Correspondence Analysis & Related Methods

Michael Greenacre

SESSION 3:

MULTIDIMENSIONAL SCALING (MDS)
DIMENSION REDUCTION
CLASSICAL MDS
NONMETRIC MDS

Distances and dissimilarities...

- *n* objects
- d_{ij} = distance between object i and object j

Properties of a distance (metric)

- 1. $d_{ii} = d_{ii}$
- 2. $d_{ij} \ge 0$, $d_{ij} = 0 \iff i = j$
- $3. d_{ij} \leq d_{ik} + d_{kj}$

(the triangle inequality)

(If 3. not satisfied we often talk of a *dissimilarity*)

The chi-square distance is a true distance, whereas Bray-Curtis is a dissimilarity

Distances and maps...

CITIES	Amst.	Aths.	Barc.	Basel	Berlin	Bordx
Amsterdam	0	2979	1533	768	676	1076
Athens	2979	0	3261	2594	2486	3250
Barcelona	1533	3261	0	1061	1945	600
Basel	768	2594	1061	0	884	898
Berlin	676	2486	1945	884	0	1631
Bordeaux	1076	3250	600	898	1631	0
:	:	:	:	:	:	:

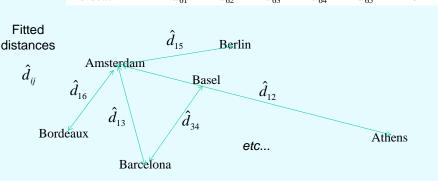
Basel

Bordeaux Athens

Barcelona

Multidimensional scaling (MDS)

Observed distances d_{ij}	CITIES Amsterdam Athens Barcelona Basel Berlin	Amst. 0 d_{21} d_{31} d_{41} d_{51}	Aths. d_{12} 0 d_{32} d_{42} d_{52}	Barc. d_{13} d_{23} 0 d_{43} d_{53}	Basel d_{14} d_{24} d_{34} 0 d_{54}	Berlin d_{15} d_{25} d_{35} d_{45} 0	Bordx d_{16} d_{26} d_{36} d_{46} d_{56}	
J	Berlin Bordeaux	$d_{51} \\ d_{61}$	$d_{52} \\ d_{62}$	$d_{53} \\ d_{63}$	$d_{54} \\ d_{64}$	d_{65}	$d_{56} = 0$	



Multidimensional scaling (MDS)

Objective is to minimize some measure of discrepancy, or error, between observed and fitted distances.

Observed distances

 d_{ii}

Minimize $\sum_{ij} (d_{ij} - \hat{d}_{ij})^2$ also called "Sammon's non-linear mapping"; R function **sammon**

or

Fitted distances

Minimize $\sum_{ij} (f(d_{ij}) - \hat{d}_{ij})^2$ for any monotonically increasing function f

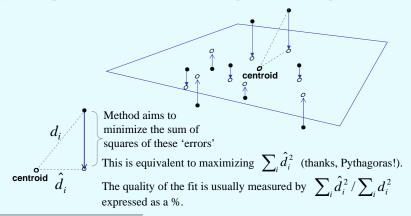
or

Maximize the agreement between the rank-ordered distances in the map and the rank-ordering of the original distances (nonmetric MDS), similar idea to that of Spearman's rank correlation; R function **isoMDS**.

"Classical" MDS

Fits the distances indirectly.

Classical ("YoHoToGo"*) MDS situates the points in a space of as high dimensionality as possible to reproduce the observed distances and then projects the points onto low-dimensional suspaces, usually a plane:



*YoHoToGo = Young-Householder-Torgerson-Gower

R function cmdscale

Metric and nonmetric MDS

These methods fit the interpoint distances directly

Observed distances

Stress: measures the discrepancy between the observed distances (data) and the fitted distances (map)

 d_{ij}

Raw stress: $\sum_{ij} (d_{ij} - \hat{d}_{ij})^2$

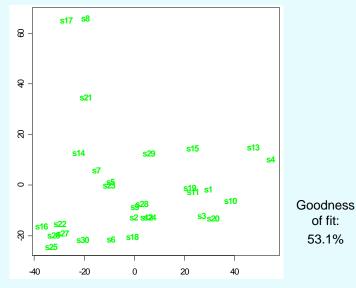
Fitted distances

Normalized stress : $\frac{\displaystyle\sum_{ij}(d_{ij}-\hat{d}_{ij})^2}{\displaystyle\sum_{ij}d_{ij}^2}$

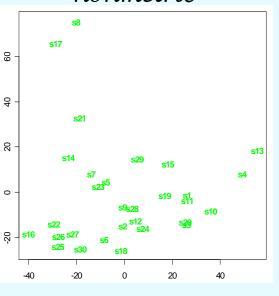
Kruskal stress: $\sqrt{\frac{\sum_{ij}(d_{ij}-\hat{d}_{ij})^2}{\sum_{ij}\hat{d}_{ij}^2}}$

used in R function
isoMDS for
nonmetric MDS; can
be thought of as a
percentage error

