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Chapter 7
Hierarchical cluster analysis

In Part 2 (Chapters 4 to 6) we defined severakdifiit ways of measuring distance (or
dissimilarity as the case may be) between the mvietween the columns of the data
matrix, depending on the measurement scale oftikergations. As we remarked before,
this process often generates tables of distandbsewen more numbers than the original
data, but we will show now how this in fact sim@éd our understanding of the data.
Distances between objects can be visualized in raengle and evocative ways. In this
chapter we shall consider a graphical representati@ matrix of distances which is
perhaps the easiest to understand — a dendrogrdragc- where the objects are joined
together in a hierarchical fashion from the closttt is most similar, to the furthest apart,
that is the most different. The method of hierazahcluster analysis is best explained by
describing the algorithm, or set of instructionsjeh creates the dendrogram results. In
this chapter we demonstrate hierarchical clustesimg small example and then list the
different variants of the method that are possible.
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The algorithm for hierarchical clustering

As an example we shall consider again the smadl skeitin Exhibit 5.6: seven samples on
which 10 species are indicated as being presemitsent. In Chapter 5 we discussed two
of the many dissimilarity coefficients that are gibte to define between the samples: the
first based on the matching coefficient and th@sddased on the Jaccard index. The
latter index counts the number of ‘mismatches’ leewtwo samples after eliminating the
species that do not occur in either of the paixhiBit 7.1 shows the complete table of inter-
sample dissimilarities based on the Jaccard index.
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Exhibit 7.1 Dissimilarities, based on the Jaccard index, betvediepairs of
seven samples in Exhibit 5.6. For example, betweerfirst two samplegy and
B, there are 8 species that occur in on or the ptfevhich 4 are matched and 4
are mismatched — the proportion of mismatchesds=41.5. Both the lower and
upper triangles of this symmetric dissimilarity mratire shown here (the lower
triangle is outlined as in previous tables of thyse.

samples A B C D E F G
A 0 0.5000 0.4286 1.0000 0.2500 0.6250 0.3750
0.7143 0.8333 0.6667 0.2000 0.7778
0.4286 0.7143 0 1.0000 0.4286 0.6667 0.3333
1.0000 0.8333 1.0000 0 1.0000 0.8000 0.8571
0.2500 0.6667 0.4286 1.0000 0 0.3750
0.6250 0.2000 0.6667 0.8000 0.7500
0.3750 0.7778 0.3333 0.8571

O mmoOw

The first step in the hierarchical clustering psces to look for the pair of samples that are
the most similar, that is are the closest in thrsssef having the lowest dissimilarity — this
is the paiB andF, with dissimilarity equal to 0.2000. These twongdes are then joined at
a level of 0.2000 in the first step of the dendamgy or clustering tree (see the first diagram
of Exhibit 7.3, and the vertical scale of O to liethcalibrates the level of clustering). The
point at which they are joined is calleci@de.

We are basically going to keep repeating this siapthe only problem is how to
calculated the dissimilarity between the merged (®aF) and the other samples. This
decision determines what type of hierarchical eusg we intend to perform, and there are
several choices. For the moment, we choose otfeeahost popular ones, called the
maximum, or complete linkage, method: the dissimilarity between the merged pad the
others will be the maximum of the pair of dissinitias in each case. For example, the
dissimilarity betweei® andA is 0.5000, while the dissimilarity betweErandA is 0.6250.
hence we choose the maximum of the two, 0.625Quémtify the dissimilarity between
(B,F) andA. Continuing in this way we obtain a new dissimijamatrix Exhibit 7.2.

Exhibit 7.2 Dissimilarities calculated aft& andF are merged, using the
‘maximum’ method to recomputed the values in the amd column labelled

(B,F).
samples A (B,F) C D E G
A 0 0.6250 0.4286 1.0000 0.2500 0.3750
(B,F) ]0.6250 0.7143 0.8333 0.7778 0.7778

C 10.4286 0.7143 0
1.0000 0.8333 1.0000 0 1.0000 0.8571
0.2500 0.7778 0.4286 1.0000 0.3750
0.3750 0.7778 0.3333 0.8571

1.0000 0.4286 0.3333

G m O
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Exhibit 7.3 First two steps of hierarchical clustering of Extih1, using the
‘maximum’ (or ‘complete linkage’) method.

