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Chapter 5

Measures of distance between samples:
non-Euclidean

Euclidean distances are special because they eonéoour physical concept of distance.
But there are many other distance measures whitheaefined between multivariate
samples. These non-Euclidean distances are efeélift types: some still satisfy the basic
axioms of what mathematicians call a metric, wbileers are not even metrics but still
make very good sense as a measure of differenaeéetsamples in the context of certain
data. In this chapter we shall consider severatbaclidean distance measures that are
popular in the environmental sciences: the Brayt€dissimilarity, the L distance (also
called the city-block or Manhattan distance) areltaccard index for presence-absence
data. We also consider how to measure dissimylagtween samples for which we have
heterogeneous data.
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The axioms of distance

In mathematics, a true measure of distance, caltedtric, obeys three properties. These
metric axioms are as follows, wheig denotes the distance between objadsdb:

1. Jab = Ooa
2. dap=0and =0ifandonlyid=b
3. dab < dac + dca (5.1)

The first two axioms are trivial: the first saysitithe distance frorato b is the same is
from b to a, in other words the measure is symmetric; therssays that distances are
always positive except when the objects are idahtic which case the distance is
necessarily 0. The third axiom, called tHangle inequality may also seem intuitively
obvious but is the more difficult one to satisf{f we draw a triangl@bcin our Euclidean
world, for example in Exhibit 5.1, then it is obumthat the distance froanto b must be
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shorter than the sum of the distances via anothiet @ that is froma to c and fromc to b.
The triangle inequality can only be an equality lies exactly on the line connectiagand
b (see right hand sketch in Exhibit 5.1).

Exhibit 5.1 lllustration of the triangle inequality for distaexin Euclidean
space.

a dab = dac + dcb a dab = dac + dcb

But there many apparently acceptable measurestaintie that do not satisfy this property:
with those it would be theoretically possible td géroute’ froma to some point and

then fromc to b which is shorter than fromto b ‘directly’. Because these are not true
distances (in the mathematical sense) they aretsoasecalleddissimilarities

Bray-Curtis dissimilarity

When it comes to ecological abundance data codeatteifferent sampling locations, the
Bray-Curtis dissimilarity is one of the most welidwn ways of quantifying the difference
between samples. This measure appears to beeasgnable way of achieving this goal
but it does not satisfy the triangle inequalityaa®j and hence is not a true distance (we
shall discuss the implications of this in later ptesis when we analyze Bray-Curtis
dissimilarities). To illustrate its definition, wensider again the count data for the last two
samples of Exhibit 1.1, which we recall here:

s29 11 0 7 8 0 26
s30 24 37 5 18 1 85

On of the assumptions of the Bray-Curtis measutieaisthe samples are taken from the
same physical size, be it area or volume. Thie@ause dissimilarity will be computed on
raw counts, not on relative counts, so the fadtttiere is higher overall abundance at site
s30 is part of the difference between these twqsesn- that is, ‘size’ and ‘shape’ of the
count vectors will be taken into account in the sued.

The computation involves summing the absolute diffees between the counts and

! In fact, the Bray-Curtis dissimilarity can be cangd on relative abundances, as we did for thesghare
distance, to take into account only ‘shape’ diffexes — this point is discussed later.
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dividing this by the sum of the abundances in the $amples:

b _ |11-24|+|0-37|+|7-5]+|8-18|+[0-1] _ 63
529:530 26+85 111
The general formula for calculating tBeay-Curtis dissimilaritypbetween samplesandi’

is as follows, supposing that the counts are dehoye; and that their sample (row) totals
aren;, :

= 0.568

J
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b" ni+ + ni'+ (5 )
This measure takes on values between 0 (samplescalen; = n; for allj) and 1 (samples
completely disjoint; that is, when there is a nanzgbundance of a species in one sample,
then it is zero in the othem; >0 impliesn;; =0) — hence it is often multiplied by 100 and
interpreted as a percentage. Exhibit 5.2 showsgbaine Bray-Curtis dissimilarities
between the 30 samples (the caption points outlation of the triangle inequality):

