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MULTIDIMENSIONAL SCALING (MDS) 
DIMENSION REDUCTION
CLASSICAL MDS
NONMETRIC MDS

Distances and dissimilarities...

• n objects
• dij = distance between objecti and objectj

Properties of a distance (metric)
1. dij = dji

2. dij ≥ 0,   dij = 0  ⇔ i = j
3. dij ≤ dik + dkj (the triangle inequality)

(If 3. not satisfied we often talk of a dissimilarity) 

The chi-square distance is a true distance, whereas
Bray-Curtis is a dissimilarity

Distances and maps...
CITIES Amst.     Aths.      Barc.      Basel     Berlin    Bordx
Amsterdam 0 2979 1533 768 676 1076  ...
Athens 2979 0 3261 2594 2486 3250  ...
Barcelona 1533 3261 0 1061 1945 600  ...
Basel 768 2594 1061 0 884 898  ...
Berlin 676 2486 1945 884 0 1631  ...
Bordeaux 1076 3250 600 898 1631 0  ...
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Multidimensional scaling (MDS)
CITIES Amst.     Aths.      Barc.      Basel     Berlin    Bordx
Amsterdam 0 d12 d13 d14 d15 d16

Athens d21 0 d23 d24 d25 d26

Barcelona d31 d32 0 d34 d35 d36

Basel d41 d42 d43 0 d45 d46

Berlin d51 d52 d53 d54 0 d56

Bordeaux d61 d62 d63 d64 d65         0
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Multidimensional scaling (MDS)
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Objective is to minimize some measure of discrepancy, 
or error, between observed and fitted distances.

or

or

Maximize the agreement between the rank-ordered distances
in the map and the rank-ordering of the original distances
(nonmetric MDS), similar idea to that of Spearman’s rank
correlation; R functionisoMDS.

also called “Sammon’s non-linear 
mapping”; R functionsammon

for any monotonically
increasing functionf

“Classical” MDS
Fits the distances indirectly.

Classical (“YoHoToGo”*) MDS situates the points in a space of as high
dimensionality as possible to reproduce the observed distances and then
projects the points onto low-dimensional suspaces, usually a plane:

*YoHoToGo = Young-Householder-Torgerson-Gower
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Method aims to 
minimize the sum of 
squares of these ‘errors’

This is equivalent to maximizing (thanks, Pythagoras!). 

The quality of the fit is usually measured by
expressed as a %.
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Metric and nonmetric MDS
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Stress: measures the discrepancy between the observed
distances (data) and the fitted distances (map)
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  :stress Kruskal

used in R function
isoMDS for
nonmetric MDS; can 
be thought of as a 
percentage error

These methods fit the interpoint distances directly

MDS of Bray-Curtis dissimilarities –
classical
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Goodness
of fit: 

53.1%



MDS of Bray-Curtis dissimilarities –
nonmetric

Stress: 
13.5%
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MDS of chi-square distances –
classical
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Goodness
of fit: 

74.4%

Correspondence analysis

Goodness
of fit: 

75.2%
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Notice that
the rows
and the
columns are
depicted in 
a joint map.

To be 
continued...
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CLASSICAL MDS – the computations

In this course we concentrate on theSTRUCTURAL 
methods of multivariate analysis

methods that revealcontinuous
structures (scales, dimensions, 
factors...)

factorial methods

principal 
components

analysis
(PCA)

factor 
analysis

(FA)

correspon-
dence

analysis
(CA)

multidimensional 
scaling (MDS)

metric
MDS

non-metric
MDS

methods that revealdiscrete
structures (clusters, groups, 
segments, partitions...)

cluster analysis

hierarchical
clustering

non-hierarchical
clustering
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Basic concept:  distance

classical
scaling

Classical scaling

points distances

• From a map to a distance matrix

(squared)
distance
matrix(-1,3) •1

(-1,-1) •4

(3,2) •3

(3,4) •2
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Classical scaling

points distances

• suppose you haven points xi ( i=1,...,n ) in  p -dimensional 
Euclidean space
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Classical scaling
• in matrix notation:

S1ss1∆ 2       
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where )diag(    and    SsXXS == T

distances points

• the problem in classical scaling: 

• given ∆∆∆∆ solve for X

is matrix of scalar products

Classical scaling
• if we had S and had to recoverX it would be simple:

S =  XXT

• recall the eigenvalue-eigenvector decomposition of a square
symmetric matrix, for example ofS :

S =  UΛΛΛΛUT

where

UUT = I ; 0       

00

00

00

21
2

1

≥≥≥≥



















= n

n

λλλ

λ

λ
λ

L

L

MMMM

L

L

Λ

so a possible solution would be:

X = UΛΛΛΛ1/2

Classical scaling
• but we don’t have the scalar productsS but rather the

squared distances∆∆∆∆ =

• we can recover the matrix of scalar productsS* with respect
to the centroid of then points by a transformation of∆∆∆∆
called double-centring:

– subtract the row means from all the squared distances

– subtract column means from the resultant matrix

then multiply double-centred matrix by  -1/2   to obtainS*

Then carry on as before:

S* =  UΛΛΛΛUT          

X* = UΛΛΛΛ1/2

S1ss1 2 −+ TT

R code to double-centre and 
eigendecompose

# read in the squared distance matrix
d2   <- matrix(c(0,17,17,16,17,0,4,41,17,4,0,25,16,41,25,0),nrow=4)

# compute scalar products
n    <- nrow(d2)
ones <- rep(1,n)
I    <- diag(ones)
Sd <- -0.5*(I-(1/n)*ones%*%t(ones)) %*% d2 %*% (I-(1/n)*ones%*%t(ones))

# compute eigenvalues and eigenvectors using R function eigen
Sd.eig <- eigen(Sd)

# compute coordinates and plot
X    <- Sd.eig$vectors[,1:2] %*% diag(sqrt(Sd.eig$values[1:2]))
plot(X, type="n")
text(X, labels=1:4)


