Correspondence Analysis \&

Related Methods

Michael Greenacre

```
SESSION 3:
```

MULTIDIMENSIONAL SCALING (MDS)
DIMENSION REDUCTION
CLASSICAL MDS
NONMETRIC MDS

Distances and dissimilarities..

- n objects
- $\quad d_{i j}=$ distance between object i and object j

Properties of a distance (metric)

1. $d_{i j}=d_{j i}$
2. $\quad d_{i j} \geq 0, \quad d_{i j}=0 \Leftrightarrow i=j$
3. $d_{i j} \leq d_{i k}+d_{k j} \quad$ (the triangle inequality)
(If 3. not satisfied we often talk of a dissimilarity)

The chi-square distance is a true distance, whereas Bray-Curtis is a dissimilarity

Distances and maps...

CITIES	Amst.	Aths.	Barc.	Basel	Berlin	Bordx
Amsterdam	0	2979	1533	768	676	$1076 \ldots$
Athens	2979	0	3261	2594	2486	$3250 \ldots$
Barcelona	1533	3261	0	1061	1945	$600 \ldots$
Basel	768	2594	1061	0	884	$898 \ldots$
Berlin	676	2486	1945	884	0	$1631 \ldots$
Bordeaux	1076	3250	600	898	1631	$0 \ldots$

[^0]Multidimensional scating (MDS)

Multidimensional scaling (MDS)

Objective is to minimize some measure of discrepancy, or error, between observed and fitted distances.
Observed distances
$d_{i j}$

Fitted distances $\hat{d}_{i j}$ Minimize $\sum_{i j}\left(f\left(d_{i j}\right)-\hat{d}_{i j}\right)^{2} \quad \begin{array}{r}\text { for any monotonically } \\ \text { increasing function } f\end{array}$ or

Maximize the agreement between the rank-ordered distances in the map and the rank-ordering of the original distances (nonmetric MDS), similar idea to that of Spearman's rank correlation; R function isoMDS.

"Classical" MDS

Fits the distances indirectly.
Classical ("YoHoToGo"*) MDS situates the points in a space of as high dimensionality as possible to reproduce the observed distances and then projects the points onto low-dimensional suspaces, usually a plane:

*YoHoToGo = Young-Householder-Torgerson-Gower
R function cmdscale

MDS of Bray-Curtis dissimilarities classical

MDS of Bray-Curtis dissimilarities nonmetric

MDS of chi-square distances classical

Correspondence Analysis \& Related Methods

Michael Greenacre

SESSION 4:
CLASSICAL MDS - the computations

In this course we concentrate on the STRUCTURAL methods of multivariate analysis

Classical scating

- From a map to a distance matrix
points
$\left.\begin{array}{c|cc}(-1,3) \cdot 1\end{array} \begin{array}{c}(3,4) \cdot 2 \\ (3,2) \bullet 3 \\ (-1,-1) \cdot 4 \\ \text { distance } \\ \text { matrix }\end{array}\right]\left[\begin{array}{cccc}0 & 17 & 17 & 16 \\ 17 & 0 & 4 & 41 \\ 16 & 4 & 0 & 25 \\ 16 & 41 & 25 & 0\end{array}\right]$

Classicalscating

$$
\text { points } \longrightarrow \text { distances }
$$

- suppose you have n points $\mathbf{x}_{i}(i=1, \ldots, n)$ in p-dimensional Euclidean space

$$
\mathbf{X}=\left[\begin{array}{c}
\mathbf{x}_{1}^{\top} \\
\mathbf{x}_{2}^{\top} \\
\vdots \\
\mathbf{x}_{n}^{\top}
\end{array}\right]=\stackrel{p \text { dimensions }}{\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 p} \\
x_{21} & x_{22} & \cdots & x_{2 p} \\
\vdots & \vdots & \vdots & \vdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n p}
\end{array}\right]} \text {. } n \text { points }
$$

- squared distance between the i-th and j-th points is

$$
\delta_{i j}=\sum_{k=1}^{p}\left(x_{i k}-x_{j k}\right)^{2}
$$

$$
\underset{\text { matrix }}{\text { (squared) }} \text { distance } \Delta=\left[\begin{array}{cccc}
\delta_{11} & \delta_{12} & \cdots & \delta_{1 n} \\
\delta_{21} & \delta_{22} & \cdots & \delta_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
\delta_{n 1} & \delta_{n 2} & \cdots & \delta_{n n}
\end{array}\right]
$$

Classicalscating

- in matrix notation:
$\boldsymbol{\Delta}=\left[\begin{array}{cccc}\delta_{11} & \delta_{12} & \cdots & \delta_{1 n} \\ \delta_{21} & \delta_{22} & \cdots & \delta_{2 n} \\ \vdots & \vdots & \vdots & \vdots \\ \delta_{n 1} & \delta_{n 2} & \cdots & \delta_{n n}\end{array}\right]=\mathbf{s} \mathbf{1}^{\top}+\mathbf{1} \mathbf{s}^{\top}-\mathbf{S}$
where $\mathbf{S}=\mathbf{X} \mathbf{X}^{\top}$ and $\mathbf{s}=\operatorname{diag}(\mathbf{S})$ is matrix of scalar products
- the problem in classical scaling:
distances \longrightarrow points
- given Δ solve for \mathbf{X}

Classicalscating

- if we had \mathbf{S} and had to recover \mathbf{X} it would be simple:

$$
\mathbf{S}=\mathbf{X X}^{\top}
$$

- recall the eigenvalue-eigenvector decomposition of a square symmetric matrix, for example of \mathbf{S} :

$$
\mathbf{S}=\mathbf{U} \Lambda \mathbf{U}^{\top}
$$

where

$$
\mathbf{U U}^{\top}=\mathbf{I} ; \quad \boldsymbol{\Lambda}=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right] \quad \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0
$$

so a possible solution would be:

$$
\mathbf{X}=\mathbf{U} \boldsymbol{\Lambda}^{1 / 2}
$$

Classical scating

- but we don't have the scalar products \mathbf{S} but rather the squared distances $\Delta=\mathbf{s} \mathbf{1}^{\top}+\mathbf{1} \mathbf{s}^{\top}-2 \mathbf{S}$
- we can recover the matrix of scalar products \mathbf{S}^{*} with respect to the centroid of the n points by a transformation of Δ called double-centring:
- subtract the row means from all the squared distances
- subtract column means from the resultant matrix
then multiply double-centred matrix by $-1 / 2$ to obtain \mathbf{S}^{*}
Then carry on as before:

$$
\begin{aligned}
& \mathbf{S}^{*}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top} \\
& \mathbf{X}^{*}=\mathbf{U} \boldsymbol{\Lambda}^{1 / 2}
\end{aligned}
$$

R code to double-centre and eigendecompose

\# read in the squared distance matrix
d2 <- matrix(c $(0,17,17,16,17,0,4,41,17,4,0,25,16,41,25,0)$, nrow=4)
\# compute scalar products
n <- nrow(d2)
ones <- rep(1,n)
Sd <- -0.5*(I-(1/n)*ones\%*\%t (ones)) \%*\% d2 \%*\% (I-(1/n)*ones\%*\%t (ones))
\# compute eigenvalues and eigenvectors using R function eigen
Sd.eig <- eigen(Sd)
\# compute coordinates and plot
X <- Sd.eig\$vectors[,1:2] \%*\% diag(sqrt (Sd.eig\$values [1:2]))
plot (X, type="n")
text (X, labels=1:4)

[^0]: OK
 Amsterdam

 Berlin

 Basel

