Generalized Dynamic Factor Models and Volatilities

Recovering the Market Volatility Shocks

MATTEO BARIGOZZI† AND MARC HALLIN‡

†LSE, Department of Statistics, Houghton Street, London WC2A 2AE, UK.
E-Mail: m.barigozzi@lse.ac.uk

‡ECARES, Université libre de Bruxelles CP114/4 B-1050 Bruxelles, Belgium
and
ORFE, Sherrerd Hall, Princeton University, Princeton NJ 08544, USA.
E-Mail: mhallin@ulb.ac.be

February 10, 2015

Abstract

Decomposing volatilities into a common market-driven component and an idiosyncratic item-specific one is an important issue in financial econometrics. This, however, requires the statistical analysis of large panels of time series, hence faces the usual challenges associated with high-dimensional data. Factor model methods in such a context are an ideal tool, but they do not readily apply to the analysis of volatilities. Focusing on the reconstruction of the unobserved market shocks and the way they are loaded by the various items (stocks) in the panel, we propose an entirely non-parametric and model-free two-step general dynamic factor approach to the problem, which avoids the usual curse of dimensionality. Applied to the S&P100 asset return dataset, the method provides evidence that a non-negligible proportion of the market-driven volatility of returns originates in the volatilities of the idiosyncratic components of returns.

JEL Classification: C32, C38, C58.

Keywords: Volatility, Dynamic Factor Models, Block Structure.

1 Introduction

Decomposing asset returns and risks or volatilities into a common, market-driven component and an individual, idiosyncratic one, is one of the main issues in financial econometrics, risk management, and portfolio optimization. Market-driven risks indeed cannot be diversified away, while individual ones can be eliminated through clever portfolio diversification: early examples are Connor and Korajczyk (1986) for returns and Engle and Marcucci (2006) for volatilities.

‡Supported by the IAP research network grant P7/06 of the Belgian government (Belgian Science Policy) and the Discovery grant DP150100210 of the Australian Research Council.
Since market features are involved, achieving such decompositions unavoidably implies the analysis of large portfolios, hence the usual challenges associated with high-dimensional datasets—here, moreover, in a time-series context. This problem lately has attracted much interest, in conjunction with the surge of activity in the estimation of high-dimensional covariance matrices and the analysis of large panels of time series data. A number of methods have been proposed; see the references below or the recent monograph by Ghysels (2014) for a review of the literature.

Among the latest and most effective contributions is Fan et al. (2013), where the analysis is based on a decomposition of the covariance matrix Γ of the observed high-dimensional process $\{Y_t\}$—in the context of portfolio optimization, the time series of returns, or levels, of the collection of stocks under study—into a sum of the “low rank plus sparse” type (as in Fan et al., 2013), which also can be interpreted as a factor model decomposition of $\{Y_t\}$ into a common component plus an idiosyncratic one.\(^1\)

That approach, which is exclusively based on the marginal covariance matrix Γ of the series under study (in practice, an estimator thereof), is entirely static: it does not take into account, hence fails to exploit, the time-series nature of the problem. If the same dataset is considered from a dynamic point of view—if, for instance, dynamic portfolio management, that is, minimization of the conditional risk at specific time t, is the objective—then that static approach can be improved on several counts.

(i) Rather than unconditional variances and covariances, conditional volatilities (that depend on past values) at specific time t should serve as the cornerstone of the analysis.

(ii) The “low rank plus sparse” type decomposition of Γ corresponds to a factor model decomposition of $\{Y_t\}$ of the type considered by Chamberlain and Rothschild (1983), where q factors are loaded in a static way, that is, through a matrix of instantaneous loadings. Various refinements of that approach have been considered in the literature with the objective of taking better advantage of the dynamic nature of the data (see Stock and Watson, 2005; Bai and Ng, 2007; Forni et al., 2009, to quote only a few). A fully dynamic factor model has been developed, under the name of generalized or general dynamic factor model, where factors (or their fundamental shocks) are loaded through filters (Forni et al., 2000; Forni and Lippi, 2001, 2011; Hallin and Lippi, 2013; Forni et al., 2015). That dynamic approach encompasses all other ones and (beyond the usual assumptions of second-order stationarity and existence of spectral densities) basically does not place any structural constraints on the data-generating process; see Hallin and Lippi (2013). It is more parsimonious than its various static-loading competitors, and a simulation study (Forni et al. (2015)) indicates it is performing better, even in case the static-loading assumptions are satisfied. That “fully dynamic” approach is likely to be the most appropriate tool here.

(iii) The same decomposition moreover exclusively relies on the common/idiosyncratic features of the process $\{Y_t\}$ of levels or returns, surmising that the “common components of return volatilities” coincide with “the volatilities of the common components of returns”, and the “idiosyncratic components of return volatilities” with “the volatilities of the idiosyncratic components of returns”, an assumption which is unlikely to hold true.

