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Chapter 7  
 
Hierarchical cluster analysis 
 
 
In Part 2 (Chapters 4 to 6) we defined several different ways of measuring distance (or 
dissimilarity as the case may be) between the rows or between the columns of the data 
matrix, depending on the measurement scale of the observations.  As we remarked before, 
this process often generates tables of distances with even more numbers than the original 
data, but we will show now how this in fact simplifies our understanding of the data.  
Distances between objects can be visualized in many simple and evocative ways.  In this 
chapter we shall consider a graphical representation of a matrix of distances which is 
perhaps the easiest to understand – a dendrogram, or tree – where the objects are joined 
together in a hierarchical fashion from the closest, that is most similar, to the furthest apart, 
that is the most different.  The method of hierarchical cluster analysis is best explained by 
describing the algorithm, or set of instructions, which creates the dendrogram results.  In 
this chapter we demonstrate hierarchical clustering on a small example and then list the 
different variants of the method that are possible. 
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The algorithm for hierarchical clustering 
 
As an example we shall consider again the small data set in Exhibit 5.6: seven samples on 
which 10 species are indicated as being present or absent.  In Chapter 5 we discussed two 
of the many dissimilarity coefficients that are possible to define between the samples: the 
first based on the matching coefficient and the second based on the Jaccard index.  The 
latter index counts the number of ‘mismatches’ between two samples after eliminating the 
species that do not occur in either of the pair.  Exhibit 7.1 shows the complete table of inter-
sample dissimilarities based on the Jaccard index. 
  



7-2 

Exhibit 7.1  Dissimilarities, based on the Jaccard index, between all pairs of 
seven samples in Exhibit 5.6.  For example, between the first two samples, A and 
B, there are 8 species that occur in on or the other, of which 4 are matched and 4 
are mismatched – the proportion of mismatches is 4/8 = 0.5.  Both the lower and 
upper triangles of this symmetric dissimilarity matrix are shown here (the lower 
triangle is outlined as in previous tables of this type. 
  

                

samples A B C D E F G

A 0 0.5000 0.4286 1.0000 0.2500 0.6250 0.3750

B 0.5000 0 0.7143 0.8333 0.6667 0.2000 0.7778

C 0.4286 0.7143 0 1.0000 0.4286 0.6667 0.3333

D 1.0000 0.8333 1.0000 0 1.0000 0.8000 0.8571

E 0.2500 0.6667 0.4286 1.0000 0 0.7778 0.3750

F 0.6250 0.2000 0.6667 0.8000 0.7778 0 0.7500

G 0.3750 0.7778 0.3333 0.8571 0.3750 0.7500 0                                                                          
 

The first step in the hierarchical clustering process is to look for the pair of samples that are 
the most similar, that is are the closest in the sense of having the lowest dissimilarity – this 
is the pair B and F, with dissimilarity equal to 0.2000.  These two samples are then joined at 
a level of 0.2000 in the first step of the dendrogram, or clustering tree (see the first diagram 
of Exhibit 7.3, and the vertical scale of 0 to 1 which calibrates the level of clustering).  The 
point at which they are joined is called a node.  
 
We are basically going to keep repeating this step, but the only problem is how to 
calculated the dissimilarity between the merged pair (B,F) and the other samples.  This 
decision determines what type of hierarchical clustering we intend to perform, and there are 
several choices.  For the moment, we choose one of the most popular ones, called the 
maximum, or complete linkage, method: the dissimilarity between the merged pair and the 
others will be the maximum of the pair of dissimilarities in each case.  For example, the 
dissimilarity between B and A is 0.5000, while the dissimilarity between F and A is 0.6250.  
hence we choose the maximum of the two, 0.6250, to quantify the dissimilarity between 
(B,F) and A.  Continuing in this way we obtain a new dissimilarity matrix Exhibit 7.2. 
  

Exhibit 7.2  Dissimilarities calculated after B and F are merged, using the 
‘maximum’ method to recomputed the values in the row and column labelled 
(B,F). 

 

              

samples A (B,F) C D E G

A 0 0.6250 0.4286 1.0000 0.2500 0.3750

(B,F) 0.6250 0 0.7143 0.8333 0.7778 0.7778

C 0.4286 0.7143 0 1.0000 0.4286 0.3333

D 1.0000 0.8333 1.0000 0 1.0000 0.8571

E 0.2500 0.7778 0.4286 1.0000 0 0.3750

G 0.3750 0.7778 0.3333 0.8571 0.3750 0  
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Exhibit 7.3  First two steps of hierarchical clustering of Exhibit 7.1, using the 
‘maximum’ (or ‘complete linkage’) method. 

