly worse than the global optimum. Much like simulated an-
nealing, ILS escapes from local optima by applying perturbations to the current
local minimum. We will refer to thestrength of a perturbation as the number
of solution components which are modified. For instance for the TSP, it is the
number of edges that are changed in the tour, while in the flow shop problem,
it is the number of jobs which are moved in the perturbation. Generally, the
local search should not be able to undo the perturbation, otherwise one will fall
back into the local optimum just visited. Surprisingly often, arandom move in
a neighborhood of higher order than the one used by the local search algorithm
can achieve this and will lead to a satisfactory algorithm. Still better results
can be obtained if the perturbations take into account properties of the problem
and are well matched to the local search algorithm.

By how much should the perturbation change the current solution? If the
perturbation is too strong, ILS may behave like a random restart, so better
solutions will only be found with a very low probability. On the other hand,
if the perturbation is too small, the local search will often fall back into the
local optimum just visited and the diversification of the search space will be
very limited. An example of a simple but effective perturbation for the TSP
is thedouble-bridge move. This perturbation cuts four edges (and is thus of
“strength”4) and introduces four new ones as shown in Figure 1.4. Notice that
each bridge is a2-change, but neither of the2-changes individually keeps the
tour connected. Nearly all ILS studies of the TSP have incorporated this kind
of perturbation, and it has been found to be effective for all instance sizes. This
is almost certainly because it changes the topology of the tour and can operate
on quadruples of very distant cities, whereas local search always modifies the
tour among nearby cities. (One could imagine more powerful local searches
which would include such double-bridge changes, but the computational cost
would be far greater than for the local search methods used today.) In effect,
the double-bridge perturbation cannot be undone easily, neither by simple local
search algorithms such as2-opt or3-opt, nor by Lin-Kernighan [43] which
is currently the champion local search algorithm for the TSP. Furthermore,
this perturbation does not increase much the tour length, so even if the current

12

A

BC

D

Figure 1.4 Schematic representation of the double-bridge move. The four dotted edges are
removed and the remaining parts A, B, C, D are reconnected by the dashed edges.

solution is very good, one is almost sure the next one will be good, too. These
two properties of the perturbation – its small strength and its fundamentally
different nature from the changes used in local search – make the TSP the
perfect application for iterated local search. But for other problems, finding an
effective perturbation may be more difficult.

We will now consider optimizing the perturbation assuming the other mod-
ules to be fixed. In problems like the TSP, one can hope to have a satisfactory
ILS when using perturbations of fixed size (independent of the instance size).
On the contrary, for more difficult problems, fixed-strength perturbations may
lead to poor performance. Of course, the strength of the perturbations used
is not the whole story; their nature is almost always very important and will
also be discussed. Finally we will close by pointing out that the perturbation
strength has an effect on the speed of the local search: weak perturbations
usually lead to faster execution ofLocalSearch. All these different aspects need
to be considered when optimizing this module.

Perturbation strength For some problems, an appropriate perturbation strength
is very small and seems to be rather independent of the instance size. This is
the case for both the TSP and the FSP, and interestingly iterated local search
for these problems is very competitive with today’s best metaheuristic meth-
ods. We can also consider other problems where instead one is driven to large
perturbation sizes. Consider the example of an ILS algorithm for the quadratic
assignment problem (QAP). We use an embedded2-opt local search algo-
rithm, the perturbation is a random exchange of the location ofk items, where
k is an adjustable parameter, andPerturbation always modifies the best solu-

Iterated Local Search 13

Table 1.1 The first column is the name of the QAP instance; the number gives its sizen.
The successive columns are for perturbation sizes3, n=12, � � �, n. A perturbation of size
n corresponds to random restart. The table shows the mean solution cost, averaged over10

independent runs for each instance. The CPU-time for each trial is 30 sec. forkra30a, 60 sec.
for tai60a andsko64, and 120 sec. fortai60b on a Pentium III 500 MHz PC.

instance 3 n=12 n=6 n=4 n=3 n=2 3n=4 n

kra30a 2.51 2.51 2.04 1.06 0.83 0.42 0.0 0.77
sko64 0.65 1.04 0.50 0.37 0.29 0.29 0.82 0.93
tai60a 2.31 2.24 1.91 1.71 1.86 2.94 3.13 3.18
tai60b 2.44 0.97 0.67 0.96 0.82 0.50 0.14 0.43

tion found so far. We applied this ILS algorithm to QAPLIB instances5 from
four different classes of QAP instances [64]; computational results are given
in Table 1.1. A first observation is that the best perturbation size is strongly
dependent on the particular instance. For two of the instances, the best perfor-
mance was achieved when as many as 75% of the solution components were
altered by the perturbation. Additionally, for a too small perturbation strength,
the ILS performed worse than random restart (corresponding to the pertur-
bation strengthn). However, the fact that random restart for the QAP may
perform—on average—better than a basic ILS algorithm is a bit misleading:
in the next section we will show that by simply modifying a bit the acceptance
criterion, ILS becomes far better than random restart. Thus one should keep
in mind that the optimization of an iterated local search may require more than
the optimization of the individual components.

Adaptive perturbations The behavior of ILS for the QAP and also for other
combinatorial optimization problems [35, 60] shows that there is noà priori
single best size for the perturbation. This motivates the possibility of modifying
the perturbation strength and adapting itduring the run.

One possibility to do so is to exploit the search history. For the development
of such schemes, inspiration can be taken from what is done in the context
of tabu search [7, 6]. In particular, Battiti and Protasi proposed [6] a reactive
search algorithm for MAX-SAT which fits perfectly into the ILS framework.
They perform a “directed” perturbation scheme which is implemented by a
tabu search algorithm and after each perturbation they apply a standard local
descent algorithm.

5QAPLIB is accessible at http://serv1.imm.dtu.dk/˜sk/qaplib/.

14

Another way of adapting the perturbation is to change deterministically
its strength during the search. One particular example of such an approach
is employed in the scheme calledbasic variable neighborhood search (basic
VNS) [55, 33]; we refer to Section 5 for some explanations on VNS. Other
examples arise in the context of tabu search [31]. In particular, ideas such as
strategic oscillations may be useful to derive more effective perturbations; that
is also the spirit of the reactive search algorithm previously mentioned.

More complex perturbation schemes Perturbations can be more complex
than changes in a higher order neighborhood. One rather general procedure to
generates0 from the currents� is as follows. (1) Gently modify the definition
of the instance, e.g. via the parameters defining the various costs. (2) For this
modified instance, runLocalSearch usings� as input; the output is the perturbed
solutions0. Interestingly, this is the method proposed it the oldest ILS work we
are aware of: in [10], Baxter tested this approach with success on a location
problem. This idea seems to have been rediscovered much later by Codenotti
et al. in the context of the TSP. Those authors [18] first change slightly the city
coordinates. Then they apply the local search tos

� using these perturbed city
locations, obtaining the new tours0. Finally, runningLocalSearch on s0 using
theunperturbed city coordinates, they obtain the new candidate tours

�0.
Other sophisticated ways to generate good perturbations consist in optimiz-

ing a sub-part of the problem. If this task is difficult for the embedded heuristic,
good results can follow. Such an approach was proposed by Lourenc¸o [44] in
the context of the job shop scheduling problem (JSP). Her perturbation schemes
are based on defining one- or two-machine sub-problems by fixing a number of
variables in the current solution and solving these sub-problems, either heuris-
tically [45] or to optimality using for instance Carlier’s exact algorithm [15]
or the early-late algorithm [45]. These schemes work well because: (i) lo-
cal search is unable to undo the perturbations; (ii) after the perturbation, the
solutions tend to be very good and also have “new” parts that are optimized.

Speed In the context of “easy” problems where ILS can work very well with
weak (fixed size) perturbations, there is another reason why that metaheuristic
can perform much better than random restart:Speed. Indeed,LocalSearch

will usually execute much faster on a solution obtained by applying a small
perturbation to a local optimum than on a random solution. As a consequence,
iterated local search can run many more local searches than can random restart
in the same CPU time. As a qualitative example, consider again Euclidean
TSPs. O(n) local changes have to be applied by the local search to reach
a local optimum from a random start, whereas empirically a nearly constant
number is necessary in ILS when using thes

0 obtained with the double-bridge
perturbation. Hence, in a given amount of CPU time, ILS can sample many

Iterated Local Search 15

more local optima than can random restart. Thisspeed factor can give ILS a
considerable advantage over other restart schemes.