In this paper, we propose a two-step dynamic factor approach taking care of those three points, then apply that method to the problem of reconstructing the unobserved market volatility shocks.

\(^1\)With a definition of “idiosyncratic” which is not the same as the one we are using here, though.
The first step yields a common plus idiosyncratic general dynamic factor model decomposition of the levels \(\{ Y_t \} \). We call level-common and level-idiosyncratic, respectively, the two components of this factor model decomposition in order to distinguish them from those obtained from the factor decomposition of volatilities, to be defined below. Based on recent results by Forni et al. (2015), the empirical version of that decomposition of the levels is one-sided, i.e. only involves one-sided filters, hence past observations. The same results also yield a (reduced rank) fundamental VAR representation of the level-common components, hence residuals that provide a consistent reconstruction of the level-common, market-driven, fundamental shocks. As for the level-idiosyncratic components, which by definition are only mildly cross-correlated, residuals can be obtained via univariate AR fitting, providing a reconstruction of the level-idiosyncratic fundamental shocks.

Those shocks in turn serve as the basis of a dynamic factor analysis of volatilities. After adequate non-linear transformation, they constitute a panel of volatility proxies. Actually, if the original dataset consisted of \(n \) stocks observed over a time period \(T \), they constitute a panel of \(2n \times T \) observations, subdivided into two \(n \times T \) blocks or subpanels of volatility proxies: the level-common and the level-idiosyncratic one, respectively. The dynamic factor analysis of such panels with block structures has been studied by Hallin and Liška (2011), who show how to extract mutually orthogonal strongly common components (common to both subpanels), strongly idiosyncratic ones (idiosyncratic to both), as opposed to weakly common (common to one block but not to the other) and weakly idiosyncratic components. That approach, which perfectly applies here, allows us to take into account the presence of volatility-common shocks (market volatility shocks) both in the level-common residuals as in the level-idiosyncratic ones—only the strongly idiosyncratic components are free of market volatility impacts.

The method is applied to a panel of stock returns of the S&P100 index over a period spanning the last ten years. Results confirm the impact of market volatility shocks both on level-common as on level-idiosyncratic components. In particular, we find evidence of one market volatility shock accounting for about 60% of the total variation of logged level-common volatilities and about 13% of the total variation of logged level-idiosyncratic volatilities.

Multivariate models of conditional variance and covariance matrices are not new in the literature. Among the first proposed are the multivariate stochastic volatility models by Harvey et al. (1994) and the GARCH-DCC models of Engle (2002). We refer to the surveys by Bauwens et al. (2006), Asai et al. (2006), and Silvennoinen and Teräsvirta (2009) for recent reviews of the subject. However, being parametric, those models all suffer of the “curse of dimensionality”: when considering high-dimensional panels, estimation rapidly becomes unfeasible. In order to solve this problem and in agreement with the idea of a market volatility common to all components of a financial index, factor structures in volatilities have been developed by Engle and Marcucci (2006), Engle et al. (2008), Rangel and Engle (2012), Luciani and Veredas (2014), and Ghysels (2014), among others, while a semi-parametric approach is proposed by Barigozzi et al. (2014). Recently, Fan et al. (2013) improved this model by relaxing the assumptions and allowing for the presence of idiosyncratic variances which are modelled as a sparse matrix. Finally, the papers most related to our work are those proposing a factor structure on the returns and then assuming a GARCH model for the latent factors, as, for example, Ng et al. (1992), Harvey et al. (1992), Diebold and Nerlove (1989), Van der Weide (2002), Connor et al. (2006), and Sentana et al. (2008), among others; see also Jurado et al. (2013) for an application to macroeconomic data. All those factor models, however, are static, and of the exact type (strictly no idiosyncratic cross-correlations); thus, they neither exploit the serial correlation in the data nor are able to account for idiosyncratic cross-sectional dependencies which are very likely to exist in large datasets.

In contrast with most of that literature, our analysis is purely non-parametric, and essentially
model-free (see Hallin and Lippi (2013) for a discussion of this latter fact); it allows for mild cross-sectional correlation among idiosyncratic components, and avoids the dimensionality problems inherent to multivariate volatility models. Our main contribution with respect to the existing literature is then the introduction of a two-step generalized dynamic factor model: one for the returns, and another one for volatilities, with a focus not only on level-common but also on level-idiosyncratic volatility shocks.