 
  

  
                       
 
 
 
 
 
 
 
 
 
 

The process is now repeated: find the smallest dissimilarity in Exhibit 7.2, which is 0.2500 
for samples A and E, and then cluster these at a level of 0.25, as shown in the second figure 
of Exhibit 7.3.  Then recomputed the dissimilarities between the merged pair (A,E) and the 
rest to obtain Exhibit 7.4.  For example, the dissimilarity between (A,E) and (B,F) is the 
maximum of  0.6250 (A to (B,F)) and 0.7778 (E to (B,F)). 
 

Exhibit 7.4  Dissimilarities calculated after A and E are merged, using the 
‘maximum’ method to recomputed the values in the row and column labelled 
(A,E). 
 

              

samples (A,E) (B,F) C D G

(A,E) 0 0.7778 0.4286 1.0000 0.3750

(B,F) 0.7778 0 0.7143 0.8333 0.7778

C 0.4286 0.7143 0 1.0000 0.3333

D 1.0000 0.8333 1.0000 0 0.8571

G 0.3750 0.7778 0.3333 0.8571 0  

                 
In the next step the lowest dissimilarity in Exhibit 7.4 is 0.3333, for C and G – these are 
merged, as shown in the first diagram of Exhibit 7.6, to obtain Exhibit 7.5.   Now the 
smallest dissimilarity is 0.4286, between the pair (A,E) and (B,G), and they are shown 
merged in the second diagram of Exhibit 7.6.  Exhibit 7.7 shows the last two dissimilarity 
matrices in this process, and Exhibit 7.8 the final two steps of the construction of the 
dendrogram, also called a binary tree because at each step two objects (or clusters of 
objects) are merged.  Because there are 7 objects to be clustered, there are 6 steps in the 
sequential process (i.e., one less) to arrive at the final tree where all objects are in a single 
cluster.  For botanists that may be reading this: this is an upside-down tree, of course! 
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Exhibit 7.5  Dissimilarities calculated after C and G are merged, using the 
‘maximum’ method to recomputed the values in the row and column labelled 
(C,G). 
 

              

samples (A,E) (B,F) (C,G) D

(A,E) 0 0.7778 0.4286 1.0000

(B,F) 0.7778 0 0.7778 0.8333

(C,G) 0.4286 0.7778 0 1.0000

D 1.0000 0.8333 1.0000 0  

                 

 

Exhibit 7.6  The third and fourth steps of hierarchical clustering of Exhibit 7.1, 
using the ‘maximum’ (or ‘complete linkage’) method.  The point at which 
objects (or clusters of objects) are joined is called a node. 

 
  

  
                       
 
 
 
 
 
 
 
    
     
   
 
 

Exhibit 7.7  Dissimilarities calculated after C and G are merged, using the 
‘maximum’ method to recomputed the values in the row and column labelled 
(C,G). 
 
samples (A,E,C,G) (B,F) D samples (A,E,C,G,B,F) D

(A,E,C,G) 0 0.7778 1.0000 (A,E,C,G,B,F) 0 1.0000

(B,F) 0.7778 0 0.8333 D 1.0000 0

D 1.0000 0.8333 0  
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Exhibit 7.8  The fifth and sixth steps of hierarchical clustering of Exhibit 7.1, 
using the ‘maximum’ (or ‘complete linkage’) method.  The dendrogram on the 
right is the final result of the cluster analysis.  In the clustering of n objects, there 
are n – 1 nodes (i.e. 6 nodes in this case). 