1.0 — 1.0 —
05 — 0.5 —
0.0 — 0.0

B F B F AE

The process is now repeated: find the smallesindiissity in Exhibit 7.2, which is 0.2500
for samplesA andE, and then cluster these at a level of 0.25, agsho the second figure
of Exhibit 7.3. Then recomputed the dissimilagti®tween the merged paly,€) and the
rest to obtain Exhibit 7.4. For example, the diskirity between 4,E) and 8,F) is the
maximum of 0.62504 to (B,F)) and 0.7778K to (B,F)).

Exhibit 7.4 Dissimilarities calculated aftéx andE are merged, using the
‘maximum’ method to recomputed the values in the amd column labelled

(AE).
samples (AE) (B,F) C D) G
(AE) 0 0.7778 0.4286 1.0000 0.3750
(B,F) |0.7778 0 0.7143 0.8333 0.7778

C ]0.4286 0.7143 0 1.0000 0.3333
D | 1.0000 0.8333 1.0000 0 0.8571
G 10.3750 0.7778 0.3333 0.8571

In the next step the lowest dissimilarity in Exhibi4 is 0.3333, fo€ andG — these are
merged, as shown in the first diagram of Exhib#, 7o obtain Exhibit 7.5. Now the
smallest dissimilarity is 0.4286, between the pajE) and 8,G), and they are shown
merged in the second diagram of Exhibit 7.6. Exhily shows the last two dissimilarity
matrices in this process, and Exhibit 7.8 the final steps of the construction of the
dendrogram, also calledomary tree because at each step two objects (or clusters
objects) are merged. Because there are 7 obgebts ¢lustered, there are 6 steps in the
sequential process (i.e., one less) to arriveaafitial tree where all objects are in a single
cluster. For botanists that may be reading this:is an upside-down tree, of course!



Exhibit 7.5 Dissimilarities calculated aft&¥ andG are merged, using the
‘maximum’ method to recomputed the values in the amd column labelled
(C,G).

samples (A\E) (B,F) (C,G) D
(AE) 0 0.7778 0.4286 1.0000
(B,F) 0 0.7778 0.8333
(C,G) |0.4286 0.7778 0 1.0000

D ]1.0000 0.8333 1.0000

Exhibit 7.6 The third and fourth steps of hierarchical clustgrof Exhibit 7.1,
using the ‘maximum’ (or ‘complete linkage’) method@he point at which
objects (or clusters of objects) are joined isexhh node.

1.0 — 1.0 —
0.5 — 0.5 —
0.0 — 0.0 —
B F A ECG B F A ECG

Exhibit 7.7 Dissimilarities calculated aft&¥ andG are merged, using the
‘maximum’ method to recomputed the values in the amd column labelled
(C,G).

samples (AE,C,G) (B,F) D samples (AECGB,F) D

(A,E,C,G) 0 0.7778 1.0000 (A,E,C,G,B,F) 0 1.0000

(B,F) 0.7778 0 0.8333 D 1.0000
D 1.0000 0.8333 0

0
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Exhibit 7.8 The fifth and sixth steps of hierarchical clustgrof Exhibit 7.1,
using the ‘maximum’ (or ‘complete linkage’) metho@he dendrogram on the
right is the final result of the cluster analysia.the clustering of objects, there
aren—1 nodes (i.e. 6 nodes in this case).