The rest of the paper is organized as follows. Section 2.1 presents the general dynamic factor model for returns, Sections 2.2-2.4 a block dynamic factor model for volatilities based on the level-common and level-idiosyncratic shocks resulting from the previous decomposition. Section 3 describes estimation. Section 4 investigates the small sample properties of the proposed estimators by means of a Monte Carlo simulation study. Section 5 provides empirical results for the S&P100 market volatility. Finally, in Section 6, we conclude and discuss possible extensions of the present framework.

2 A two-stage general dynamic factor model for volatilities

2.1 A general dynamic factor model for returns

We throughout assume that all stochastic variables in this paper belong to the Hilbert space $L^2(\Omega, \mathcal{F}, P)$, where (Ω, \mathcal{F}, P) is some given probability space. The observation we are dealing with is an $n \times T$ panel of stock returns or levels, that is, a finite realization

$$
\begin{align*}
Y_{11}, & \quad Y_{12}, \quad \ldots, \quad Y_{1T} \\
\vdots & \quad \vdots \\
Y_{n1}, & \quad Y_{n2}, \quad \ldots, \quad Y_{nT}
\end{align*}
$$

of a double-indexed stochastic process, of the form

$$
\mathbf{Y} := \{Y_{it}|i \in \mathbb{N}, t \in \mathbb{Z}\},
$$

where t stands for time and i for the cross-sectional index; equivalently, the $n \times T$ panel can be considered a collection of n observed time series (length T), or a unique observed time series in dimension n. We assume that $\{Y_{it}\}$, as a process, is centered and strictly stationary. As both n and T are “large”, (n, T)-asymptotics, where both n and T tend to infinity, are considered throughout.

Let $\mathbf{Y}_n := \{Y_{n,t} = (Y_{1t}, Y_{2t}, \ldots, Y_{nt})| t \in \mathbb{Z}\}$ be the n-dimensional subprocess of \mathbf{Y} and consider the following assumptions.

Assumption (A1). For all $n \in \mathbb{N}$, the vector process \mathbf{Y}_n is strictly stationary, with mean 0 and finite variances.

Assumption (A2). For all $n \in \mathbb{N}$, the spectral measure of \mathbf{Y}_n is absolutely continuous with respect to the Lebesgue measure on $[-\pi, \pi]$, that is, \mathbf{Y}_n has a spectral density matrix $\Sigma_{\mathbf{Y}, n}(\theta)$, $\theta \in [-\pi, \pi]$.

For any $\theta \in [-\pi, \pi]$, denote by $\lambda_{\mathbf{Y}, n, 1}(\theta), \ldots, \lambda_{\mathbf{Y}, n, n}(\theta)$ the eigenvalues (in decreasing order of magnitude) of $\Sigma_{\mathbf{Y}, n}(\theta)$; the mapping $\theta \mapsto \lambda_{\mathbf{Y}, n, i}(\theta)$ is also called $\Sigma_{\mathbf{Y}, n}(\theta)$’s ith **dynamic eigenvalue**.

The n observed series \mathbf{Y}_n are exposed, in general, to the influence of the same environment of unrecorded covariates, inducing complex interrelations that are not statistically tractable, or would involve prohibitively many parameters. Parametric methods thus, as a rule, are helpless or unrealistic.
Factor model methods in this context are the ideal tool—arguably, the only successful ones. We say that Y admits a **dynamic factor representation** with q factors if Y for all i and t decomposes into

$$Y_{it} = \text{“common”}_it + \text{“idiosyncratic”}_it$$

$$=: X_{it} + Z_{it} =: \sum_{k=1}^{q} b_{ik}(L) u_{kt} + Z_{it}, \quad i \in \mathbb{N}, \quad t \in \mathbb{Z}, \quad (2.1)$$

(L, as usual, stands for the lag operator) where

(i) the q-dimensional vector process $u := \{u_t = (u_{1t} \ldots u_{qt})' | t \in \mathbb{Z}\}$ is orthonormal zero-mean white noise;

(ii) the idiosyncratic n-dimensional processes $Z_n := \{Z_{n,t} = (Z_{1t} \ldots Z_{nt})' | t \in \mathbb{Z}\}$ are zero-mean second-order stationary for any n, with θ-a.e. bounded (as $n \to \infty$) dynamic eigenvalues;

(iii) Z_{kt_1} and u_{ht_2} are mutually orthogonal for any k, h, t_1 and t_2;

(iv) the filters $b_{ik}(L)$ are one-sided and square-summable: $\sum_{m=1}^{\infty} b_{ikm}^2 < \infty$ for all $i \in \mathbb{N}$ and $k = 1, \ldots, q$;

(v) q is minimal with respect to (i)-(iv).

In particular, the common and idiosyncratic components are identified by means of the following assumption.