 
  

  
                       
 
 
 
 
 
 
 
    
     
   
Cutting the tree 
 
The final dendrogram on the right of Exhibit 7.8 is a compact visualization of the 
dissimilarity matrix in Exhibit 7.1, based on the presence-absence data of Exhibit 5.6.  
Interpretation of the structure of data is made much easier now – we can see that there are 
three pairs of samples that are fairly close, two of these pairs ((A,E) and (C,G)) are in turn 
close to each other, while the single sample D separates itself entirely from all the others.  
Because we used the ‘maximum’ method, all samples clustered below a particular level of 
dissimilarity will have inter-sample dissimilarities less than that level.  For example, 0.5 is 
the point at which samples are exactly as similar to one another as they are dissimilar, so if 
we look at the clusters of samples below 0.5 – i.e., (B,F), (A,E,C,G) and (D) – then within 
each cluster the samples have more than 50% similarity, in other words more than 50% co-
presences of species.  The level of 0.5 also happens to coincide in the final dendrogram 
with a large jump in the clustering levels: the node where (A,E) and (C,G) are clustered is at 
level of 0.4286, while the next node where (B,F) is merged is at a level of 0.7778.  This is 
thus a very convenient level to cut the tree.  If the branches are cut at 0.5, we are left with 
the three clusters of samples (B,F), (A,E,C,G) and (D), which can be labelled types 1, 2 and 
3 respectively.  In other words, we have created a categorical variable, with three 
categories, and the samples are categorized as follows: 
 
  A B C D E F G  
  2 1 2 3 2 1 2 
 
Checking back to Chapter 2, this is exactly the objective which we described in the lower 
right hand corner of the multivariate analysis scheme (Exhibit 2.2) – to reveal a categorical 
variable which underlies the structure of a data set. 
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Maximum, minimum and average clustering 
 
The crucial choice when deciding on a cluster analysis algorithm is to decide how to 
quantify dissimilarities between two clusters.  The algorithm described above was 
characterized by the fact that at each step, when updating the matrix of dissimilarities, the 
maximum of the between-cluster dissimilarities was chosen.  This is also known as 
complete linkage cluster analysis, because a cluster is formed when all the dissimilarities 
(‘links’) between pairs of objects in the cluster are less then a particular level.  There are 
several alternatives to complete linkage as a clustering criterion, and we only discuss two of 
these: minimum and average clustering. 
 
The ‘minimum’ method goes to the other extreme and forms a cluster when only one pair 
of dissimilarities (not all) is less than a particular level – this is known as single linkage 
cluster analysis.  So at every updating step we choose the minimum of the two distances 
and two clusters of objects can be merged when there is a single close link between them, 
irrespective of the other inter-object distances. In general, this is not a suitable choice for 
most applications, because it can lead to clusters that are quite heterogeneous internally, 
and the usual object of clustering is to obtain homogeneous clusters. 
 
The ‘average’ method is an attractive compromise where dissimilarities are averaged at 
each step, hence the name average linkage cluster analysis.  For example, in Exhibit 7.1 the 
first step of all types of cluster analysis would merge B and F.  But then calculating the 
dissimilarity between A, for example, and (B,F) is where the methods distinguish 
themselves.  The dissimilarity between A and B is 0.5000, and between A and F it is 0.6250. 
Complete linkage chooses the maximum: 0.6250; single linkage chooses the minimum: 
0.5000; while average linkage chooses the average: (0.5000+0.6250)/2 = 0.5625. 
 
 
Validity of the clusters 
 
If a cluster analysis is performed on a data matrix, a set of clusters can always be obtained, 
even if there is no actual grouping of the objects, in this case the samples.  So how can we 
evaluate whether the three clusters in this example are not just any old three groups which 
we would have obtained on random data with no structure?  There is a vast literature on 
validity of clusters (we give some references in the Bibliography, Appendix E) and here we 
shall explain one approach based on permutation testing.  In our example, the three clusters 
were formed so that internally in each cluster formed by more than one sample the 
between-sample dissimilarities were all less than 0.5000.  In fact, if we look.at the result in 
the right hand picture of Exhibit 7.8, the cutpoint for three clusters can be brought down to 
the level of 0.4286, where (A,E) and (C,G) joined together.  As in all statistical 
considerations of significance, we ask whether this is an unusual result or whether it could 
have arisen merely by chance.  To answer this question we need an idea of what might have 
happened in chance results, so that we can judge our actual finding.  This so-called “null 
distribution” can be generated through permuting the data in some reasonable way, 
evaluating the statistic of interest, and doing this many times (or for all permutations if this 
is feasible computationally) to obtain a distribution of the statistic.  The statistic of interest 
could be that value at which the three clusters are formed, but we need to choose carefully 
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how we perform the permutations, and this depends on how the data were collected.  We 
consider two possible assumptions, and show how different the results can be. 
 