1.0 — 1.0 —
0.5 — 0.5 —
0.0 — 0.0 —
B F A EZCG B FAECGD

Cutting the tree

The final dendrogram on the right of Exhibit 7.&isompact visualization of the
dissimilarity matrix in Exhibit 7.1, based on thepence-absence data of Exhibit 5.6.
Interpretation of the structure of data is made Ime@sier now — we can see that there are
three pairs of samples that are fairly close, thithese pairs &,E) and C,G)) are in turn
close to each other, while the single sanipkeparates itself entirely from all the others.
Because we used the ‘maximum’ method, all samplestered below a particular level of
dissimilarity will have inter-sample dissimilarifidéess than that level. For example, 0.5 is
the point at which samples are exactly as similarte another as they are dissimilar, so if
we look at the clusters of samples below 0.5 +-(BsF), (A,E,C,G) and O) — then within
each cluster the samples have more than 50% sityliar other words more than 50% co-
presences of species. The level of 0.5 also hapjeernincide in the final dendrogram
with a large jump in the clustering levels: the aadhere A,E) and C,G) are clustered is at
level of 0.4286, while the next node wheleH) is merged is at a level of 0.7778. This is
thus a very convenient level ¢at the tree. If the branches are cut at 0.5, wéedtrevith
the three clusters of sampl&sK), (A,E,C,G) and ), which can be labelled typés2 and
3 respectively. In other words, we have createdtaegorical variable, with three
categories, and the samples are categorized as/foll

A B C D E F G

2 1 2 3 2 1 2
Checking back to Chapter 2, this is exactly theeclye which we described in the lower
right hand corner of the multivariate analysis sobdExhibit 2.2) — to reveal a categorical
variable which underlies the structure of a data se



7-6

Maximum, minimum and average clustering

The crucial choice when deciding on a cluster asialglgorithm is to decide how to
guantify dissimilarities between two clusters. Hbhgorithm described above was
characterized by the fact that at each step, whdating the matrix of dissimilarities, the
maximum of the between-cluster dissimilarities whgsen. This is also known as
complete linkage cluster analysis, because a cluster is formed vali¢he dissimilarities
(‘links’) between pairs of objects in the clustee gess then a particular level. There are
several alternatives to complete linkage as a@lung criterion, and we only discuss two of
these: minimum and average clustering.

The ‘minimum’ method goes to the other extreme fanchs a cluster when only one pair
of dissimilarities (not all) is less than a partaauevel — this is known asngle linkage
cluster analysis. So at every updating step weshithe minimum of the two distances
and two clusters of objects can be merged whee iBax single close link between them,
irrespective of the other inter-object distancaggéneral, this is not a suitable choice for
most applications, because it can lead to clusbatsare quite heterogeneous internally,
and the usual object of clustering is to obtain bigemeous clusters.

The ‘average’ method is an attractive compromiserlaissimilarities are averaged at
each step, hence the naawverage linkage cluster analysis. For example, in Exhibit 7.1 the
first step of all types of cluster analysis wouldngeB andF. But then calculating the
dissimilarity betweem, for example, andg(F) is where the methods distinguish
themselves. The dissimilarity betwegmandB is 0.5000, and betwednandF it is 0.6250.
Complete linkage chooses the maximum: 0.6250; siligkage chooses the minimum:
0.5000; while average linkage chooses the ave(@dg000+0.6250)/2 = 0.5625.

Validity of the clusters

If a cluster analysis is performed on a data matriget of clusters can always be obtained,
even if there is no actual grouping of the objecishis case the samples. So how can we
evaluate whether the three clusters in this exa@eaot just any old three groups which
we would have obtained on random data with no gira@ There is a vast literature on
validity of clusters (we give some references i Bibliography, Appendix E) and here we
shall explain one approach based on permutatigimgesin our example, the three clusters
were formed so that internally in each cluster fednby more than one sample the
between-sample dissimilarities were all less th&0@0. In fact, if we look.at the result in
the right hand picture of Exhibit 7.8, the cutpdmtthree clusters can be brought down to
the level of 0.4286, wher@ E) and C,G) joined together. As in all statistical
considerations of significance, we ask whetherithan unusual result or whether it could
have arisen merely by chance. To answer this quese need an idea of what might have
happened in chance results, so that we can judgactual finding. This so-called “null
distribution” can be generated through permutirggdhta in some reasonable way,
evaluating the statistic of interest, and doing thany times (or for all permutations if this
is feasible computationally) to obtain a distriloatiof the statistic. The statistic of interest
could be that value at which the three clusterd@araed, but we need to choose carefully
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how we perform the permutations, and this dependsowv the data were collected. We
consider two possible assumptions, and show hderdiit the results can be.