Let us illustrate this speed factor quantitatively. We compare for the TSP
the number of local searches performed in a given amount of CPU time by:
(i) random restart; (ii) ILS using a double-bridge move; (iii) ILS using five
simultaneous double-bridge moves. (For both ILS implementations, we used
random starts and the routineAcceptanceCriterion accepted only shorter tours.)
For our numerical tests we used a fast3-opt implementation with standard
speed-up techniques. In particular, it used a fixed radius nearest neighbor
search within candidate lists of the 40 nearest neighbors for each city and don’t
look bits [11, 38, 49]. Initially, all don’t look bits are turned off (set to 0). If
for a node no improving move can be found, its don’t look bit is turned on (set
to 1) and the node is not considered as a starting node for finding an improving
move in the next iteration. When an arc incident to a node is changed by a
move, the node’s don’t look bit is turned off again. In addition, when running
ILS, after a perturbation we only turn off the don’t look bits of the 25 cities
around each of the four breakpoints in a current tour. All three algorithms were
run for 120 seconds on a 266 MHz Pentium II processor on a set of TSPLIB6

instances ranging from 100 up to 5915 cities. Results are given in Table 1.1.
For small instances, we see that iterated local search ran between2 and 10
times as many local searches as random restart. Furthermore, this advantage of
ILS grows fast with increasing instance size: for the largest instance, the first
ILS algorithm ran approximately 260 times as many local searches as random
restart in our alloted time. Obviously, this speed advantage of ILS over random
restart is strongly dependent on the strength of the perturbation applied. The
larger the perturbation size, the more the solution is modified and generally the
longer the subsequent local search takes. This fact is intuitively obvious and is
confirmed in Table 1.1.

In summary, the optimization of the perturbations depends on many factors,
and problem-specific characteristics play a central role. Finally, it is important
to keep in mind that the perturbations also interact with the other components
of ILS. We will discuss these interactions in Section 35

3.3 ACCEPTANCE CRITERION

ILS does a randomized walk inS�, the space of the local minima. The
perturbation mechanism together with the local search defines the possible
transitions between a current solutions� in S� to a “neighboring” solutions�0

also inS�. The procedureAcceptanceCriterion then determines whethers�0 is
accepted or not as the new current solution.AcceptanceCriterion has a strong

6TSPLIB is accessible at www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95.

16

Table 1.2 The first column gives the name of the TSP instance which specifies its size. The next
columns give the number of local searches performed when using: (i) random restart (#LSRR);
(ii) ILS with a single double-bridge perturbation (#LS1�DB); (iii) ILS with a five double-bridge
perturbation (#LS5�DB). All algorithms were run 120 secs. on a Pentium 266 MHz PC.

instance #LSRR #LS1-DB #LS5-DB

kroA100 17507 56186 34451
d198 7715 36849 16454
lin318 4271 25540 9430
pcb442 4394 40509 12880
rat783 1340 21937 4631
pr1002 910 17894 3345
pcb1173 712 18999 3229
d1291 835 23842 4312
fl1577 742 22438 3915
pr2392 216 15324 1777
pcb3038 121 13323 1232
fl3795 134 14478 1773
rl5915 34 8820 556

influence on the nature and effectiveness of the walk inS�. Roughly, it can be
used to control the balance between intensification and diversification of that
search. A simple way to illustrate this is to consider a Markovian acceptance
criterion. A very strong intensification is achieved if only better solutions
are accepted. We call this acceptance criterionBetter and it is defined for
minimization problems as:

Better(s�; s�0; history) =

8
<
:
s
�0 if C(s�0) < C(s�)

s
� otherwise

(1.1)

At the opposite extreme is the random walk acceptance criterion (denoted
by RW) which always applies the perturbation to the most recently visited local
optimum, irrespective of its cost:

RW(s�; s�0; history) = s
�0 (1.2)

This criterion clearly favors diversification over intensification.
Many intermediate choices between these two extreme cases are possible. In

one of the first ILS algorithms, the large-step Markov chains algorithm proposed
by Martin, Otto, and Felten [49, 50], a simulated annealing type acceptance
criterion was applied. We call itLSMC(s�; s�0; history). In particular,s�0 is

Iterated Local Search 17

always accepted if it is better thans�. Otherwise, ifs�0 is worse thans�, s�0

is accepted with probabilityexpf(C(s�)�C(s�0))=Tg whereT is a parameter
called temperature and it is usually lowered during the run as in simulated
annealing. Note thatLSMC approaches theRW acceptance criterion ifT is
very high, while at very low temperaturesLSMC is similar to theBetter
acceptance criterion. An interesting possibility forLSMC is to allow non-
monotonic temperature schedules as proposed in [36] for simulated annealing
or in tabu thresholding [28]. This can be most effective if it is done using
memory: when further intensification no longer seems useful, increase the
temperature to do diversification for a limited time, then resume intensification.
Of course, just as in tabu search, it is desirable to do this in an automatic and
self-regulating manner [31].

A limiting case of using memory in the acceptance criteria is to completely
restart the ILS algorithm when the intensification seems to have become inef-
fective. (Of course this is a rather extreme way to switch from intensification
to diversification). For instance one can restart the ILS algorithm from a new
initial solution if no improved solution has been found for a given number of
iterations. The restart of the algorithm can easily be modeled by the accep-
tance criterion calledRestart(s�; s�0; history). Let ilast be the last iteration
in which a better solution has been found andi be the iteration counter. Then
Restart(s�; s�0; history) is defined as

Restart(s�; s�0; history) =

8
>>>><
>>>>:

s
�0 if C(s�0) < C(s�)

s if C(s�0) � C(s�) andi� ilast > ir

s
� otherwise:

(1.3)

whereir is a parameter that indicates that the algorithm should be restarted if
no improved solution was found forir iterations. Typically,s can be generated
in different ways. The simplest strategy is to generate a new solution randomly
or by a greedy randomized heuristic. Clearly many other ways to incorporate
memory may and should be considered, the overall efficiency of ILS being
quite sensitive to the acceptance criterion applied. We now illustrate this with
two examples.

Example 1: TSP Let us consider the effect of the two acceptance criteria
RW andBetter. We performed our tests on the TSP as summarized in Table
33. We give the average percentage excess over the known optimal solutions
when using10 independent runs on our set of benchmark instances. In addition
we also give this excess for the random restart3-opt algorithm. First, we

18

Table 1.3 Influence of the acceptance criterion for various TSP instances. The first column
gives the instance name and its size. The next columns give the excess percentage length of
the tours obtained using: random restart (RR), iterated local search withRW, and iterated local
search withBetter. The data is averaged over10 independent runs. All algorithms were run
120 secs. on a Pentium 266 MHz PC.

instance �avg(RR) �avg(RW) �avg(Better)

kroA100 0.0 0.0 0.0
d198 0.003 0.0 0.0
lin318 0.66 0.30 0.12
pcb442 0.83 0.42 0.11
rat783 2.46 1.37 0.12
pr1002 2.72 1.55 0.14
pcb1173 3.12 1.63 0.40
d1291 2.21 0.59 0.28
fl1577 10.3 1.20 0.33
pr2392 4.38 2.29 0.54
pcb3038 4.21 2.62 0.47
fl3795 38.8 1.87 0.58
rl5915 6.90 2.13 0.66

observe that both ILS schemes lead to a significantly better average solution
quality than random restart using the same local search. This is particularly
true for the largest instances, confirming again the claims given in Section 2
Second, given that one expects the good solutions for the TSP to cluster (see
Section 35), a good strategy should incorporate intensification. It is thus not
surprising to see that theBetter criterion leads to shorter tours than theRW
criterion.

The runs given in this example are rather short. For much longer runs, the
Better strategy comes to a point where it no longer finds improved tours
and diversification should be considered again. Clearly it will be possible to
improve significantly the results by alternating phases of intensification and
diversification.

Example 2: QAP Let us come back to ILS for the QAP discussed previously.
For this problem we found that the acceptance criterionBetter together with
a (poor) choice of the perturbation strength could result in worse performance
than random restart. In Table 1.3 we give results for the same ILS algorithm
except that we now also consider the use of theRW andRestart acceptance
criteria. We see that the ILS algorithm using these modified acceptance criteria
are much better than random restart, the only exception beingRW with a small
perturbation strength ontai60b.