Exhibit 5.2 Bray-Curtis dissimilarities, multiplied by 100, beten the 30
samples of Exhibit 1.1, based on the count datéafaa to e. Violations of the
triangle inequality can be easily picked out: feample, from s25 to s4 Bray-
Curtis is 93.9, but the sum of the values ‘viafsém s25 to s6 and from s6 to
s4 is 18.6+69.2 = 87.8, which is shorter!

sl s2 s3 s4 s5 s6 - - - s24 s25 s26 s27 s28 s29
s2
s3
s4
s5
s6
s7

s25 704 393 66.7 939 529 186 . . .
s26 69.6 328 609 928 417 152 . . .
s27 63.6 381 636 933 382 215. ..
s28 325 215 500 577 319 295 . ..
s29 43.4 350 434 545 312 536 . . .
s30 60.7 36.7 589 845 480 216 . . .

If the Bray-Curtis dissimilarity is subtracted frdif0, a measure sfmilarity is obtained,
called the Bray-Curtis index. For example, theilsinty between sites s25 and s4 is 100 —
93.9 = 6.1%, which is the lowest amongst the vatligslayed in Exhibit 5.2; whereas the
highest similarity is for sites s25 and s26: 100#E386.3%. Checking back to the data in
Exhibit 1.1 one can verify the similarity betweetes s25 and s26, compared to the lack of
similarity between s25 and s4.
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Bray-Curtis dissimilarity versus chi-square distance

An ecologist would like some recommendation on Wweeto use Bray-Curtis or chi-square
on a particular data set. It is not possible tkerany absolute statement of which is
preferable, but we can point out some advantagéslisadvantages of each one. The
advantage of the chi-square distance is thatittise metric, while the Bray-Curtis
dissimilarity violates the triangle inequality, whiis slightly problematic when we come to
analyzing them later. The advantage of Bray-Gustthat the scale is easy to understand:
0 means the samples are exactly the same, whiles186 maximum difference that can be
observed between two samples. The chi-squardieoather hand, has a maximum which
depends on the marginal weights of the data sdtjtamould be difficult to assign any
substantive meaning to any particular value. Adspero chi-square means that the relative
abundances are identical, not the original abureanés pointed out in the footnote on
page 5-2, we could calculate Bray-Curtis dissintilss on the relative abundances
(although conventionally the calculation is on reaunts), and in addition we could
calculate chi-square distances on the raw countisout ‘relativizing’ them (although
conventionally the calculation is on relative ca)ntThis would make the comparison
between the two approaches fairer.

So we calculated Bray-Curtis on the relative coamid chi-square on the raw counts —
Exhibit 5.3 shows parts of the four distance masjavhere the values in each triangular
matrix have been strung out columnwise (the colisite pair’ shows which pair
corresponds to the values in the rows). The sgdtts of the two comparable sets of
measures are shown in Exhibit 5.4. Two featurégbede plots are immediately apparent:
first, there is much better agreement betweenwieappproaches when the counts have
been relativized (plot (b)); and second, when thents are in their raw form (plot (a)) one
can obtain 100% dissimilarity for the Bray-Curt@@sponding to a whole range of chi-
square distances, from approximately 5 to 16 (s@@pabove the tic-mark of 100 on the
axisB-C raw). This means that the measurement of shaérig $imilar in both
measures, but the way they take size into accsuyuite different. A good illustration of
this is the measure between samples s1 and s1@h Wave counts as follows (taken from
Exhibit 1.1):

sl 0 2 9 14 2 27
s17 4 0 0 0 0 4

The Bray-Curtis dissimilarity is 100% because the sets of counts are disjoint, whereas
the chi-square distance is a fairly low 5.533 (e (s17,s1) of Exhibit 5.3). This is
because the absolute differences between the tw@ienot large. If they were larger, say
if we doubled both sets of counts, then the chiasgualistance would increase accordingly
whereas the Bray-Curtis would remain at 100%s kiy considering examples like these
that researchers will obtain a feeling for the gmies of these measures, in order to be able
to choose the measure that is most appropriatééarown data.



Exhibit 5.3 Various dissimilarities and distances between pHisstes (count
data from Exhibit 1.1)B-C-raw: Bray Curtis dissimilarities on raw counts
(usual definition and usagehi2 raw: chi-square distances on raw coumlts,

C rel: Bray-Curtis dissimilarities on relative counts;2 rel: chi-square
distances on relative counts (usual definition asage).

