Correspondence Analysis & Related Methods

Michael Greenacre

SESSION 3:

MULTIDIMENSIONAL SCALING (MDS) DIMENSION REDUCTION CLASSICAL MDS NONMETRIC MDS

Distances and dissimilarities...

- *n* objects
- d_{ij} = distance between object *i* and object *j*

Properties of a distance (metric)

1. $d_{ij} = d_{ji}$ 2. $d_{ij} \ge 0, \ d_{ij} = 0 \iff i = j$ 3. $d_{ij} \le d_{ik} + d_{kj}$ (the triangle inequality)

(If 3. not satisfied we often talk of a *dissimilarity*)

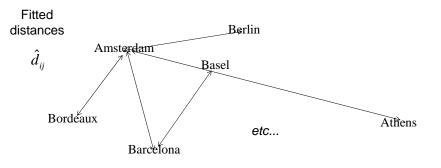
The chi-square distance is a true distance, whereas Bray-Curtis is a dissimilarity

Dístances and maps...

CITIES	Amst.	Aths.	Barc.	Basel	Berlin	Bordx
Amsterdam	0	2979	1533	768	676	1076
Athens	2979	0	3261	2594	2486	3250
Barcelona	1533	3261	0	1061	1945	600
Basel	768	2594	1061	0	884	898
Berlin	676	2486	1945	884	0	1631
Bordeaux	1076	3250	600	898	1631	0
:	:	:	:	:	:	:
Ø OK	Amsterdam		Berli	n		
		В	asel			
Bordeaux						Ather
	Barcel	ona				

Multidimensional scaling (MDS)

	CITIES	Amst.	Aths.	Barc.	Basel	Berlin	Bordx
	Amsterdam	0	d_{12}	d_{13}	d_{14}	d_{15}	d_{16}
Observed	Athens	d_{21}	0	d_{23}	d_{24}	d_{25}	d_{26}
distances	Barcelona	d_{31}	d_{32}	0	d_{34}	d_{35}	d_{36}
d_{ij}	Basel	d_{41}	d_{42}	d_{43}	0	d_{45}	d_{46}
a_{ij}	Berlin	d_{51}	d_{52}	d_{53}	d_{54}	0	d_{56}
	Bordeaux	d_{61}	d_{62}	<i>d</i> ₆₃	d_{64}	d_{65}	0



Multidimensional scaling (MDS)

Objective is to minimize some measure of discrepancy, or error, between observed and fitted distances.

distances d_{ii}

Observed

Minimize $\sum_{ij} (d_{ij} - \hat{d}_{ij})^2$ also called "Sammon's non-linear mapping"; R function **sammon** or

Fitted distances

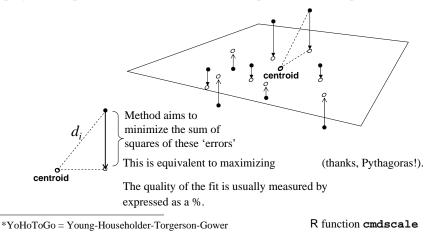
Minimize $\sum_{ij} (f(d_{ij}) - \hat{d}_{ij})^2$ for any monotonically increasing function f

Maximize the agreement between the rank-ordered distances in the map and the rank-ordering of the original distances (nonmetric MDS), similar idea to that of Spearman's rank correlation; R function **isoMDS**.

"Classical" MDS

Fits the distances indirectly.

Classical ("YoHoToGo"*) MDS situates the points in a space of as high dimensionality as possible to reproduce the observed distances and then projects the points onto low-dimensional suspaces, usually a plane:

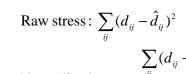


Metric and nonmetric MDS

These methods fit the interpoint distances directly **Stress**: measures the discrepancy between the observed distances (data) and the fitted distances (map)

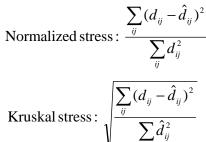
Observed distances

 d_{ii}



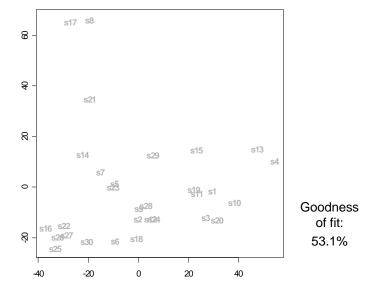
Fitted distances

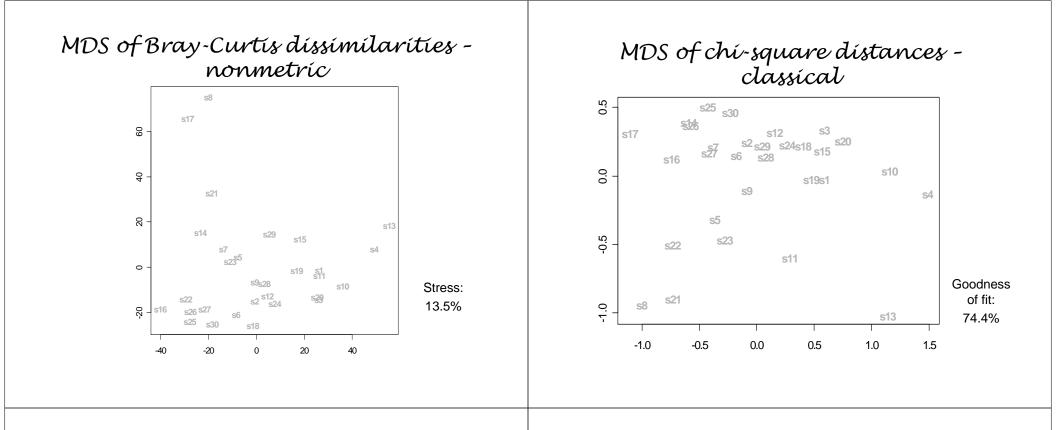
 \hat{d}_{ii}



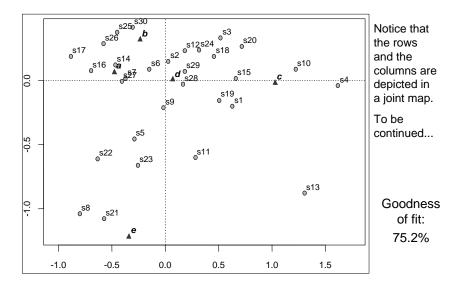
used in R function **isoMDS** for nonmetric MDS; can be thought of as a percentage error