The first assumption is that the column totals abl€ Exhibit 5.6 are fixed; that is, that the
10 species are present, respectively, 3 timesei ttamples, 6 times, 4 times, 3 times and
so on. Then the permutation involved would berapsy randomly shuffle the zeros and
ones in each column to obtain a new presence-abseatix with exactly the same

column totals as before. Performing the competalje hierarchical clustering on this
matrix leads to that value where the three clustértion is achieved, and becomes one
observation of the null permutation distributioe did this 9999 times, and along with
our actual observed value of 0.4286, the 10000eg#ue graphed in Exhibit 7.9 (we show
it as a horizontal bar chart because there areXdnljifferent values observed of this value,
shown here with their frequencies). The value ateally observed is one of the smallest —
the number of permuted matrices that generateva@hie or a lower value is 26 out of
10000, so that in this sense our data are veryuahasid the ‘significance’ of the three-
cluster solution can be quantified witlp&alue of 0.0026. The other 9974 random
permutations all lead to generally higher inter-gndissimilarities such that the level at
which three-cluster solutions are obtained is 044ddhigher (0.4444 corresponds to 4
mistmatches out of 9.

Exhibit 7.9 Bar chart of the 10000 values of the three-clustéutions obtained
by permuting the columns of the presence-absenegidaluding the value we
observed in the original unpermuted data matrix.

level frequency

0.8000 2

0.7778 35 L]

0.7500 363 —

0.7143 1360 |

0.7000 189 —

0.6250 2199 |
0.6000 822 ]

0.5555 207 —

0.5000 441 —

0.4444 8 [

0.4286 23 ' <+—— observed value
0.4000 2

0.3750 1

The second and alternative possible assumptiothéocomputation of the null distribution
could be that the column margins are not fixed,rantlom; in other words, we relax the
fact that there were exactly 3 samples that hadispsp1, for example, and assume a
binomial distribution for each column, using thesetved proportion (3 out of 7 for
speciespl) and the number of samples (7) as the binomiamaters. Thus there can be
0 up to 7 presences in each column, accordingetdittomial probabilities for each
species. This gives a much wider range of pog#asilfor the null distribution, and leads
us to a different conclusion about our three ob=gislusters. The permutation distribution
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is now shown in Exhibit 7.10, and now our observallie of 0.4286 does not look so
unusual, since 917 out of 10000 values in theiligion are less than or equal to it, giving
an estimated-value of 0.0917.

Exhibit 7.10 Bar chart of the 10000 values of the three-clustéutions
obtained by generating binomial data in each colofrthe presence-absence
matrix, according to the probability of presenceath species.

level frequency

0.8750 2 !

0.8571 5 .

0.8333 23 ]

0.8000 50 -

0.7778 28 =

0.7500 201 —

0.7143 485 ——
0.7000 21 .

0.6667 1298

0.6250 1171

0.6000 895

0.5714 1960

0.5555 468 —
0.5000 2299

0.4444 177 —

0.4286 567 < observed value
0.4000 162 —

0.3750 107 —

0.3333 64 -

0.3000 1

0.2857 12 !

0.2500 3 ‘

0.2000 1

So, as in many situations in statistics, the resudt decision depends on the initial
assumptions. Could we have observed the preséispecesl less or more than 3 times
in the 7 samples (and so on for the other specigsizher words, according to the
binomial distribution withh=7, andp = 3/7, the probabilities of observirkgpresences of
speciespl (k=0, 1, ..., 7) are:

0 1 2 3 4 5 6 7
0.020 0.104 0.235 0.294 0.220 0.099 0.025 0.003

If this assumption (and similar ones for the othiee species) is realistic, then the cluster
significance is 0.0917. However, if the first asgtion is adopted (that is, the probability
of observing 3 presences for speatss 1 and 0 for other possibilities), then the
significance is 0.0028. Our feeling is that pesh#e binomial assumption is more
realistic, in which case our cluster solution cooédobserved in just over 9% of random
cases — this gives us an idea of the validity ofreaults and whether we are dealing with
real clusters or not. The value of 9% is a measfitdusteredness’ of our samples in
terms of the Jaccard index: the lower this measheemore they are clustered, and the
hoihger the measure, the more the samples lieaninuum. Lack of evidence of
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‘clusteredness’ does not mean that the clustesmpi useful: we might want to divide up
the space of the data into separate regions, &éeergh the borderlines between them are
‘fuzzy’. And speaking of ‘fuzzy’, there is an altative form of cluster analysis (fuzzy
cluster analysis, not treated specifically in tha®k) where samples are classified fuzzily
into clusters, rather than strictly into one grau@nother — this idea is similar to the fuzzy
coding we described in Chapter 3.