Exhibit 5.4 Graphical comparison of Bray-Curtis dissimilariteasd chi-
square distances for (a) raw counts, taking intmawct size and shape, and (b)

site pair B-C raw chi2 raw B-C rel chi2rel
(s2,s1) 45.679 7.398 48.148 1.139
(s3,s1) 29.630 3.461 29.630 0.855
(s4,s1) 46.667 4.146 50.000 1.392
(sb5,s1) 47.692 5.269 50.975 1.093
(s6,s1) 52.212 10.863 53.058 1.099
(s7,s1) 45.455 4.280 46.164 1.046
(s8,s1) 93.333 5.359 92.593 2.046
(s9,s1) 33.333 5.462 40.741 0.868
(s10,s1) 40.299 6.251 36.759 0.989
(s11,s1) 35.714 4.306 36.909 1.020
(s12,s1) 37.500 5.213 39.762 0.819
(s13,s1) 57.692 5.978 59.259 1.581
(s14,s1) 63.265 5.128 59.091 1.378
(s15,s1) 20.755 1.866 20.513 0.464
(s16,s1) 85.714 13.937 80.960 1.700
(s17,s1) 100.000 5.533 100.000 2.258
(s18,s1) 56.897 11.195 36.787 0.819
(s19,s1) 16.923 1.762 11.501 0.258
(s20,s1) 33.333 3.734 31.987 0.800
(s23,522) 34.400 7.213 25.655 0.688
(s24,522) 61.224 9.493 35.897 0.897
(s25,s22) 23.567 7.855 25.801 0.617
s(24,s23) 34.177 4519 16.401 0.340
s(25,s23) 37.681 11.986 37.869 1.001
(s25,524) 56.757 13.390 44.706 1.142

relative counts, taking into account shape only.
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L, distance (city-block)

When the Bray-Curtis dissimilarity is applied téetéve counts, that is, row profiles with
values which can be denotedrgs nj; / ni+, the row sums;. in the denominator of (5.2)
are 1 for every row, so that the dissimilarity reglsi to:

20 = | (5.3)

j=1

bi- =

N [

The sum of absolute differences between two vedsasalled the L distance, or city-block
distance. This is a true distance function sihobeys the triangle inequality, and as can
be seen in the right hand scatterplot of Exhilglt &grees fairly well with the chi-square
distance for the data under consideration. Theoreavhy it is called the city-block
distance, and also as the Manhattan distance watadistance, can be seen in the two-
dimensional illustration of Exhibit 5.5. Going froa point A to a point B is achieved by
walking ‘around the block’, compared to the Euclidéstraight line’ distance. The city-
block and Euclidean distances are special casi df, distance, defined here between
rows of a data matriX (the Euclidean distance is obtained fior 2):

3 1/p
di(p)= (Zl Xj ~ X |p] (5.4)

Exhibit 5.5 Two-dimensional illustration of the;l(city-block) and L
(Euclidean) distances between two poirdaadi’: the Ly distance is the sum of
the differences in the coordinates, while thalistance is the square root of the
sum of squared differences.
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Dissimilarity measures for presence—absence data

In Chapter 4 we considered the matching coefficéat the chi-square distance for
categorical data in general, but there is a speas¢ which is often of interest to
ecologists: presence—absence, or dichotomous, Wdten categorical variables have only
two categories, there are a host of coefficienfsmdd to measure inter-sample difference
(see Bibliographical Appendix for references ta tioipic). Here we consider one example
which is an alternative to the matching coefficient

Exhibit 5.6 gives some data that we shall use a@ai@hapter 7), concerning the
presence—absence of 10 species in 7 samples. iSthead based on the matching
coefficient is obtained either by counting the rmator mismatches between the two
samples. For example, between samplasdB there are 6 matches and 4 mismatches.
Usually expressed relative to the number of vaeslipecies) this would give a similarity
value of 0.6 and and a dissimilarity value of OBut often in ecology it is possible to have
very many species in the data set, up to 100 oepaord in each sample we find relatively
few of these present. This makes the number ofmeatbased on the co-absence of
species very high compared to those based on saize. If co-absence is not really so
important compared to co-presence, we can simplgregthe co-absences and calculate
similarity in terms of co-presences. Furthermdnes co-presence count is expressed not
relative to the total number of species but re&@atwvthe number of species present in at
least one of the two samples under considerafldms is the definition of théaccard
indexfor dichotomous data. Taking sampkeandB of Exhibit 5.6 again, the number of
co-presences is 4, we ignore the 2 co-absenceswibexpress 4 relative to 8, so the result
is 0.5. In effect, the Jaccard index is the matgltioefficient of similarity calculated for a
pair of samples after eliminating all the specidsclv are co-absent (0 and 0). The
dissimilarity between two samples is — as befoterrinus the similarity.