The first assumption is that the column totals of Table Exhibit 5.6 are fixed; that is, that the 
10 species are present, respectively, 3 times in the 7 samples, 6 times, 4 times, 3 times and 
so on.  Then the permutation involved would be to simply randomly shuffle the zeros and 
ones in each column to obtain a new presence-absence matrix with exactly the same 
column totals as before.  Performing the compete linkage hierarchical clustering on this 
matrix leads to that value where the three cluster solution is achieved, and becomes one 
observation of the null permutation distribution.  We did this 9999 times, and along with 
our actual observed value of 0.4286, the 10000 values are graphed in Exhibit 7.9 (we show 
it as a horizontal bar chart because there are only 15 different values observed of this value, 
shown here with their frequencies).  The value we actually observed is one of the smallest – 
the number of permuted matrices that generates this value or a lower value is 26 out of 
10000, so that in this sense our data are very unusual and the ‘significance’ of the three-
cluster solution can be quantified with a p-value of 0.0026.  The other 9974 random 
permutations all lead to generally higher inter-sample dissimilarities such that the level at 
which three-cluster solutions are obtained is 0.4444 or higher (0.4444 corresponds to 4 
mistmatches out of 9.   
 

Exhibit 7.9  Bar chart of the 10000 values of the three-cluster solutions obtained 
by permuting the columns of the presence-absence data, including the value we 
observed in the original unpermuted data matrix. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
The second and alternative possible assumption for the computation of the null distribution 
could be that the column margins are not fixed, but random; in other words, we relax the 
fact that there were exactly 3 samples that had species sp1, for example, and assume a 
binomial distribution for each column, using the observed proportion (3 out of 7 for 
species sp1) and the number of samples (7) as the binomial parameters.  Thus there can be 
0 up to 7 presences in each column, according to the binomial probabilities for each 
species.  This gives a much wider range of possibilities for the null distribution, and leads 
us to a different conclusion about our three observed clusters.  The permutation distribution 

level frequency
0.8000 2
0.7778 35
0.7500 363
0.7143 1360
0.7000 189
0.6667 2967
0.6250 2199
0.6000 822
0.5714 1381
0.5555 207
0.5000 441
0.4444 8
0.4286 23
0.4000 2
0.3750 1

observed value
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is now shown in Exhibit 7.10, and now our observed value of 0.4286 does not look so 
unusual, since 917 out of 10000 values in the distribution are less than or equal to it, giving 
an estimated P-value of 0.0917. 
      

Exhibit 7.10  Bar chart of the 10000 values of the three-cluster solutions 
obtained by generating binomial data in each column of the presence-absence 
matrix, according to the probability of presence of each species. 

 
  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
So, as in many situations in statistics, the result and decision depends on the initial 
assumptions.  Could we have observed the presence of species s1 less or more than 3 times 
in the 7 samples (and so on for the other species)?  In other words, according to the 
binomial distribution with n = 7, and p = 3/7, the probabilities of observing k presences of 
species sp1 (k = 0, 1, …, 7) are: 
 
 0          1          2          3          4          5          6          7 
      0.020   0.104   0.235   0.294   0.220   0.099   0.025   0.003 
 
If this assumption (and similar ones for the other nine species) is realistic, then the cluster 
significance is 0.0917. However, if the first assumption is adopted (that is, the probability 
of observing 3 presences for species s1 is 1 and 0 for other possibilities), then the 
significance is 0.0028.  Our feeling is that perhaps the binomial assumption is more 
realistic, in which case our cluster solution could be observed in just over 9% of random 
cases – this gives us an idea of the validity of our results and whether we are dealing with 
real clusters or not.  The value of 9% is a measure of ‘clusteredness’ of our samples in 
terms of the Jaccard index: the lower this measure, the more they are clustered, and the 
hoihger the measure, the more the samples lie in a continuum.  Lack of evidence of 

level frequency
0.8750 2
0.8571 5
0.8333 23
0.8000 50
0.7778 28
0.7500 201
0.7143 485
0.7000 21
0.6667 1298
0.6250 1171
0.6000 895
0.5714 1960
0.5555 468
0.5000 2299
0.4444 177
0.4286 567
0.4000 162
0.3750 107
0.3333 64
0.3000 1
0.2857 12
0.2500 3
0.2000 1

observed value
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‘clusteredness’ does not mean that the clustering is not useful: we might want to divide up 
the space of the data into separate regions, even though the borderlines between them are 
‘fuzzy’.  And speaking of ‘fuzzy’, there is an alternative form of cluster analysis (fuzzy 
cluster analysis, not treated specifically in this book) where samples are classified fuzzily 
into clusters, rather than strictly into one group or another – this idea is similar to the fuzzy 
coding we described in Chapter 3.   
 