ASSUMPTION (A3). For some $q \in \mathbb{N}$, the qth dynamic eigenvalue of $\Sigma_Y(\theta)$, $\lambda_{Y,n,q}(\theta)$, diverges as $n \to \infty$, θ-a.e. in $[-\pi, \pi]$, while the $(q+1)$th one, $\lambda_{Y,n,q+1}(\theta)$, is θ-a.e. bounded. Moreover, the divergence is at least linear in n, i.e.

$$\liminf_{n \to \infty} \left(\inf_{\theta} \frac{\lambda_{Y,n,q}(\theta)}{n} \right) > 0.$$

We know from Forni et al. (2000) and Forni and Lippi (2001) that, given Assumptions (A1) and (A2), Assumption (A3) is necessary and sufficient for the process Y to admit the dynamic factor representation (2.1)\(^2\). Hallin and Lippi (2013) moreover provide very weak primitive conditions under which (2.1), hence Assumption (A3), holds for some $q < \infty$.

For any n, we can write (2.1) in vector notation as

$$Y_{n,t} = X_{n,t} + Z_{n,t} = B_n(L)u_t + Z_{n,t}, \quad n \in \mathbb{N}, \quad t \in \mathbb{Z}, \quad (2.2)$$

The decomposition (2.2) of Y_n induces (with obvious notation) a decomposition

$$\Gamma_{Y,n,k} = \Gamma_{X,n,k} + \Gamma_{Z,n,k}$$

of the cross-covariance matrices $\Gamma_{Y,n,k} := \mathbb{E}[Y_{n,t}Y_{n,t-k}']$ of the Y_n’s, and a decomposition

$$\Sigma_{Y,n}(\theta) = \Sigma_{X,n}(\theta) + \Sigma_{Z,n}(\theta)$$

of their spectral density matrices $\Sigma_{Y,n}(\theta)$.

The statistical treatment of (2.1) comprises

\(^2\)Those references in Assumption (A1) only assume second-order stationarity, though. We are assuming strict stationarity in order to apply factor model methods to non-linear transformations of the Y_n’s (Sections 2.2-2.4).
(i) a consistent (as both n and T tend to infinity) reconstruction of Y_n’s decomposition into common and idiosyncratic components based on Brillinger’s concept of dynamic principal components (Forni et al., 2000);

(ii) a consistent data-driven method for the identification of q (Hallin and Liška, 2007);

(iii) a one-sided version of (i) (Forni et al., 2015) exploiting properties of the so-called tall processes (Anderson and Deistler, 2008).

Since Y_n decomposes into two components X_n and Z_n, where X_n is driven by “common”, that is, “market” shocks, and Z_n is orthogonal to the same, two distinct sources of volatility are to be expected: the volatility originating in the shocks driving the level-common components X_n (volatility of level-common components), and the volatility originating in the shocks driving the level-idiosyncratic components Z_n (volatility of level-idiosyncratic components). It is tempting to call “market volatility” the volatility of the level-common components, and “idiosyncratic” the volatility of the level-idiosyncratic ones.

“Natural” as it is, that idea is likely to be over-simplistic. The decomposition (2.2) between common and idiosyncratic indeed has been based on level autocovariances only, which do not carry any information on volatilities—a fact we emphasize by calling X_n and Z_n level-common and level-idiosyncratic, respectively. There is no reason for volatilities to exhibit the same common/idiosyncratic pattern as the levels. For instance, the volatilities of level-idiosyncratic components are quite likely to be affected by market-wide volatility shocks and there is no reason for level-common volatilities to be driven by market volatility shocks only: both are likely to present market-driven and item-specific features. The very concept of an identifiable market-driven volatility shock therefore requires a common/idiosyncratic analysis that cannot be based, as the one that has been performed so far, on the autocovariances of returns.

The analysis of volatility, typically, is based on the autocovariance structure of some non-linear transform of innovation processes—something the factor model decomposition (2.1) does not readily provide. For the common component X_n, however, such residuals can be obtained (see Section 2.2) from results by Forni and Lippi (2011) and Forni et al. (2015). As for the idiosyncratic components Z_n, since they are only mildly cross-correlated, componentwise residuals can be obtained (see Section 2.3) via univariate AR fitting.