MDS of Bray-Curtís díssimilaríties classical





Correspondence analysis



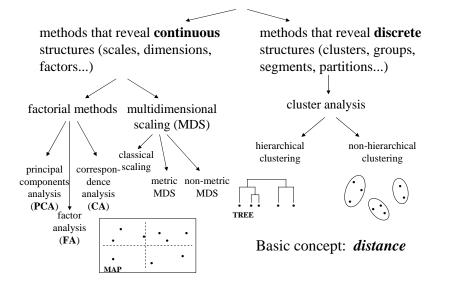
Correspondence Analysis & Related Methods

Michael Greenacre

SESSION 4:

CLASSICAL MDS – the computations

In this course we concentrate on the **STRUCTURAL** methods of multivariate analysis



Classical scaling

• From a map to a distance matrix

points		→ distances						
(-1,3) • ₁	(3,4) • ₂		(squared) distance matrix					
	(3,2) • ₃		$\begin{bmatrix} 0\\ 17 \end{bmatrix}$	17 0	17 4	16 41		
(-1,-1) • ₄			16	4	0	16 41 25 0		
				41	23	0]		

Classical scaling

points —

• distances

 suppose you have n points x_i (i=1,...,n) in p -dimensional Euclidean space

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_{1}^{\mathsf{T}} \\ \mathbf{x}_{2}^{\mathsf{T}} \\ \vdots \\ \mathbf{x}_{n}^{\mathsf{T}} \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix} \uparrow n \text{ points}$$

• squared distance between the
i-th and *j*-th points is (squared)
 $\delta_{ij} = \sum_{k=1}^{p} (x_{ik} - x_{jk})^{2}$ distance $\mathbf{\Delta} = \begin{bmatrix} \delta_{11} & \delta_{12} & \cdots & \delta_{1n} \\ \delta_{21} & \delta_{22} & \cdots & \delta_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \delta_{n1} & \delta_{n2} & \cdots & \delta_{nn} \end{bmatrix}$

Classical scaling

• in matrix notation:

$$\boldsymbol{\Delta} = \begin{bmatrix} \boldsymbol{\delta}_{11} & \boldsymbol{\delta}_{12} & \cdots & \boldsymbol{\delta}_{1n} \\ \boldsymbol{\delta}_{21} & \boldsymbol{\delta}_{22} & \cdots & \boldsymbol{\delta}_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \boldsymbol{\delta}_{n1} & \boldsymbol{\delta}_{n2} & \cdots & \boldsymbol{\delta}_{nn} \end{bmatrix} = \mathbf{s} \mathbf{1}^{\mathsf{T}} + \mathbf{1} \mathbf{s}^{\mathsf{T}} - 2\mathbf{S}$$

where $\mathbf{S} = \mathbf{X}\mathbf{X}^{\mathsf{T}}$ and $\mathbf{s} = \operatorname{diag}(\mathbf{S})$ is matrix of scalar products

• the problem in classical scaling:

distances — points

• given Δ solve for **X**

Classical scaling

• if we had S and had to recover X it would be simple:

 $\mathbf{S} = \mathbf{X}\mathbf{X}^\mathsf{T}$

• recall the eigenvalue-eigenvector decomposition of a square symmetric matrix, for example of **S** :

 $\mathbf{S} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^\mathsf{T}$

where

$$\mathbf{U}\mathbf{U}^{\mathsf{T}} = \mathbf{I}; \quad \mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \qquad \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$$

so a possible solution would be:

 $\mathbf{X} = \mathbf{U} \mathbf{\Lambda}^{1/2}$

Classical scaling

- but we don't have the scalar products **S** but rather the squared distances $\Delta = \mathbf{s1}^T + \mathbf{1s}^T 2\mathbf{S}$
- we can recover the matrix of scalar products S^* with respect to the centroid of the *n* points by a transformation of Δ called double-centring:
- subtract the row means from all the squared distances
- subtract column means from the resultant matrix

then multiply double-centred matrix by -1/2 to obtain S*

Then carry on as before:

$$S^* = U\Lambda U^{\uparrow}$$
$$X^* = U\Lambda^{1/2}$$

R code to double-centre and eigendecompose

```
# read in the squared distance matrix
d2 <- matrix(c(0,17,17,16,17,0,4,41,17,4,0,25,16,41,25,0),nrow=4)
# compute scalar products
n <- nrow(d2)
ones <- rep(1,n)
I <- diag(ones)
Sd <- -0.5*(I-(1/n)*ones%*%t(ones)) %*% d2 %*% (I-(1/n)*ones%*%t(ones))
# compute eigenvalues and eigenvectors using R function eigen
Sd.eig <- eigen(Sd)
# compute coordinates and plot
X <- Sd.eig$vectors[,1:2] %*% diag(sqrt(Sd.eig$values[1:2]))
plot(X, type="n")
text(X, labels=1:4)
```