Iterated Local Search 19

Table 1.4 Further tests on the QAP benchmark problems using the same perturbations and
CPU times as before; given is the mean solution cost, averaged over10 independent runs for
each instance. Here we consider three different choices for the acceptance criterion. Clearly,
the inclusion of diversification significantly lowers the mean cost found.

instance acceptance 3n=12 n=6 n=4 n=3 n=2 3n=4 n

kra30a Better 2.51 2.51 2.04 1.06 0.83 0.42 0.0 0.77
kra30a RW 0.0 0.0 0.0 0.0 0.0 0.02 0.47 0.77
kra30a Restart 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.77

sko64 Better 0.65 1.04 0.50 0.37 0.29 0.29 0.82 0.93
sko64 RW 0.11 0.14 0.17 0.24 0.44 0.62 0.88 0.93
sko64 Restart 0.37 0.31 0.14 0.14 0.15 0.41 0.79 0.93

tai60a Better 2.31 2.24 1.91 1.71 1.86 2.94 3.13 3.18
tai60a RW 1.36 1.44 2.08 2.63 2.81 3.02 3.14 3.18
tai60a Restart 1.83 1.74 1.45 1.73 2.29 3.01 3.10 3.18

tai60b Better 2.44 0.97 0.67 0.96 0.82 0.50 0.14 0.43
tai60b RW 0.79 0.80 0.52 0.21 0.08 0.14 0.28 0.43
tai60b Restart 0.08 0.08 0.005 0.02 0.03 0.07 0.17 0.43

This example shows that there are strong inter-dependences between the per-
turbation strength and the acceptance criterion. Rarely is this inter-dependence
completely understood. But, as a general rule of thumb, when it is necessary to
allow for diversification, we believe it is best to do so by accepting numerous
small perturbations rather than by accepting one large perturbation.

Most of the acceptance criteria applied so far in ILS algorithms are either
fully Markovian or make use of the search history in a very limited way. We
expect that there will be many more ILS applications in the future making strong
use of the search history; in particular, alternating between intensification and
diversification is likely to be an essential feature in these applications.

3.4 LOCAL SEARCH

So far we have treated the local search algorithm as a black box which is
called many times by ILS. Since the behavior and performance of the over-all
ILS algorithm is quite sensitive to the choice of the embedded heuristic, one
should optimize this choice whenever possible. In practice, there may be many
quite different algorithms that can be used for the embedded heuristic. (As
mentioned at the beginning of the chapter, the heuristic need not even be a
local search.) One might think that the better the local search, the better the
corresponding ILS. Often this is true. For instance in the context of the TSP,
Lin-Kernighan [43] is a better local search than3-opt which itself is better

20

than2-opt [38]. Using a fixed type of perturbation such as the double-bridge
move, one finds that iterated Lin-Kernighan gives better solutions than iterated
3-opt which itself gives better solutions than iterated2-opt [38, 63]. But if we
assume that the total computation time is fixed, it might be better to apply more
frequently a faster but less effective local search algorithm than a slower and
more powerful one. Clearly which choice is best depends on just how much
more time is needed to run the better heuristic. If the speed difference is not
large, for instance if it is independent of the instance size, then it usually worth
using the better heuristic. This is the most frequent case; for instance in the
TSP, 3-opt is a bit slower than 2-opt, but the improvement in quality of the tours
are well worth the extra CPU time, be-it using random restart or iterated local
search. The same comparison applies to using L-K rather than 3-opt. However,
there are other cases where the increase in CPU time is so large compared to
the improvement in solution quality that it is best not to use the “better” local
search. For example, again in the context of the TSP, it is known that4-opt
gives slightly better solutions than3-opt, but in standard implementations it is
O(n) times slower (n being the number of cities). It is then better not to use
4-opt as the local search embedded in ILS.7

There are also other aspects that should be considered when selecting a local
search. Clearly, there is not much point in having an excellent local search if it
will systematically undo the perturbation; however this issue is one of globally
optimizing iterated local search, so it will be postponed till the next sub-section.
Another important aspect is whether one can really get the speed-ups that were
mentioned in sub-section 32. There we saw that a standard trick forLocalSearch

was to introduce don’t look bits. These give a large gain in speed if the bits
can be reset also after the application of the perturbation. This requires that the
developper be able to access the source code ofLocalSearch. A state of the art
ILS will take advantage of all possible speed-up tricks, and thus theLocalSearch

most likely will not be a true black box.
Finally, there may be some advantages in allowingLocalSearch to sometimes

generate worse solutions. For instance, if we replace the local search heuristic
by tabu search or short simulated annealing runs, the corresponding ILS may
perform better. This seems most promising when standard local search methods
perform poorly. Such is indeed the case in the job-shop scheduling problem:
the use of tabu search as the embedded heuristic gives rise to a very effective
iterated local search [46].

7But see ref. [29] for a way to implement4-opt much faster.

Iterated Local Search 21

3.5 GLOBAL OPTIMIZATION OF ILS

So far, we have considered representative issues arising when optimizing
separately each of the four components of an iterated local search. In particular,
when illustrating various important characteristics of one component, we kept
the other components fixed. But clearly the optimization of one component
depends on the choices made for the others; as an example, we made it clear
that a good perturbation must have the property that it cannot be easily undone
by the local search. Thus, at least in principle, one should tackle theglobal
optimization of an ILS. Since at present there is no theory for analyzing a
metaheuristic such as iterated local search, we content ourselves here with just
giving a rough idea of how such a global optimization can be approached in
practice.

If we reconsider the sub-section on the effect of the initial solution, we see
thatGenerateInitialSolution is to a large extent irrelevant when the ILS performs
well and rapidly looses the memory of its starting point. Hereafter we assume
that this is the case; then the optimization ofGenerateInitialSolutioncan be ignored
and we are left with the joint optimization of the three other components.
Clearly the best choice ofPerturbation depends on the choice ofLocalSearch while
the best choice ofAcceptanceCriterion depends on the choices ofLocalSearch and
Perturbation. In practice, we can approximate this global optimization problem
by successively optimizing each component, assuming the others are fixed
until no improvements are found for any of the components. Thus the only
difference with what has been presented in the previous sub-sections is that the
optimization has to be iterative. This does not guarantee global optimization of
the ILS, but it should lead to an adequate optimization of the overall algorithm.

Given these approximations, we should make more precise what in fact we
are to optimize. For most users, it will be the mean (over starting solutions)
of the best cost found during a run of a given length. Then the “best” choice
for the different components is a well posed problem, though it is intractable
without further restrictions. Furthermore, in general, the detailed instance that
will be considered by the user is not known ahead of time, so it is important
that the resulting ILS algorithm be robust. Thus it is preferable not to optimize
it to the point where it is sensitive to the details of the instance. This robustness
seems to be achieved in practice: researchers implement versions of iterated
local search with a reasonable level of global optimization, and then test with
some degree of success the performance on standard benchmarks.

Search space characteristics. At the risk of repeating ourselves, let us high-
light the main dependencies of the components:

22

1. the perturbation should not be easily undone by the local search; if
the local search has obvious short-comings, a good perturbation should
compensate for them.

2. the combinationPerturbation–AcceptanceCriterion determines the relative
balance of intensification and diversification; large perturbations are only
useful if they can be accepted, which occurs only if the acceptance
criterion is not too biased towards better solutions.

As a general guideline,LocalSearch should be as powerful as possible as long as
it is not too costly in CPU time. Given such a choice, then find a well adapted
perturbation following the discussion in Section 32; to the extent possible, take
advantage of the structure of the problem. Finally, set theAcceptanceCriterion

routine so thatS� is sampled adequately. With this point of view, the overall
optimization of the ILS is nearly a bottom-up process, but with iteration.
Perhaps the core issue is what to put intoPerturbation: can one restrict the
perturbations to be weak? From a theoretical point of view, the answer to
this question depends on whether the best solutions “cluster” inS�. In some
problems (and the TSP is one of them), there is a strong correlation between the
cost of a solution and its “distance” to the optimum: in effect, the best solutions
cluster together, i.e., have many similar components. This has been referred
to in many different ways: “Massif Central” phenomenon [23], principle of
proximate optimality [31], and replica symmetry [53]. If the problem under
consideration has this property, it is not unreasonable to hope to find the true
optimum using a biased sampling ofS�. In particular, it is clear that is useful
to use intensification to improve the probability of hitting the global optimum.

There are, however, other types of problems where the clustering is incom-
plete, i.e., where very distant solutions can be nearly as good as the optimum.
Examples of combinatorial optimization problems in this category are QAP,
graph bi-section, and MAX-SAT. When the space of solutions has this property,
new strategies have to be used. Clearly, it is still necessary to use intensification
to get the best solution in one’s current neighborhood, but generally this will not
lead to the optimum. After an intensification phase, one must go explore other
regions ofS�. This can be attempted by using “large” perturbations whose
strength grows with the instance. Other possibilities are to restart the algo-
rithm from scratch and repeat another intensification phase or by oscillating the
acceptance criterion between intensification and diversification phases. Addi-
tional ideas on the tradeoffs between intensification and diversification are well
discussed in the context of tabu search (see, for example, [31]). Clearly, the
balance intensification – diversification is very important and is a challenging
problem.

Iterated Local Search 23

4. SELECTED APPLICATIONS OF ILS

ILS algorithms have been applied successfully to a variety of combinatorial
optimization problems. In some cases, these algorithms achieve extremely
high performance and even constitute the current state-of-the-art metaheuris-
tics, while in other cases the ILS approach is merely competitive with other
metaheuristics. In this section, we cover some of the most studied problems,
with a stress on the traveling salesman problem and scheduling problems.