2.2 The volatility of the level-common component

Assume, without loss of generality and for the simplicity of notation, that n is an integer multiple of $(q + 1)$, that is, $n = m(q + 1)$ for some $m \in \mathbb{N}$. Forni and Lippi (2011) and Forni et al. (2015) show that, under Assumptions (A1)-(A3) and the mild additional condition of a rational spectrum, there exist

(i) an $m(q + 1) \times m(q + 1)$ block-diagonal matrix of one-sided filters

$$A_n(L) = \begin{pmatrix}
A^{(1)}(L) & 0 & \cdots & 0 \\
0 & A^{(2)}(L) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A^{(m)}(L)
\end{pmatrix}$$

(2.3)

with $(q + 1) \times (q + 1)$ blocks $A^{(i)}(L)$ such that the VAR operators $I_{q+1} - A^{(i)}(L)$ are square-summable and fundamental (that is, no characteristic roots within the unit disk),
(ii) a full-rank $n \times q$ matrix of constants H_n, such that Y_n admits a VAR representation of the form

$$(I_n - A_n(L)) Y_{n,t} = H_n u_t + (I_n - A_n(L)) Z_{n,t} =: H_n u_t + \tilde{Z}_{n,t}, \quad n \in \mathbb{N}, \quad t \in \mathbb{Z},$$

where $\tilde{Z}_{n,t} := (I_n - A_n(L)) Z_{n,t}$ is idiosyncratic, i.e. only has θ-a.e. bounded (as $n \to \infty$) dynamic eigenvalues.

The form of the extreme-right-hand side of (2.4) is of particular importance. It shows, indeed, that the filtered panel $(I_n - A_n(L)) Y_{n,t}$, where the AR filters in $A_n(L)$ can be estimated via low-dimensional AR fitting, admit a static factor model representation: the (unlagged) common shocks u_t indeed are loaded via the matrix loadings H_n. Those shocks, their loadings, and the $\tilde{Z}_{n,t}$'s therefore can be recovered from the observations by means of traditional static factor methods—as described, for instance, in Stock and Watson (2005) or Bai and Ng (2007)—applied to the filtered panel $(I_n - A_n(L)) Y_{n,t}$.

Contrary to a widespread opinion, general dynamic model methods thus are not technically more involved than the apparently simpler static ones, as the difference essentially consists in the additional $m = n/(q + 1)$ AR fittings, each of dimension $(q + 1)$, required in the estimation of $A_n(L)$.

Denote by $e := \{e_{it} := (H_n u_t)_{i} : i \in \mathbb{N}, t \in \mathbb{Z}\}$, the double-indexed process of those level-common residuals. The n-dimensional singular subprocess $e_n := H_n u$ of e is the innovation process of Y_n's common component X_n, hence is zero-mean second-order white noise.

For any fixed $i \in \mathbb{N}$, classical volatility analyses are based on the autocovariance structure of some non-linear transform s_{it}, called volatility proxy, of the residual e_{it} resulting from some second-order fit. Standard volatility proxies, in that context, are squared residuals ($s_{it} := e_{it}^2$), or absolute values thereof ($s_{it} := |e_{it}|$); but any monotone increasing function of e_{it}^2, in principle, could serve as well, and many other choices have been considered in the literature. In particular, a reasonable candidate, as proposed by Engle and Marcucci (2006), is

$$s_{it} := \log(e_{it}^2) = 2 \log|e_{it}|, \quad i \in \mathbb{N}, \quad t \in \mathbb{Z}. \quad (2.5)$$

The advantage of a logarithmic proxy as s_{it} over the squared residuals e_{it}^2 lies in the fact that it can be analyzed via an additive factor model, while a similar analysis of the e_{it}^2's would require imposing intricate positivity constraints when estimating the model. Just as the original observations, the s_{it}'s constitute a double-indexed process s, hence, for any finite n and T, an $n \times T$ panel of level-common volatility proxies; the notation $s_n := \{s_{n,t} = (s_{1t}, s_{2t}, \ldots, s_{nt})| t \in \mathbb{Z}\}$ will be used for the n-dimensional subprocess of s.

If the panel of volatilities is to be analyzed via general dynamic factor model techniques, we need the existence of spectral densities.

Assumption (B1). The second-order moments $E[s_{it}^2]$ are finite for all $i \in \mathbb{N}$ and, for all $n \in \mathbb{N}$, the spectral density of s_n is absolutely continuous with respect to the Lebesgue measure over $[-\pi, \pi]$, that is, s_n has a spectral density matrix $\Sigma_{s,n}(\theta)$ for $\theta \in [-\pi, \pi]$.

We now make the following assumption on the dynamic eigenvalues of the level-common volatility panel.