MDS of Bray-Curtis dissimilarities - classical

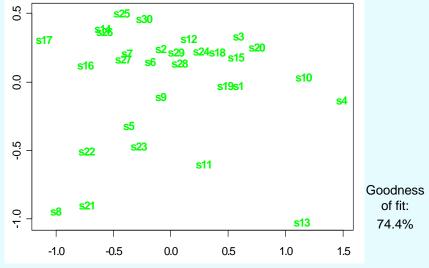


MDS of Bray-Curtís dissimilarities - nonmetric

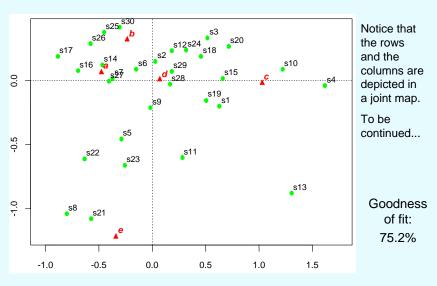


Stress:

13.5%



Correspondence analysis

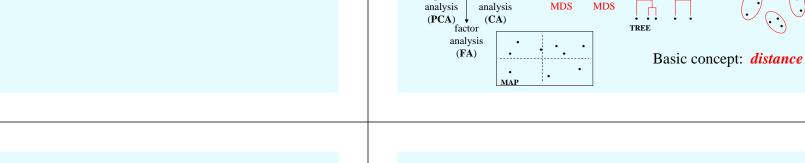


Correspondence Analysis & Related Methods

Michael Greenacre

SESSION 4:

CLASSICAL MDS – the computations



Classical scaling

• From a map to a distance matrix

points		distances					
(-1,3) • ₁	(3,4) •2	(3,4) • ₂ (squared) distance matrix					
	(3,2) • ₃		$\begin{bmatrix} 0 \\ 17 \end{bmatrix}$	17 0	17 4	16 41	
(-1,-1) • ₄			16 16	4 41	0 25	16 41 25 0	

Classical scaling

In this course we concentrate on the STRUCTURAL methods of multivariate analysis

methods that reveal **discrete**

structures (clusters, groups,

non-hierarchical

clustering

segments, partitions...)

cluster analysis

hierarchical

clustering

methods that reveal **continuous**

structures (scales, dimensions,

factorial methods multidimensional

correspon-scaling

dence

scaling (MDS)

MDS

factors...)

principal components

points

• suppose you have n points \mathbf{x}_i (i=1,...,n) in p -dimensional Euclidean space

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_{1}^{\mathsf{T}} \\ \mathbf{x}_{2}^{\mathsf{T}} \\ \vdots \\ \mathbf{x}_{n}^{\mathsf{T}} \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix} \qquad n \text{ points}$$

(squared) distance $\Delta = \begin{bmatrix} \delta_{11} & \delta_{12} & \cdots & \delta_{1n} \\ \delta_{21} & \delta_{22} & \cdots & \delta_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \delta_{n1} & \delta_{n2} & \cdots & \delta_{nn} \end{bmatrix}$ • squared distance between the *i*-th and *j*-th points is $\delta_{ij} = \sum_{ij}^{p} (x_{ik} - x_{jk})^2$

Classical scaling

• in matrix notation:

$$\mathbf{\Lambda} = \begin{bmatrix} \boldsymbol{\delta}_{11} & \boldsymbol{\delta}_{12} & \cdots & \boldsymbol{\delta}_{1n} \\ \boldsymbol{\delta}_{21} & \boldsymbol{\delta}_{22} & \cdots & \boldsymbol{\delta}_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \boldsymbol{\delta}_{n1} & \boldsymbol{\delta}_{n2} & \cdots & \boldsymbol{\delta}_{nn} \end{bmatrix} = \mathbf{s} \mathbf{1}^{\mathsf{T}} + \mathbf{1} \mathbf{s}^{\mathsf{T}} - 2 \mathbf{S}$$

where $S = XX^T$ and S = diag(S) is matrix of scalar products

- the problem in classical scaling:
 distances points
- given Δ solve for X

Classical scaling

- but we don't have the scalar products S but rather the squared distances $\Delta = s\mathbf{1}^T + \mathbf{1}s^T 2S$
- we can recover the matrix of scalar products S^* with respect to the centroid of the n points by a transformation of Δ called double-centring:
- subtract the row means from all the squared distances
- subtract column means from the resultant matrix
 then multiply double-centred matrix by -1/2 to obtain S*
 Then carry on as before:

$$\mathbf{S}^* = \mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^\mathsf{T}$$
$$\mathbf{X}^* = \mathbf{U}\boldsymbol{\Lambda}^{1/2}$$

Classical scaling

• if we had **S** and had to recover **X** it would be simple:

$$S = XX^T$$

• recall the eigenvalue-eigenvector decomposition of a square symmetric matrix, for example of **S**:

$$S = U\Lambda U^{\mathsf{T}}$$

where

$$\mathbf{U}\mathbf{U}^{\mathsf{T}} = \mathbf{I} \; ; \quad \mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \qquad \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$$

so a possible solution would be:

$$\mathbf{X} = \mathbf{U} \mathbf{\Lambda}^{1/2}$$

R code to double-centre and eigendecompose

```
# read in the squared distance matrix
d2 <- matrix(c(0,17,17,16,17,0,4,41,17,4,0,25,16,41,25,0),nrow=4)
# compute scalar products
n <- nrow(d2)
ones <- rep(1,n)
I <- diag(ones)
Sd <- -0.5*(I-(1/n)*ones%*%t(ones)) %*% d2 %*% (I-(1/n)*ones%*%t(ones))
# compute eigenvalues and eigenvectors using R function eigen
Sd.eig <- eigen(Sd)
# compute coordinates and plot
X <- Sd.eig$vectors[,1:2] %*% diag(sqrt(Sd.eig$values[1:2]))
plot(X, type="n")
text(X, labels=1:4)</pre>
```