4.1 ILS FOR THE TSP

The TSP is probably the best-known combinatorial optimization problem.
De facto, it is a standard test-bed for the development of new algorithmic
ideas: a good performance on the TSP is taken as evidence of the value of
such ideas. Like for many metaheuristic algorithms, some of the first ILS
algorithms were introduced and tested on the TSP, the oldest case of this being
due to Baum [9, 8]. He coined his methoditerated descent; his tests used 2-opt
as the embedded heuristic, random 3-changes as the perturbations, and imposed
the tour length to decrease (thus the name of the method). His results were
not impressive, in part because he considered the non-Euclidean TSP, which
is substantially more difficult in practice than the Euclidean TSP. A major
improvement in the performance of ILS algorithms came from thelarge-step
Markov chain (LSMC) algorithm proposed by Martin, Otto, and Felten [49].
They used a simulated annealing like acceptance criterion (LSMC) from which
the algorithm’s name is derived and considered both the application of3-opt
local search and the Lin-Kernighan heuristic (LK) which is the best performing
local search algorithm for the TSP. But probably the key ingredient of their work
is the introduction of the double-bridge move for the perturbation. This choice
made the approach very powerful for the Euclidean TSP, and that encouraged
much more work along these lines. In particular, Johnson [37, 38] coined
the term “iterated Lin-Kernighan” (ILK) for his implementation of ILS using
the Lin-Kernighan as the local search. The main differences with the LSMC
implementation are: (i) double-bridge moves are random rather than biased;
(ii) the costs are improving (only better tours are accepted, corresponding to the
choiceBetter in our notation). Since these initial studies, other ILS variants
have been proposed, and Johnson and McGeoch [38] give a summary of the
situation as of 1997.

Currently the highest performance ILS for the TSP is the chainedLK code
by Applegate, Bixby, Chvatal, and Cook which is available as a part of the
Concorde software package at www.keck.caam.rice.edu/concorde.html. These
authors have provided very detailed descriptions of their implementation, and
so we refer the reader to their latest article [1] for details. Furthermore,
Applegate, Cook, and Rohe [2] performed thorough experimental tests of this

24

code by considering the effect of the different modules: (i) initial tour; (ii)
implementation choices of theLK heuristic; (iii) types of perturbations. Their
tests were performed on very large instances with up to 25 million cities. For the
double-bridge move, they considered the effect of forcing the edges involved
to be “short”, and investigated the random double-bridge moves as well. Their
conclusion is that the best performance is obtained when the double-bridge
moves are biased towards short edge lengths. However, the strength of the bias
towards short edges should be adapted to the available computation time: the
shorter the computation time, the shorter the edges should be. In their tests
on the influence of the initial tour, they concluded that the worst performance
is obtained with random initial tours or those returned by the nearest neighbor
heuristic, while best results were obtained with the Christofides algorithm [17],
the greedy heuristic [11] or the Quick-Boruvka heuristic proposed in that article.
With long runs of their algorithm on TSPLIB instances with more than 10.000
cities they obtained an impressive performance, always obtaining solutions that
have less than 0.3% excess length over the lower bounds for these instances.
For the largest instance considered, a 25 million city instance, they reached a
solution of only 0.3% over the estimated optimum.

Apart from these works, two new ILS algorithms for the TSP have been
proposed since the review article of Johnson and McGeoch. The first algo-
rithm is due to Sẗutzle [61, 63]; he examined the run-time behavior of ILS
algorithms for the TSP and concluded that ILS algorithms with theBetter
acceptance criterion show a type of stagnation behavior for long run-times [61]
as expected when performing a strong intensification search. To avoid such
stagnation, restarts and a particular acceptance criterion to diversify the search
were proposed. The goal of this latter strategy is to force the search to continue
from a position that is beyond a certain minimal distance from the current
position. This idea is implemented as follows. Letsc be the solution from
which to escape;sc is typically chosen ass�best, the best solution found in the
recent search. Letd(s; s0) be the distance between two tourss ands0, that is
the number of edges in which they differ. Then the following steps are repeated
until a solution beyond a minimal distancedmin from sc is obtained:

(1) Generatep copies ofsc.

(2) To each of thep solutions applyPerturbation followed byLocalSearch.

(3) Choose the bestq solutions,1 < q � p, as candidate solutions.

(4) Lets� be the candidate solution with maximal distance tosc . If d(s�; sc) �
dmin then repeat at(2); otherwise returns�.

The purpose of step 3 is to choose good quality solutions, while step 4 guar-
antees that the point from which the search will be continued is sufficiently

Iterated Local Search 25

different (far) fromsc. The attempts are continued until a new solution is
accepted, but one gives up after some maximum number of iterations. Compu-
tational results for this way of going back and forth between intensification and
diversification show that the method is very effective, even when using only a
3-opt local search [63, 62].

The second ILS developed for the TSP since 1997 is that of Katayama and
Narisha [39]. They introduce a new perturbation mechanism which they called
a genetic transformation. The genetic transformation mechanism uses two
tours, one of which is the best found so fars

�

best, while the second solutions0 is
a tour found earlier in the search. First a random 4-opt move is performed on
s
�

best, resulting ins�0. Then the subtours that are shared amongs
�0 ands0 are

enumerated. The resulting parts are then reconnected with a greedy algorithm.
Computational experiments with an iteratedLK algorithm using the genetic
transformation method instead of the standard double-bridge move have shown
that the approach is very effective; further studies should be forthcoming.

4.2 ILS FOR SCHEDULING PROBLEMS

ILS has also been applied successfully to scheduling problems. Here we
summarize the different uses of ILS for tackling these types of systems, ranging
from single machine to complex multi-machine scheduling.

Single Machine Total Weighted Tardiness Problem (SMTWTP) Con-
gram, Potts and van de Velde [19] have presented an ILS algorithm for the
SMTWTP based on a dynasearch local search. Dynasearch uses dynamic
programming to find a best move which is composed of a set of independent
interchange moves; each such move exchanges the jobs at positionsi andj,
j 6= i. Two interchange moves are independent if they do not overlap, that is if
for two moves involving positionsi; j andk; l we haveminfi; jg � maxfk; lg
or vice versa. This neighborhood is of exponential size but dynasearch explores
this neighborhood in polynomial time.

The perturbation consists of a series of random interchange moves. They also
exploit a well-known property of the SMTWTP: there exists an optimal solution
in which non-late jobs are sequenced in non-decreasing order of the due dates.
This property is used in two ways: to diversify the search in the perturbation
step and to reduce the computation time of the dynasearch. In the acceptance
criterion, Congram et al. introduce abacktrack step: after� iterations in which
every new local optimum is accepted, the algorithm restarts with the best
solution found so far. In our notation, the backtrack step is a particular choice
for the history dependence incorporated intoAcceptanceCriterion.

Congram et al. used several different embeddedLocalSearch, all associated
with the interchange neighborhood. These heuristics were: (i) dynasearch;
(ii) a local search based on first-improvement descent; (iii) a local search

26

based on best-improvement descent. Then they performed tests to evaluate
these algorithms using random restart and compared them to using iterated
local search. While random restart dynasearch performed only slightly better
than the two simpler descent methods, the ILS with dynasearch significantly
outperformed the other two iterated descent algorithms, which in turn were far
superior to the random restart versions. The authors also show that the iterated
dynasearch algorithm significantly improves over the previously best known
algorithm, a tabu search presented in [20].

Single and parallel machine scheduling Brucker, Hurink, and Werner [12,
13] apply the principles of ILS to a number of one-machine and parallel-
machine scheduling problems. They introduce a local search method which is
based on two types of neighborhoods. At each step one goes from one feasible
solution to a neighboring one with respect to the secondary neighborhood. The
main difference with standard local search methods is that this secondary neigh-
borhood is defined on the set of locally optimal solutions with respect to the
first neighborhood. Thus in fact this is an ILS with two nested neighborhoods;
searching in their primary neighborhood corresponds to our local search phase;
searching in their secondary neighborhood is like our perturbation phase. The
authors also note that the second neighborhood is problem specific; this is what
arises in ILS where the perturbation should be adapted to the problem. The
search at a higher level reduces the search space and at the same time leads to
better results.