Assumption (B2). There exists a $q_0 \in \mathbb{N}$ such that the q_0th eigenvalue $\lambda_{s,n,q_0}(\theta)$ of $\Sigma_{s,n}(\theta)$ diverges as $n \to \infty$, θ-a.e. in $[-\pi, \pi]$, while the $(q_0 + 1)$th one, $\lambda_{s,n,q_0+1}(\theta)$, is θ-a.e. bounded.
Assumption (B2) implies that the panel s_n of level-common volatility proxies admits a dynamic factor representation with q_s common factors, and common/idiomatic components $\chi_{s;it}$ and $\xi_{s;it}$, respectively. Namely, writing \hat{s}_{it} for $s_{it} - E[s_{it}]$, Assumption (B2) entails the existence of a decomposition

$$\hat{s}_{it} = \chi_{s;it} + \xi_{s;it} = \sum_{k=1}^{q_s} d_{s;ik}(L)\epsilon_{s;ikt} + \xi_{s;it}, \quad i \in \mathbb{N}, \quad t \in \mathbb{Z}, \quad (2.6)$$

or, with obvious vector notation,

$$\hat{s}_{n,t} = \chi_{s;n,t} + \xi_{s;n,t}, \quad n \in \mathbb{N}, \quad t \in \mathbb{Z}, \quad (2.7)$$

such that (i)-(v) of Section 2.1 hold. Intuitively, the existence of such a factor structure for the level-common volatility panel is motivated by the fact that e_n is a reduced-rank process; it is reasonable thus to assume a similar structure for the volatility proxy which is a function of e_n. Moreover, Hallin and Lippi (2013) show that the existence of a finite q_s is a very natural assumption, which is also justified empirically in Section 5.

2.3 The volatility of the level-idiomatic component

A general dynamic factor analysis of the volatilities of the level-idiomatic components \tilde{Z}_{it}'s similarly requires a volatility proxy, hence, to begin with, a definition of residuals. Since, being idiomatic, those \tilde{Z}_{it}'s are only mildly cross-correlated, a componentwise residual analysis only overlooks negligible information, and we therefore assume, for each $\{\tilde{Z}_{it} | t \in \mathbb{Z}\}$, a univariate AR representation, of the form

$$\left(1 - c_i(L)\right)\tilde{Z}_{it} = v_{it}, \quad i \in \mathbb{N}, \quad t \in \mathbb{Z}, \quad (2.8)$$

where the AR filters $c_i(L)$ are one-sided, square-summable, and such that the roots of $c(z) = 0$ all lie outside the unit disc. Denote by $v := \{v_{it} | i \in \mathbb{N}, \ t \in \mathbb{Z}\}$ the corresponding double-indexed process of residuals: the v_{it}'s are zero-mean second-order white noise, and constitute the univariate innovations of the level-idiomatic components \tilde{Z}_{it}'s. In general, they are not mutually orthogonal, and some possible mild cross-correlation remains among them. The corresponding n-dimensional subprocess is denoted as $v_n := \{v_{nt} = (v_{1t}, v_{2t}, \ldots, v_{nt}) | t \in \mathbb{Z}\}$.

Analogously to (2.5), we consider, for the level-idiomatic component of Y_n, the volatility proxy

$$w_{it} := \log(v_{it}^2), \quad i \in \mathbb{N}, \quad t \in \mathbb{Z}. \quad (2.9)$$

The w_{it}'s constitute a double-indexed process w, hence, for any finite n and T, an $n \times T$ panel of level-idiomatic volatility proxies; the notation $w_n := \{w_{n,t} = (w_{1t}, w_{2t}, \ldots, w_{nt}) | t \in \mathbb{Z}\}$ will be used for the n-dimensional subprocess of w. In order to analyze also this panel by means of general dynamic factor models, we have to assume the existence of spectral densities.

Assumption (C1). The second-order moments $E[w_{it}^2]$ are finite for all $i \in \mathbb{N}$, and for all $n \in \mathbb{N}$, the spectral density of w_n is absolutely continuous with respect to the Lebesgue measure on $[-\pi, \pi]$, that is, w_n has a spectral density matrix, $\Sigma_{w;n}(\theta)$ for $\theta \in [-\pi, \pi]$.

Finally, we make the following assumption on the dynamic eigenvalues of those level-idiomatic volatility proxies.

Assumption (C2). There exists a $q_w \in \mathbb{N}$ such that the q_wth eigenvalue $\lambda_{w;n, q_w}(\theta)$ of $\Sigma_{w;n}(\theta)$ diverges as $n \to \infty$, θ-a.e. in $[-\pi, \pi]$, while the $(q_w + 1)$th one, $\lambda_{w;n, q_w+1}(\theta)$, is θ-a.e. bounded.
As for the case of level-common volatilities, the existence of a finite q_w, as shown by Hallin and Lippi (2013), is a very natural assumption, and is justified empirically in Section 5. As a consequence, we have a dynamic factor model representation for w_n with q_w factors, of the form

\[
\dot{w}_{it} = \chi_{w;it} + \xi_{w;it} = \sum_{k=1}^{q_w} d_{w;ik}(L) \varepsilon_{w;kt} + \xi_{w;it}, \quad i \in \mathbb{N}, \quad t \in \mathbb{Z},
\]

(2.10)

with common and idiosyncratic components $\chi_{w;it}$ and $\xi_{w;it}$, respectively, or, in obvious vector notation,

\[
\dot{w}_{nt} = \chi_{w;nt} + \xi_{w;nt}, \quad n \in \mathbb{N}, \quad t \in \mathbb{Z},
\]

(2.11)

such that (i)-(v) hold.