 
Clustering correlations on variables 
 
Just like we clustered samples, so we can cluster variables in terms of their correlations, or 
distances based on their correlations as described in Chapter 6.  The dissimilarity based on 
the Jaccard index can also be used to measure similarity between species – the index 
counts the number of samples that have both species of the pair, relative to the number of 
samples that have at least one of the pair, and the dissimilarity is 1 minus this index.  
Exhibit 7.11 shows the cluster analyses based on these two alternatives, for the columns of 
Exhibit 5.6, using the graphical output this time of the R function hclust for hierarchical 
clustering.  The fact that these two trees are so different is no surprise: the first one is based 
on the correlation coefficient takes into account the co-absences, which strengthens the 
correlation, while the second does not.  Both have the pairs (sp2,sp5) and (sp3,sp8) at zero 
dissimilarity because these are identically present and absent across the samples. Species 
sp1 and sp7 are close in terms of correlation, due to co-absences – sp7 only occurs in one 
sample, sample E, which also has sp1, a species which is absent in four other samples.  
Notice in Exhibit 7.11(b) how species sp10 and sp1 both join the cluster (sp2,sp5) at the 
same level (0.5). 
 

Exhibit 7.11  Complete linkage cluster analyses of (a) 1–r (1 minus the 
correlation coefficient between species); (b) Jaccard dissimilarity between 
species (1 minus the Jaccard similarity index).  The R function hclust which 
calculates the dendrograms places the object (species) labels at a constant 
distance below its clustering level. 

  (a)                                                                             (b) 
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Clustering a larger data set 
 
The more objects there are to cluster, the more complex becomes the result.  In Exhibit 4.5 
we showed part of the matrix of standardized Euclidean distances between the 30 sites of 
Exhibit 1.1, and Exhibit 7.12 shows the hierarchical clustering of this distance matrix, 
using compete linkage.  There are two obvious places where we can cut the tree, at about 
level 3.4, which gives four clusters, or about 2.7, which gives six clusters.  To get an idea 
 

Exhibit 7.12  Complete linkage cluster analyses of the standardized Euclidean 
distances of Exhibit 4.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
of the ‘clusteredness’ of these data, we performed a permutation test similar to the one 
described above, where the data are randomly permuted within their columns and the 
cluster analysis repeated each time to obtain 6 clusters.  The permutation distribution of 
levels at which 6 clusters are formed is shown in Exhibit 7.13 – the observed value in 
Exhibit 7.12 (i.e., where (s2,s14) joins (s25,s23,s30,s12,s16,s27)) is 2.357, which is 
clearly not an unusual value.  The estimated p-value according to the proportion of the 
distribution to the left of 2.357 in Exhibit 7.13 is p = 0.3388, so we conclude that these 
samples do not have a non-random cluster structure – they form more of a continuum, 
which will be the subject of Chapter 9.  
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Exhibit 7.13  Estimated permutation distribution for the level at which 6 
clusters are formed in the cluster analysis of Exhibit 7.12, showing the value 
actually observed.  Of the 10000 permutations, including the observed value, 
3388 are less than or equal to the observed value, giving an estimated p-value 
for clusteredness of 0.3388.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SUMMARY: Hierarchical cluster analysis 
 
1. Hierarchical cluster analysis of n objects is defined by a stepwise algorithm which 

merges two objects at each step, the two which have the least dissimilarity. 
2. Dissimilarities between clusters of objects can be defined in several ways; for 

example, the maximum dissimilarity (complete linkage), minimum dissimilarity 
(single linkage) or average dissimilarity (average linkage). 

3. Either rows or columns of a matrix can be clustered – in each case we choose the 
appropriate dissimilarity measure that we prefer. 

4. The results of a cluster analysis is a binary tree, or dendrogram, with n – 1 nodes.  The 
branches of this tree are cut at a level where there is a lot of ‘space’ to cut them, that is 
where the jump in levels of two consecutive nodes is large. 

5. A permutation test is possible to validate the chosen number of clusters, that is to see 
if there really is a non-random tendency for the objects to group together. 
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