Flow shop scheduling Stützle [60] applied ILS to the flow shop problem
(FSP). The algorithm is based on a straightforward first-improvement local
search using the insert neighborhood, where a job at positioni is removed and
inserted at positionj 6= i. The initial schedule is constructed by the NEH
heuristic [57] while the perturbation is generated by composing moves of two
different kinds: swaps which exchange the positions of two adjacent jobs, and
interchange moves which have no constraint on adjacency. Experimentally,
it was found that perturbations with just a few swap and interchange moves
were sufficient to obtain very good results. The article also compares different
acceptance criteria;ConstTemp, which is the same as theLSMC acceptance
criterion except that it uses a constant temperatureTc, was found to be superior
to Better. The computational results show that despite the simplicity of the
approach, the quality of the solutions obtained is comparable to that of the best
performing local search algorithms for the FSP; we refer to [60] for a more
detailed discussion.

ILS has also been used to solve a flow-shop problem with several stages in
series. Yang, Kreipl and Pinedo [67] presented such a method; at each stage,
instead of a single machine, there is a group of identical parallel machines. Their

Iterated Local Search 27

metaheuristic has two phases that are repeated iteratively. In the first phase, the
operations are assigned to the machines and an initial sequence is constructed.
The second phase uses an ILS to find better schedules for each machine at each
stage by modifying the sequence of each machine. (This part is very similar
in spirit to the approach of Kreipl for the minimum total weighted tardiness
job-shop problem [42] that is presented below.) Yang, Kreipl and Pinedo also
proposed a “hybrid” metaheuristic: they first apply a decomposition procedure
that solves a series of single stage sub-problems; then they follow this by their
ILS. The process is repeated until a satisfactory solution is obtained.

Job shop scheduling Lourenço [44] and Lourenc¸o and Zwijnenburg [46]
used ILS to tackle the job shop scheduling problem (JSP). They performed
extensive computational tests, comparing different ways to generate initial
solutions, various local search algorithms, different perturbations, and three
acceptance criteria. While they found that the initial solution had only a
very limited influence, the other components turned out to be very important.
Perhaps the heart of their work is the way they perform the perturbations. They
consider relaxations of the problem at hand corresponding to the optimization
of just some of the jobs. Then they use exact methods to solve these sub-
problems, generating the perturbation move. This has the great advantage
that much problem-specific knowledge is built into the perturbation. Such
problem specific perturbations are difficult to generate from local moves only.
Now, for the local search, three alternatives were considered: local descent,
short simulated annealing runs, and short tabu search runs. Best results were
obtained using the latter in the local search phase. Not surprisingly, ILS
performed better than random restart given the same amount of time, for any
choice of the embedded local search heuristic.

In more recent work on the job-shop scheduling problem, Balas and Vaza-
copoulos [4] presented a variable depth search heuristic which they called
guided local search (GLS). GLS is based on the concept of neighborhood trees,
proposed by the authors, where each node corresponds to a solution and the
child nodes are obtained by performing an interchange on some critical arc. In
their work, the interchange move consists in reversing more than one arc and
can be seen as a particular kind of variable depth interchange. They developed
ILS algorithms by embedding GLS within the shifting bottleneck (SB) proce-
dure by replacing the reoptimization cycle of the SB with a number of cycles
of the GLS procedure. They call this procedure SB-GLS1. Later, they also
proposed a variant of this method, SB-GLS2, which works as follows. After all
machines have been sequenced, they iteratively remove one machine and apply
GLS to a smaller instance defined by the remaining machines. Then again GLS
is applied on the initial instance containingall machines. This procedure is
an ILS where a perturbed solution is obtained by applying a (variable depth)

28

local search to just part of an instance. The authors perform a computational
comparison with other metaheuristics and conclude that SB-GLS (1 and 2)
are robust and efficient, and provide schedules of high quality in a reasonable
computing time. In some sense, both heuristics are similar to the one proposed
by Lourenço [44], the main differences being: (i) Lourenc¸o’s heuristic applies
perturbations to complete schedules whereas the SB-GLS heuristic starts by an
empty (infeasible) schedule and iteratively optimizes it machine by machine
until all machines have been scheduled, in a SB-style followed by a local search
application; (ii) the local search algorithms used differ.

Recently, Kreipl applied ILS to the total weighted tardiness job shop schedul-
ing problem (TWTJSP) [42]. The TWTJSP is closer to real life problems than
the classical JSP with makespan objective because it takes into account release
and due dates and also it introduces weights that indicate the importance of
each job. Kreipl uses an ILS algorithm with theRW acceptance criterion. The
algorithm starts with an initial solution obtained by the shortest processing time
rule [34]. The local search consists in reversing critical arcs and arcs adjacent to
these, where a critical arc has to be an element of at least one critical path (there
may exist several critical paths). One original aspect of this ILS is the pertur-
bation step: Kreipl applies a few steps of a simulated annealing type algorithm
with the Metropolis acceptance criterion [52] but with a fixed temperature. For
this perturbation phase a smaller neighborhood than the one used in the local
search phase is taken: while in the local search phase any critical arc can be
reversed, during the diversification phase only the critical arcs belonging to the
critical path having the job with highest impact on the objective function are
considered.8 The number of iterations performed in the perturbation depends
how good the incumbent solution is. In promising regions, only a few steps
are applied to stay near good solutions, otherwise, a "large" perturbation is
applied to permit the algorithm to escape from a poor region. Computational
results with the ILS algorithm on a set of benchmark instances has shown a very
promising performance compared to an earlier shifting bottleneck heuristic [59]
proposed for the same problem.

4.3 ILS FOR OTHER PROBLEMS

Graph bipartitioning ILS algorithms have been proposed and tested on a
number of other problems, though not as thoroughly as the ones we have
discussed so far. We consider first the graph bipartitioning problem. Given
a (weighted) graph and a bisection or partition of its vertices into two setsA

andB of equal size, call the cut of the partition the sum of the weights of the

8It should be noted that the perturbation phase leads, in general, to an intermediate solution which is not
locally optimal.

Iterated Local Search 29

edges connecting the two parts. The graph partitioning problem is to find the
partition with the minimum cut. Martin and Otto [47, 48] introduced an ILS
for this problem following their earlier work on the TSP. For the local search,
they used the Kernighan-Lin variable depth local search algorithm (KL) [40]
which is the analog for this problem of theLK algorithm. In effect,KL finds
intelligentlym vertices of one set to be exchanged withm of the other. Then,
when considering possible perturbations, they noticed a particular weakness of
theKL local search:KL frequently generates partitions with many “islands”,
i.e., the two setsA andB are typically highly fragmented (disconnected). Thus
they introduced perturbations that exchanged vertices between these islands
rather than between the whole setsA andB. This works as follows: choose
at random one of the cut edges, i.e., an edge connectingA andB. This edge
connects two “seed” vertices each belonging to their island. Around each seed,
iteratively grow a connected cluster of vertices within each island. When a
target cluster size or a whole island size is reached, stop the growth. The
two clusters are then exchanged and this is the perturbation move. Finally,
for the acceptance criterion, Martin and Otto used theBetter acceptance
criterion. The overall algorithm significantly improved over the embedded
local search (random restart ofKL); it also improved over simulated annealing
if the acceptance criterion was optimized.

At the time of that work, simulated annealing was the state of the art method
for the graph bisection problem. Since then, there have been many other
metaheuristics [5, 51] developed for this problem, so the performance that must
be reached is much higher now. Furthermore, given that the graph bipartitioning
problem has a low cost-distance correlation [51], ILS has difficulty in sampling
all good low cost solutions. To overcome this, some form of history dependence
most certainly would have to be built into the perturbation or the acceptance
criterion.

MAX-SAT Battiti and Protasi present an application ofreactive search to the
MAX-SAT problem [6]. Their algorithm consists of two phases: a local search
phase and a diversification (perturbation) phase. Because of this, their approach
fits perfectly into the ILS framework. Their perturbation is obtained by running
a tabu search on the current local minimum so as to guarantee that the modified
solutions0 is sufficiently different from the current solutions�. Their measure
of difference is just the Hamming distance; the minimum distance is set by
the length of a tabu list that is adjusted during the run of the algorithm. For
theLocalSearch, they use a standard greedy descent local search appropriate for
the MAX-SAT problem. Depending on the distance betweens

�0 ands�, the
tabu list length for the perturbation phase is dynamically adjusted. The next
perturbation phase is then started based on solutions

�0 — corresponding to the
RW acceptance criterion. This work illustrates very nicely how one can adjust

30

dynamically the perturbation strength in an ILS run. We conjecture that similar
schemes will prove useful to optimize ILS algorithms in a nearly automatic
way.