2.4 A block structure for volatilities

Limiting the analysis to one of the two factor model decompositions (2.6) and (2.10), however, means throwing away a lot of information about market volatility shocks. Two separate analyses, on the other hand, are, in general, not adequate: indeed, while $\xi_{w;it}$, by definition, is orthogonal to $\chi_{w;nt}$, it is not orthogonal, in general, to $\xi_{\eta;nt}$: nor is $\xi_{\eta;nt}$ orthogonal to $\chi_{w;nt}$. Both $\xi_{\eta;nt}$ and $\xi_{w;nt}$ thus may yield a market-driven component (in the terminology below, a \emph{weakly idiosyncratic component}). A joint analysis of (2.6) and (2.10) is thus in order, leading to a \emph{two-block general dynamic factor} analysis of the type studied in Hallin and Liška (2011).

When put together, the two n-dimensional panels $\{\hat{s}_{it}\}$ and $\{\dot{w}_{it}\}$ indeed constitute the two subpanels or \emph{blocks} of a 2n-dimensional panel of level-common and level-idiosyncratic volatility proxies with \emph{block structure}. Consider the joint process $\eta := \{\eta_{it}| i \in \mathbb{N}, t \in \mathbb{Z}\}$, where η_{it} is either \hat{s}_{it} or \dot{w}_{it} for some $j \in \mathbb{N}$. It follows from Lemma 1 in Hallin and Liška (2011) that, given the sets of Assumptions B and C, there exists $Q \in \mathbb{N}$, with max(q_s, q_w) $\leq Q$ $\leq q_s + q_w$, such that the Qth eigenvalue, $\lambda_{\eta;n,Q}(\theta)$, of the spectral density matrix, $\Sigma_{\eta;n}(\theta)$, diverges (θ-a.e. in $[-\pi, \pi]$) as $n \rightarrow \infty$, while the $(Q + 1)$th one, $\lambda_{\eta;n,Q+1}(\theta)$, is θ-a.e. bounded. Therefore, η also admits a dynamic factor representation with Q factors, of the form

\[
\eta_{it} = \begin{cases}
\hat{s}_{it} &= \chi_{\eta;it}^s + \xi_{\eta;it}^s = \sum_{k=1}^{Q} d_{\eta;ik}^s(L) \varepsilon_{kt}^s + \xi_{\eta;it}^s, \quad i \in \mathbb{N}, \quad t \in \mathbb{Z} \\
\dot{w}_{it} &= \chi_{\eta;it}^w + \xi_{\eta;it}^w = \sum_{k=1}^{Q} d_{\eta;ik}^w(L) \varepsilon_{kt}^w + \xi_{\eta;it}^w, \quad i \in \mathbb{N}, \quad t \in \mathbb{Z},
\end{cases}
\]

(2.12)

such that (i) to (v) hold for ε, $\xi_{\eta;it}^s$, $\xi_{\eta;it}^w$, $d_{\eta;ik}^s(L)$ and $d_{\eta;ik}^w(L)$.

Combining (2.6), (2.10), and (2.12) yields

\[
\hat{s}_{it} = \phi_{\eta;it} + \psi_{\eta;it} + \xi_{\eta;it}^s + \xi_{\eta;it}^w, \quad i \in \mathbb{N}, \quad t \in \mathbb{Z},
\]

(2.13)

\[
\dot{w}_{it} = \phi_{\eta;it} + \psi_{\eta;it} + \xi_{\eta;it}^w, \quad i \in \mathbb{N}, \quad t \in \mathbb{Z}.
\]
The \(\phi_{s;it} \) and \(\phi_{w;it} \) components are called strongly common, as they are driven by shocks which are common both to the volatilities of the level-common and the volatilities of the level-idiosyncratic components. The components \(\psi_{s;it} \) and \(\psi_{w;it} \) are called weakly common; they are indeed common either to the \(s \) or to the \(w \) block, but not to both. Being idiosyncratic to one block but not to the other, \(\zeta_{s;it} \) and \(\zeta_{w;it} \) are called weakly idiosyncratic. Finally, \(\xi_{s;it} \) and \(\xi_{w;it} \) are called strongly idiosyncratic. We refer to Hallin and Liška (2011) for details.