Exhibit 5.6 Presence—absence data of 10 species in 7 samples.

Samples Species
A 1 1 1 0 1 0 0 1 1 1
B 1 1 0 1 1 0 0 0 0 1
C 0 1 1 0 1 0 0 1 0 0
D 0 0 0 1 0 1 0 0 0 0
E 1 1 1 0 1 0 1 1 1 0
F 0 1 0 1 1 0 0 0 0 1
G 0 1 1 0 1 1 0 1 1 0

Here’s another example, for sampteandD. This pair has 4 co-absences, so we eliminate
them. To get the dissimilarity we can count thematches — in fact, all the rest are
mismatches — so the dissimilarity is 6/6 = 1, treximum that can be attained. Using the
Jaccard approach we would say that samplasdD are completely different, whereas the
matching coefficient would lead us to a dissimthaof 0.6 because of the 4 matched co-
absences.



5-8

To formalize these definitions, the counts of matchnd mismatches in a pair of samples
are put into a 22 table as follows:

Sample 2
1 0
a b at+b
Sample 1
P C d c+d

atc b+d at+b+c+d

wherea is the count of co-presences (1 andbljye count of mismatches where sample 1
has value 1 but sample 2 has value 0, and so ba.oVerall number of matchesasd,

and mismatches+c. The two measures of distance/dissimilarity congdeso far are thus
defined as:

i - ; . b+tc _,_  a+d
Mammngammuemdswnaaa+b+c+d 1 a+btctd (5.5)
Jaccard index dissimilarity: b+c __-,__a+d (5.6)

atb+c atb+c

To give one final example, the correlation coeéfitican be used to measure the similarity
between two vectors of dichotomous data, and cahben to be equal to:

_ ad —bc
" la+b)c+d)a+obd) &)

Hence, a dissimilarity can be defined asg 1 Since +r has a range from 0 (whée=0,
no mismatches) to 2 (whex=0, no matches), a convenient measure between 0 &g
(2-r).

Distances for heterogeneous data

When a data set contains different types of vaeghbhd it is required to measure inter-
sample distance, we are faced with another problestandardization: how can we balance
the contributions of these different types of viales in an equitable way? We will
demonstrate two alternative ways of doing thisreféean example of mixed data (shown
here are the data for four stations out of a s88cf we shall analyze the whole data set
later in this book):

Continuous variables Discrete variables
Station
s3 30 3.15 33.52 Ta Si/St
s8 29 3.15 33.52 Ta Cl/Gr

s25 30 3.00 33.45 Sk Cl/Sa

84 66 3.22 33.48 St cl
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Apart from the three continuous variables, demimgerature and salinity there are the
categorical variables sampled region (with foulioag: Tarehola, Skognes, Njosken and
Storura), and substrate character (which can bealegtion of clay, silt, sand, gravel or
stone). The fact that more than one substratgogtean be selected implies that each
category is a separate dichotomous variable, ssthestrate consists of five different
variables.

The first way of standardizing the continuous agiihe discrete variables is called
Gower’s generalized coefficient of dissimilaritlfirst we express the discrete variables as
dummies and calculate the means and standard idexgiatf all variables in the usual way:

Continuous variables Sampled region Substrate charact
Station

s3 30 3.15 33.52 1 0 0 0 0 1 0 0 1

s8 29 3.15 33.52 1 0 0 0 1 0 0 1 0

s25 30 3.00 33.45 0 1 0 0 1 0 1 0 0

84 66 322 33.48 0 0 0 1 1 0 0 0 0
mean 58.15 3.086 33.50 0.242 0.273  0.242 0.242 0.606 0.152 0.364 0.182  0.061

s.d. 32.45 0.100 0.076 0.435 0452 0435 0435 0496 0.364 0.489 0.392 0.242

Notice that dichotomous variables (such as thetgtiescategories) are coded as a single
dummy variable, not two, while polychotomous valéglsuch as region are split into as
many dummies as there are categories. The ngxisste standardize each variable and
multiply all the columns corresponding to dummyiables by 1¥2 = 0.7071, a factor
which compensates for their 0/1 coding:

Continuous variables Sampled region Substrate charact
Station
s3 -0.868 0.615 0.260 1231 -0.426 -0.394 -0.394 -0.864 1.648 -0.526 -0.328 2.741
s8 -0.898 0.615 0.260 1231 -0426 -0.394 -0.394 0561 -0.294 -0.526 1477 -0.177
s25 -0.868 -0.854 -0.676  -0.394 1137 -0.394 -0.394 0561 -0.294 0.921 -0.328 -0.177
s84 0.242 1.294 -0294  -0.394 -0426 -0.394 1.231 0561 -0.294 -0.526 -0.328 -0.177

Now distances are calculated between the statising either the L(city-block) or L,
(Euclidean) metric. For example, using thenetric and dividing the sum of absolute
differences by the total number of variables (1this example), the distances between the
above four stations are given in the left handeaflExhibit 5.8. Because the L

Exhibit 5.8 Distances between four stations based on {liidtance between

their standardized and rescaled values, as dedaili@/e. The distances are
shown equal to the part due to the continuous blassplus the part due to the
categorical variables.

TOTAL DISTANCE = DISTANCE CONT. VARS + DISTANCE CAT. VARS
s3 s8 - - . s25 s3 s8 - .. s25 s3 s8 - .. s25
O.677| 0.674| 0.00SI
522 1.110 0.740 . szg 0.910 0.537)__ szg 0.200 0.203]__

] + H

s84 ] 0.990 0.619 . . . O.689| s84 | 0.795 0.421 . . . 0.386| s84 | 0.195 0.198 . . . O.303|
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distance decomposes into parts for each variatdesan show the part of the distance due
to the continuous variables, and the part dueda#tegorical variables. Generally, the
categorical variables are contributing more todifierences between the stations, but the
differences in the continuous variables is actustdhall if one looks at the original data;
except for the distance between s84 and s25, where is a bigger difference in the
continuous variables, then they contribute almostsame (0.303) as the categorical ones
(0.386).

Exhibit 5.8 suggests the alternative way of comimrdifferent types of variables: first
compute the distances which are the most appregoaieach set and then add them to
one another. For example, suppose there aretipes of data, a set of continuous
variables, a set of categorical variables and afge¢rcentages or counts. Then compute
the distance or dissimilarity matricBs, D, andD3 appropriate to each set of
homogeneous variables, and then combine these@ighted average:

_ WD, +w,D; +w;D,
W, + W, + W,

D

(5.8)

Weights are a subjective but convenient inclusiecalise there might be substantive
reasons for down-weighting the distances for omnefseariables, which might not be so
important, or might suffer from high measurememnoerfor example.

SUMMARY: Measures of distance between samples: non-  Euclidean

1. A well-defined distance function obeys the trianiglequality, but there are several
justifiable measures of difference between samplgsh do not have this property: to
distinguish these from true distances we ofterr teféghem as dissimilarities.

2.  The Bray-Curtis dissimilarity is frequently used dxgologists to quantify differences
between samples based on abundance or count™atameasure is usually applied
to raw abundance data, but can be applied tovelatbundances just like the chi-
square distance. The chi-square distance carbalapplied to the original
abundances to include overall size differenceléndistance measure.

3. The sum of absolute differences, qrdistance (or city-block distance), is an
alternative to the Euclidean distance: an advaméagi@s distance is that it
decomposes into contributions made by each var{&nlehe L, Euclidean distance,
we would need to decompose the squared distance).

4. A dissimilarity measure for presence—absence gddtased on the Jaccard index,
where co-absences are eliminated from the caloulattherwise the measure
resembles the matching coefficient.

5. Distances based on heterogeneous data can be emhgitdr a process of
standardization of all variables, using theok L, distances. Alternatively, distance
matrices can be calculated for each set of homagesneariables and then these
matrices can be linearly combined, optionally witter-defined weights.