Prize-collecting Steiner tree problem The last combinatorial optimization
problem we discuss is the prize-collecting Steiner tree problem on graphs.
Canudo, Resende and Ribeiro [14] presented several local search strategies
for this problem: iterative improvement, multi-start with perturbations, path-
relinking, variable neighborhood search, and a algorithm based on the integra-
tion of all these. They showed that all these strategies are effective in improving
solutions; in fact in many of their tests they found the optimal solution. One of
their proposed heuristics, local search with perturbations, is in fact an ILS. In
that approach, they first generated initial solutions by the primal-dual algorithm
of Goemans and Wiliamson (GW) [32] but where the cost function is slightly
modified. Canudo et al. proposed two perturbation schemes: perturbation by
eliminations and perturbations by prize changes. In the first scheme, the per-
turbation is done by resetting to zero the prizes of some persistent node which
appeared in the solution build by GW and remained at the end of local search
in the previous iteration. In the second scheme, the perturbation consists in
introducing noise into the node prize. This feature of always applying the
perturbation to the last solution obtained by the local search phase is clearly in
our notation the ILS-RW choice.

4.4 SUMMARY

The examples we have chosen in this section stress several points that have
already been mentioned before. First, the choice of the local search algorithm
is usually quite critical if one is to obtain peak performance. In most of the
applications, the best performing ILS algorithms apply much more sophisti-
cated local search algorithms than simple best- or first-improvement descent
methods. Second, the other components of an ILS also need to be optimized if
the state of the art is to be achieved. This optimization should be global, and
to succeed should involve the use of problem-specific properties. Examples
of this last point were given for instance in the scheduling applications: there
the good perturbations were not simply random moves, rather they involved
re-optimizations of significant parts of the instance (c.f. the job shop case).

The final picture we reach is one where (i) ILS is a versatile metaheuristic
which can easily be adapted to different combinatorial optimization problems;
(ii) sophisticated perturbation schemes and search space diversification are the
essential ingredients to achieve the best possible ILS performance.

Iterated Local Search 31

5. RELATION TO OTHER METAHEURISTICS

In this section we highlight the similarities and differences between ILS and
other well-known metaheuristics. We shall distinguish metaheuristics which
are essentially variants of local search and those which generate solutions using
a mechanism that is not necessarily based on an explicit neighborhood structure.
Among the first class which we callneighborhood based metaheuristics are
methods like simulated annealing (SA) [41, 16], tabu search (TS) [26, 27, 31]
or guided local search (GLS) [66]. The second class comprises metaheuristics
like GRASP [22], ant colony optimization (ACO) [21], evolutionary algorithms
(EA) [3, 54], scatter search [30], variable neighborhood search (VNS) [33, 55]
and ILS. Some metaheuristics of this second class, like EAs and ACO, do
not necessarily make use of local search algorithms; however a local search
can be embedded in them, in which case the performance is usually enhanced
[56, 61]. The other metaheuristics in this class explicitly use embedded local
search algorithms as an essential part of their structure. For simplicity, we
will assume in what follows that all the metaheuristics of this second class do
incorporate local search algorithms. In this case, such metaheuristics generate
iteratively input solutions that are passed to a local search; they can thus be
interpreted as multi-start algorithms, using the most general meaning of that
term. This is why we call them heremulti-start based metaheuristics.

5.1 NEIGHBORHOOD BASED METAHEURISTICS

Neighborhood based metaheuristics are extensions of iterative improvement
algorithms and avoid getting stuck in locally optimal solutions by allowing
moves to worse solutions in one’s neighborhood. Different metaheuristics of
this class differ mainly by their move strategies. In the case of simulated
annealing, the neighborhood is sampled randomly and worse solutions are
accepted with a probability which depends on a temperature parameter and
the degree of deterioration incurred; better neighboring solutions are usually
accepted while much worse neighboring solutions are accepted with a low
probability. In the case of (simple) tabu search strategies, the neighborhood is
explored in an aggressive way and cycles are avoided by declaring attributes
of visited solutions as tabu. Finally, in the case of guided local search, the
evaluation function is dynamically modified by penalizing certain solution
components. This allows the search to escape from a solution that is a local
optimum of the original objective function.

Obviously, any of these neighborhood based metaheuristics can be used as
theLocalSearch procedure in ILS. In general, however, those metaheuristics do
not halt, so it is necessary to limit their run time if they are to be embedded in
ILS. One particular advantage of combining neighborhood based metaheuristics
with ILS is that they often obtain much better solutions than iterative descent

32

algorithms. But this advantage usually comes at the cost of larger computation
times. Since these metaheuristics allow one to obtain better solutions at the
expense of greater computation times, we are confronted with the following
optimization problem when using them within an ILS:9 “For how long should
one run the embedded search in order to achieve the best tradeoff between
computation time and solution quality?” This is very analogous to the question
of whether it is best to have a fast but not so good local search or a slower
but more powerful one. The answer depends of course on the total amount of
computation time available, and on how the costs improve with time.

A different type of connection between ILS, SA and TS arises from certain
similarities in the algorithms. For example, SA can be seen as an ILS without
a local search phase (SA samples the original spaceS and not the reduced
spaceS�) and where the acceptance criteria isLSMC(s�; s�0; history). While
SA does not employ memory, the use of memory is the main feature of TS
which makes a strong use of historical information at multiple levels. Given
its effectiveness, we expect this kind of approach for incorporating memory
to become widespread in future ILS applications.10 Furthermore, TS, as one
prototype of a memory intensive search procedure, can be a valuable source
of inspiration for deriving ILS variants with a more direct usage of memory;
this can lead to a better balance between intensification and diversification in
the search.11 Similarly, TS strategies may also be improved by features of ILS
algorithms and by some insights gained from the research on ILS.

5.2 MULTI-START BASED METAHEURISTICS

Multi-start based metaheuristics can be classified intoconstructive meta-
heuristics andperturbation-based metaheuristics.

Well-known examples of constructive metaheuristics are ant colony opti-
mization and GRASP which both use a probabilistic solution construction
phase. An important difference between ACO and GRASP is that ACO has an
indirect memory of the search process which is used to bias the construction
process, whereas GRASP does not have that kind of memory. An obvious
difference between ILS and constructive metaheuristics is that ILS does not
construct soutions. However, both generate a sequence of solutions, and if
the constructive metaheuristic uses an embedded local search, both go from
one local minimum to another. So it might be said that the perturbation phase

9This question is not specific to ILS; it arises for all multi-start type metaheuristics.
10In early TS publications, proposals similar to the use of perturbations were put forward under the name
random shakeup [25]. These procedures where characterized as a “randomized series of moves that leads
the heuristic (away) from its customary path” [25]. The relationship to perturbations in ILS is obvious.
11Indeed, in [26], Glover uses “strategic oscillation” strategies whereby one cycles over these procedures:
the simplest moves are used till there is no more improvement, and then progressively more advanced moves
are used.

Iterated Local Search 33

of an ILS is replaced by a (memory-dependent) construction phase in these
constructive metaheuristics. But another connection can be made: ILS can be
used instead of the embedded “local search” in an algorithm like ant colony
optimization or GRASP. This is one way to generalize ILS, but it is not specific
to these kinds of metaheuristics: whenever one has an embedded local search,
one can try to replace it by an iterated local search.

Perturbation-based metaheuristics differ in the techniques they use to actu-
ally perturb solutions. Before going into details, let us introduce one additional
feature for classifying metaheuristics: we will distinguish between population-
based algorithms and those that use a single current solution (the population is
of size 1). For example, EA, scatter search, and ant colony optimization are
population-based, while ILS uses a single solution at each step. Whether or not
a metaheuristics is population-based is important for the type of perturbation
that can be applied. If no population is used, new solutions are generated by
applying perturbations to single solutions; this is what happens for ILS and
VNS. If a population is present, one can also use the possibility of recombining
several solutions into a new one. Such combinations of solutions are imple-
mented by “crossover” operators in EAs or in the recombination of multiple
solutions in scatter search.

In general, population-based metaheuristics are more complex to use than
those following a single solution: they require mechanisms to manage a popula-
tion of solutions and more importantly it is necessary to find effective operators
for the combination of solutions. Most often, this last task is a real challenge.
The complexity of these population-based local search hybrid methods can be
justified if they lead to better performance than non-population based methods.
Therefore, one question of interest is whether using a population of solutions
is really useful. Unfortunately, there are very few systematic studies which
address this issue [20, 24, 38, 62, 65]. Clearly for some problems such as the
TSP with high cost-distance correlations, the use of a single element in the pop-
ulation leads to good results, so the advantage of population-based methods is
small or nil. However, for other problems (with less cost-distance correlations),
it is clear that the use of a population is an appropriate way to achieve search
space diversification. Thus population based methods are desirable if their
complexity is not overwhelming. Because of this, population-based extensions
of ILS are promising approaches.

To date, several population-based extensions of ILShave been proposed [1,
35, 61]. The approaches proposed in [35, 61] keep the simplicity of ILS
algorithms by maintaining unchanged the perturbations: one parent is perturbed
to give one child. But given that there is a population, the evolution depends
on competition among its members and only the fittests survive. One can give
up this simplicity as was done in the approach of Applegate et al. [1]. Given
the solutions in a population that have been generated by an ILS, they define a

34

smaller instance by freezing the components that are in common in all parents.
(They do this in the context of the TSP; the subtours that are in common are
then fixed in the sub-problem.) They then reoptimize this smaller problem
using ILS. This idea is tested in [1], and they find very high quality solutions,
even for large TSP instances.