Clustering correlations on variables

Just like we clustered samples, so we can clusighles in terms of their correlations, or
distances based on their correlations as descib@&tapter 6. The dissimilarity based on
the Jaccard index can also be used to measurastynbetween species — the index
counts the number of samples that have both spettbae pair, relative to the number of
samples that have at least one of the pair, andigisemilarity is 1 minus this index.

Exhibit 7.11 shows the cluster analyses basedesettwo alternatives, for the columns of
Exhibit 5.6, using the graphical output this tinféree R functionhcl ust for hierarchical
clustering. The fact that these two trees araféerent is no surprise: the first one is based
on the correlation coefficient takes into accotnat to-absences, which strengthens the
correlation, while the second does not. Both Hheepairs ¢p2,sp5) and ép3,sp8) at zero
dissimilarity because these are identically presedtabsent across the samples. Species
spl andsp7 are close in terms of correlation, due to co-absgrsp7 only occurs in one
sample, samplg, which also hasp1l, a species which is absent in four other samples.
Notice in Exhibit 7.11(b) how speciep10 andspl both join the clustersf2,sp5) at the
same level (0.5).

Exhibit 7.11 Complete linkage cluster analyses of (a) (:-minus the
correlation coefficient between species); (b) Jatdsssimilarity between
species (1 minus the Jaccard similarity index)e RHunctionhcl ust which
calculates the dendrograms places the object gg)daibels at a constant
distance below its clustering level.

(a) (b)
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Clustering a larger data set

The more objects there are to cluster, the moreptnbecomes the result. In Exhibit 4.5
we showed part of the matrix of standardized Eediddistances between the 30 sites of
Exhibit 1.1, and Exhibit 7.12 shows the hierarchaastering of this distance matrix,

using compete linkage. There are two obvious gladeere we can cut the tree, at about
level 3.4, which gives four clusters, or about 2vfich gives six clusters. To get an idea

Exhibit 7.12 Complete linkage cluster analyses of the standeddEiclidean
distances of Exhibit 4.5.
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of the ‘clusteredness’ of these data, we performnpdrmutation test similar to the one
described above, where the data are randomly pechwithin their columns and the
cluster analysis repeated each time to obtain€els. The permutation distribution of
levels at which 6 clusters are formed is shownxhikit 7.13 — the observed value in
Exhibit 7.12 (i.e., wheresg,s14) joins (25,s23,s30,s12,516,527)) is 2.357, which is
clearly not an unusual value. The estimgte@lue according to the proportion of the
distribution to the left of 2.357 in Exhibit 7.18p = 0.3388, so we conclude that these
samples do not have a non-random cluster struettltrey form more of a continuum,
which will be the subject of Chapter 9.
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Exhibit 7.13 Estimated permutation distribution for the leveldich 6
clusters are formed in the cluster analysis of Bixhi.12, showing the value
actually observed. Of the 10000 permutationsuigiclg the observed value,
3388 are less than or equal to the observed vgivag an estimateg-value
for clusteredness of 0.3388.

g |~

frequency

1l

(observed value)

SUMMARY: Hierarchical cluster analysis

1.

2.

Hierarchical cluster analysis nfobjects is defined by a stepwise algorithm which
merges two objects at each step, the two which tiee/keast dissimilarity.
Dissimilarities between clusters of objects camléned in several ways; for
example, the maximum dissimilarity (complete lingagninimum dissimilarity
(single linkage) or average dissimilarity (averéigkage).

Either rows or columns of a matrix can be cluster@d each case we choose the
appropriate dissimilarity measure that we prefer.

The results of a cluster analysis is a binary teelendrogram, with—1 nodes. The
branches of this tree are cut at a level whereetisea lot of ‘space’ to cut them, that is
where the jump in levels of two consecutive noddarige.

A permutation test is possible to validate the elmasumber of clusters, that is to see
if there really is a non-random tendency for thgeots to group together.