Finally, let us discuss variable neighborhood search (VNS) which is the
metaheuristic closest to ILS. VNS begins by observing that the concept of local
optimality is conditional on the neighborhood structure used in a local search.
Then VNS systemizes the idea of changing the neighborhood during the search
to avoid getting stuck in poor quality solutions. Several VNS variants have been
proposed. The most widely used one,basic VNS, can, in fact, be seen as an ILS
algorithm which uses theBetteracceptance criterion and a systematic way of
varying the perturbation strength. To do so, basic VNS orders neighborhoods
asN1; : : : ;Nm where the order is chosen according to the neighborhood size.
Let k be a counter variable,k = 1; 2; : : : ;m, and initially setk = 1. If the
perturbation and the subsequent local search lead to a new best solution, then
k is reset to1, otherwisek is increased by one. We refer to [33, 55] for a
description of other VNS variants.

A major difference between ILS and VNS is the philosophy underlying the
two metaheuristics: ILS explicitly has the goal of building a walk in the set of
locally optimal solutions, while VNS algorithms are derived from the idea of
systematically changing neighborhoods during the search.

Clearly, there are major points in common between most of today’s high
performance metaheuristics. How can one summarize how iterated local search
differs from the others? We shall proceed by enumeration as the diversity of
today’s metaheuristics seems to forbid any simpler approach. When comparing
to ACO and GRASP, we see that ILS uses perturbations to create new solutions;
this is quite different in principle and in practice from using construction. When
comparing to EAs and scatter search, we see that ILS, as we defined it, has
a population size of1; therefore no recombination operators need be defined.
We could continue like this, but we cannot expect the boundaries between
all metaheuristics to be so clear-cut. Not only are hybrid methods very often
the way to go, but most often one can smoothly go from one metaheuristic
to another. In addition, as mentioned at the beginning of this chapter, the
distinction between heuristic and metaheuristic is rarely unambiguous. So our
point of view is not that iterated local search has essential features that are
absent in other metaheuristics; rather, when considering the basic structure of
iterated local search, some simple yet powerful ideas transpire, and these can
be of use in most metaheuristics, being close or not in spirit to iterated local
search.

Iterated Local Search 35

6. CONCLUSIONS

ILS has many of the desirable features of a metaheuristic: it is simple, easy
to implement, robust, and highly effective. The essential idea of ILS lies in
focusing the search not on the full space of solutions but on a smaller subspace
defined by the solutions that are locally optimal for a given optimization engine.
The success of ILS lies in thebiased sampling of this set of local optima. How
effective this approach turns out to be depends mainly on the choice of the local
search, the perturbations, and the acceptance criterion. Interestingly, even
when using the most naı̈ve implementations of these parts, ILS can do much
better than random restart. But with further work so that the different modules
are well adapted to the problem at hand, ILS can often become a competitive
or even state of the art algorithm. This dichotomy is important because the
optimization of the algorithm can be done progressively, and so ILS can be
kept at any desired level of simplicity. This, plus the modular nature of iterated
local search, leads to short development times and gives ILS an edge over more
complex metaheuristics in the world of industrial applications. As an example
of this, recall that ILS essentially treats the embedded heuristic as a black
box; then upgrading an ILS to take advantage of a new and better local search
algorithm is nearly immediate. Because of all these features, we believe that
ILS is a promising and powerful algorithm to solve real complex problems in
industry and services, in areas ranging from finance to production management
and logistics. Finally, let us note that although all of the present review was
given in the context of tackling combinatorial optimization problems, in reality
much of what we covered can be extended in a straight-forward manner to
continuous optimization problems.

Looking ahead towards future research directions, we expect ILS to be
applied to new kinds of problems. Some challenging examples are: (i) problems
where the constraints are very severe and so most metaheuristics fail; (ii) multi-
objective problems, bringing one closer to real problems; (iii) dynamic or
real-time problems where the problem data vary during the solution process.

The ideas and results presented in this chapter leave many questions unan-
swered. Clearly, more work needs to be done to better understand the interplay
between the ILS modulesGenerateInitialSolution, Perturbation, LocalSearch, and
AcceptanceCriterion. In particular, we expect significant improvements to arise
through the intelligent use of memory, explicit intensification and diversifica-
tion strategies, and greater problem-specific tuning. The exploration of these
issues has barely begun but should lead to higher performance iterated local
search algorithms.

Acknowledgments
O.M. acknowledges support from the Institut Universitaire de France.

36

This work was partially supported by the “Metaheuristics Network”, a Research Training

Network funded by the Improving Human Potential programme of the CEC, grant HPRN-CT-

1999-00106. The information provided is the sole responsibility of the authors and does not

reflect the Community’s opinion. The Community is not responsible for any use that might be

made of data appearing in this publication.

References

[1] D. Applegate, R. Bixby, V. Chv́atal, and W. Cook. Finding tours
in the TSP. Preliminary version of a book chapter available via
www.keck.caam.rice.edu/concorde.html, 2000.

[2] D. Applegate, W. Cook, and A. Rohe. Chained Lin-Kernighan for large
traveling salesman problems. Technical Report No. 99887, Forschungsin-
stitut für Diskrete Mathematik, University of Bonn, Germany, 1999.

[3] T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford Uni-
versity Press, 1996.

[4] E. Balas and A. Vazacopoulos. Guided local search with shifting bot-
tleneck for job shop scheduling.Management Science, 44(2):262–275,
1998.

[5] R. Battiti and A. Bertossi. Greedy, prohibition, and reactive heuristics for
graph-partitioning. IEEE Transactions on Computers, 48(4):361–385,
1999.

[6] R. Battiti and M. Protasi. Reactive search, a history-based heuristic for
MAX-SAT. ACM Journal of Experimental Algorithmics, 2, 1997.

[7] R. Battiti and G. Tecchiolli. The reactive tabu search.ORSA Journal on
Computing, 6(2):126–140, 1994.

[8] E. B. Baum. Iterated descent: A better algorithm for local search in com-
binatorial optimization problems. Technical report, Caltech, Pasadena,
CA, 1986. manuscript.

[9] E. B. Baum. Towards practical “neural” computation for combinatorial
optimization problems. In J. Denker, editor,Neural Networks for Com-
puting, pages 53–64, 1986. AIP conference proceedings.

37

38

[10] J. Baxter. Local optima avoidance in depot location.Journal of the
Operational Research Society, 32:815–819, 1981.

[11] J. L. Bentley. Fast algorithms for geometric traveling salesman problems.
ORSA Journal on Computing, 4(4):387–411, 1992.

[12] P. Brucker, J. Hurink, and F. Werner. Improving local search heuristics
for some scheduling problems — part I.Discrete Applied Mathematics,
65(1–3):97–122, 1996.

[13] P. Brucker, J. Hurink, and F. Werner. Improving local search heuristics
for some scheduling problems — part II.Discrete Applied Mathematics,
72(1–2):47–69, 1997.

[14] S. A. Canuto, M. G. C. Resende, and C. C. Ribeiro. Local search with
perturbations for the prize-collecting steiner tree problem in graphs. Sub-
mitted to Networks, 2000.

[15] J. Carlier. The one-machine sequencing problem.European Journal of
Operational Research, 11:42–47, 1982.

[16] V. Cerńy. A thermodynamical approach to the traveling salesman prob-
lem. Journal of Optimization Theory and Applications, 45(1):41–51,
1985.

[17] N. Christofides. Worst-case analysis of a new heuristic for the travelling
salesman problem. Technical Report 388, Graduate School of Industrial
Administration, Carnegie-Mellon University, Pittsburgh, PA, 1976.

[18] B. Codenotti, G. Manzini, L. Margara, and G. Resta. Perturbation: An
efficient technique for the solution of very large instances of the Euclidean
TSP.INFORMS Journal on Computing, 8:125–133, 1996.

[19] R. K. Congram, C. N. Potts, and S. L. Van de Velde. An iterated
dynasearch algorithm for the single–machine total weighted tardiness
scheduling problem. INFORMS Journal on Computing, to appear, 2000.

[20] H. A. J. Crauwels, C. N. Potts, and L. N. Van Wassenhove. Local search
heuristics for the single machine total weighted tardiness scheduling prob-
lem. INFORMS Journal on Computing, 10(3):341–350, 1998.

[21] M. Dorigo and G. Di Caro. The Ant Colony Optimization meta-heuristic.
In D. Corne, M. Dorigo, and F. Glover, editors,New Ideas in Optimization,
pages 11–32. McGraw Hill, 1999.

[22] T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search
procedures.Journal of Global Optimization, 6:109–133, 1995.

References 39

[23] C. Fonlupt, D. Robilliard, P. Preux, and E.-G. Talbi. Fitness landscape
and performance of meta-heuristics. In S. Voss, S. Martello, I.H. Osman,
and C. Roucairol, editors,Meta-Heuristics: Advances and Trends in Local
Search Paradigms for Optimization, pages 257–268. Kluwer Academic
Publishers, Boston, MA, 1999.

[24] C. Glass and C. Potts. A comparison of local search methods for flow
shop scheduling.Annals of Operations Research, 63:489–509, 1996.

[25] F. Glover. Future paths for integer programming and links to artificial
intelligence.Computers & Operations Research, 13(5):533–549, 1986.

[26] F. Glover. Tabu Search – Part I.ORSA Journal on Computing, 1(3):190–
206, 1989.

[27] F. Glover. Tabu Search – Part II.ORSA Journal on Computing, 2(1):4–32,
1990.

[28] F. Glover. Tabu thresholding: Improved search by nonmonotonic trajec-
tories.ORSA Journal on Computing, 7(4):426–442, 1995.

[29] F. Glover. Finding a best traveling salesman 4-opt move in the same time
as a best 2-opt move.Journal of Heuristics, 2:169–179, 1996.

[30] F. Glover. Scatter search and path relinking. In D. Corne, M. Dorigo, and
F. Glover, editors,New Ideas in Optimization, pages 297–316. McGraw
Hill, 1999.

[31] F. Glover and M. Laguna.Tabu Search. Kluwer Academic Publishers,
Boston, MA, 1997.

[32] M. X. Goemans and D. P. Williamson. The primal dual method for
approximation algorithms and its application to network design problems.
In D. Hochbaum, editor,Approximation algorithms for NP-hard problems,
pages 144–191. PWS Publishing, 1996.

[33] P. Hansen and N. Mladenović. An introduction to variable neighborhood
search. In S. Voss, S. Martello, I. H. Osman, and C. Roucairol, editors,
Meta-Heuristics: Advances and Trends in Local Search Paradigms for
Optimization, pages 433–458. Kluwer Academic Publishers, Boston, MA,
1999.

[34] R. Haupt. A survey of priority rule-based scheduling.OR Spektrum,
11:3–6, 1989.

[35] I. Hong, A. B. Kahng, and B. R. Moon. Improved large-step Markov
chain variants for the symmetric TSP.Journal of Heuristics, 3(1):63–81,
1997.

40

[36] T. C. Hu, A. B. Kahng, and C.-W. A. Tsao. Old bachelor acceptance: A
new class of non-monotone threshold accepting methods.ORSA Journal
on Computing, 7(4):417–425, 1995.

[37] D. S. Johnson. Local optimization and the travelling salesman problem.
In Proceedings of the 17th Colloquium on Automata, Languages, and
Programming, volume 443 ofLNCS, pages 446–461. Springer Verlag,
Berlin, 1990.

[38] D. S. Johnson and L. A. McGeoch. The travelling salesman problem: A
case study in local optimization. In E.H.L. Aarts and J.K. Lenstra, editors,
Local Search in Combinatorial Optimization, pages 215–310. John Wiley
& Sons, Chichester, England, 1997.

[39] K. Katayama and H. Narihisa. Iterated local search approach using genetic
transformation to the traveling salesman problem. InProc. of GECCO’99,
volume 1, pages 321–328. Morgan Kaufmann, 1999.

[40] B.W. Kernighan and S. Lin. An efficient heuristic procedure for partition-
ing graphs.Bell Systems Technology Journal, 49:213–219, 1970.

[41] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by
simulated annealing.Science, 220:671–680, 1983.

[42] S. Kreipl. A large step random walk for minimizing total weighted
tardiness in a job shop.Journal of Scheduling, 3(3):125–138, 2000.

[43] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the
travelling salesman problem.Operations Research, 21:498–516, 1973.

[44] H. R. Lourenc¸o. Job-shop scheduling: Computational study of local search
and large-step optimization methods.European Journal of Operational
Research, 83:347–364, 1995.

[45] H. R. Lourenc¸o. A polynomial algorithm for a special case of the one–
machine scheduling problem with time–lags. Technical Report Economic
Working Papers Series, No. 339, Universitat Pompeu Fabra, 1998. sub-
mitted to Journal of Scheduling.

[46] H. R. Lourenc¸o and M. Zwijnenburg. Combining the large-step optimiza-
tion with tabu-search: Application to the job-shop scheduling problem.
In I.H. Osman and J.P. Kelly, editors,Meta-Heuristics: Theory & Appli-
cations, pages 219–236. Kluwer Academic Publishers, 1996.

[47] O. Martin and S. W. Otto. Partitoning of unstructured meshes for load
balancing.Concurrency: Practice and Experience, 7:303–314, 1995.

References 41

[48] O. Martin and S. W. Otto. Combining simulated annealing with local
search heuristics.Annals of Operations Research, 63:57–75, 1996.

[49] O. Martin, S. W. Otto, and E. W. Felten. Large-step Markov chains for
the traveling salesman problem.Complex Systems, 5(3):299–326, 1991.

[50] O. Martin, S. W. Otto, and E. W. Felten. Large-step Markov chains for the
TSP incorporating local search heuristics.Operations Research Letters,
11:219–224, 1992.

[51] P. Merz and B. Freisleben. Fitness landscapes, memetic algorithms and
greedy operators for graph bi-partitioning.Evolutionary Computation,
8(1):61–91, 2000.

[52] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A Teller, and M. Teller.
Equation of state calculations for fast computing machines.Journal of
Chemical Physics, 21:1087–1092, 1953.

[53] M. Mézard, G. Parisi, and M. A. Virasoro.Spin-Glass Theory and Beyond,
volume 9 ofLecture Notes in Physics. World Scientific, Singapore, 1987.

[54] Z. Michalewicz and D. B. Fogel.How to Solve it: Modern Heuristics.
Springer Verlag, Berlin, 2000.

[55] N. Mladenovíc and P. Hansen. Variable neighborhood search.Computers
& Operations Research, 24:1097–1100, 1997.

[56] H. Mühlenbein. Evolution in time and space – the parallel genetic algo-
rithm. In Foundations of Genetic Algorithms, pages 316–337. Morgan
Kaufmann, San Mateo, 1991.

[57] M. Nawaz, E. Enscore Jr., and I. Ham. A heuristic algorithm for them-
machine,n-job flow-shop sequencing problem.OMEGA, 11(1):91–95,
1983.

[58] G. R. Schreiber and O. C. Martin. Cut size statistics of graph bisection
heuristics.SIAM Journal on Optimization, 10(1):231–251, 1999.

[59] M. Singer and M. Pinedo. A shifting bottleneck heuristic for minimizing
the total weighted tardiness in a job shop.IIE Scheduling and Logistics,
30:109–118, 1997.

[60] T. Sẗutzle. Applying iterated local search to the permutation flow shop
problem. Technical Report AIDA–98–04, FG Intellektik, TU Darmstadt,
August 1998.

42

[61] T. Sẗutzle.Local Search Algorithms for Combinatorial Problems — Anal-
ysis, Improvements, and New Applications. PhD thesis, Darmstadt Uni-
versity of Technology, Department of Computer Science, 1998.

[62] T. Sẗutzle, A. Gr̈un, S. Linke, and M. R̈uttger. A comparison of nature
inspired heuristics on the traveling salesman problem. In Deb et al.,
editor,Proc. of PPSN-VI, volume 1917 ofLNCS, pages 661–670. Springer
Verlag, Berlin, 2000.

[63] T. Sẗutzle and H. H. Hoos. Analyzing the run-time behaviour of
iterated local search for the TSP. Technical Report IRIDIA/2000-
01, IRIDIA, Universit́e Libre de Bruxelles, 2000. Available at
http://www.intellektik.informatik.tu-darmstadt.de/˜tom/pub.html.

[64] É. D. Taillard. Comparison of iterative searches for the quadratic assign-
ment problem.Location Science, 3:87–105, 1995.

[65] R. J. M. Vaessens, E. H. L. Aarts, and J. K. Lenstra. Job shop scheduling
by local search.INFORMS Journal on Computing, 8:302–317, 1996.

[66] C. Voudouris and E. Tsang. Guided Local Search. Technical Report
Technical Report CSM-247, Department of Computer Science, University
of Essex, 1995.

[67] Y. Yang, S. Kreipl, and M. Pinedo. Heuristics for minimizing total
weighted tardiness in flexible flow shops.Journal of Scheduling, 3(2):89–
108, 2000.

	ITERATED LOCAL SEARCH
	2003_ILS