All those components, except for the strongly idiosyncratic ones, are market-driven, i.e. they are driven by the market volatility shocks \(\varepsilon := \{ \varepsilon_t = (\varepsilon_{1t}, \ldots, \varepsilon_{Qt})' | t \in \mathbb{Z} \} \). The decompositions (2.13), thus provide an insight into the impacts of the shocks and the way they are loaded through the \(\phi_{it}'s \), the \(\psi_{it}'s \), and the \(\zeta_{it}'s \). Those various loadings could be obtained from an application of the Forni et al. (2015) one-sided method (as described in (i)-(vi) of Section 3.1) to the \(6n \)-dimensional panel consisting of all \(\phi_{it}'s \), \(\psi_{it}'s \), and \(\zeta_{it}'s \). If the objective is limited to the estimation of market volatility shocks and the way they are loaded by level-common and level-idiosyncratic returns, the same analysis can be conducted along the same ways as for the \(Y_{it}'s \) in Section 3.1, applying the Forni et al. (2015) methodology to the \(2n \)-dimensional panel (2.14). This is what we are doing in Section 3.2 below, where \(Q = q_s = q_w = 1 \). A reconstruction of the market volatility shocks \(\varepsilon \) follows, which involves only one-sided filters (i.e., based on present and past observables only), along with an estimation of their loadings by the level-common volatility proxies \(s_{it} \) and the level-idiosyncratic ones \(w_{it} \), respectively. Details are provided in Section 3.

The above factor decompositions correspond to a multiplicative factor model for the squared innovations of the level-common and level-idiosyncratic components. Thus, from (2.14) we have

\[
\begin{align*}
\xi_{s;it}^2 &= \exp(\phi_{s;it} + \psi_{s;it} + \mathbb{E}[s_{it}]) \quad i \in \mathbb{N}, \quad t \in \mathbb{Z}, \\
\xi_{w;it}^2 &= \exp(\phi_{w;it} + \psi_{w;it} + \mathbb{E}[w_{it}]) \quad i \in \mathbb{N}, \quad t \in \mathbb{Z},
\end{align*}
\]

and

\[
\begin{align*}
\xi_{s;it}^2 &= \exp(\phi_{s;it} + \psi_{s;it} + \mathbb{E}[s_{it}]) \quad i \in \mathbb{N}, \quad t \in \mathbb{Z}, \\
\xi_{w;it}^2 &= \exp(\phi_{w;it} + \psi_{w;it} + \mathbb{E}[w_{it}]) \quad i \in \mathbb{N}, \quad t \in \mathbb{Z},
\end{align*}
\]

respectively.

3 Estimation

The main objects of interest here are the market volatility shocks and the way they are loaded, via the corresponding proxies, by the level-common and level-idiosyncratic components of returns. Their

\[\text{Unlike, for instance, } (\psi_{s;it}, \psi_{w;it}) \text{ and } (\zeta_{s;it}, \zeta_{w;it}), \text{ in case } Q = q_s = q_w \text{ does not hold.}\]
estimation, based on a finite $n \times T$ panel of Y_i's, proceeds in two steps, which we now describe. A superscript T is used for estimated quantities, as opposed to population ones.

3.1 Step 1: estimating the level-common and level-idiomsyncratic shocks

Estimation of the level-common and level-idiomsyncratic innovations is in seven steps.

(i) Start with a consistent estimator $\Sigma_{Y,n}^T(\theta)$ of the spectral density matrix of the returns. Use the Hallin and Liška (2007) information criterion to select the number q^T of level-common shocks, and compute the eigenvectors $p_{Y,n,1}^T(\theta), \ldots, p_{Y,n,q^T}^T(\theta)$ corresponding to $\Sigma_{Y,n}^T(\theta)$'s q^T largest dynamic eigenvalues $\lambda_{Y,n,1}^T(\theta), \ldots, \lambda_{Y,n,q^T}^T(\theta)$.

(ii) Decompose the spectral density matrix $\Sigma_{Y,n}^T(\theta)$ into the contributions

$$\sum_{k=1}^{q^T} \lambda_{Y,n,k}^T(\theta) p_{Y,n,k}^T(\theta) p_{Y,n,k}^* (\theta) =: \Sigma_{X,n}^T(\theta)$$

of those q^T largest eigenvalues and its complement

$$\Sigma_{Y,n}^T(\theta) - \Sigma_{X,n}^T(\theta) =: \Sigma_{Z,n}^T(\theta)$$

(p^* stands for the transposed complex conjugate of p). In line with the notation, $\Sigma_{X,n}^T(\theta)$ and $\Sigma_{Z,n}^T(\theta)$ are our estimates for the spectral density matrices of the common component process X_n and the idiomsyncratic one Z_n, respectively.

(iii) By classical inverse Fourier transform of $\Sigma_{X,n}^T(\theta)$, estimate the autocovariances $\Gamma_{X,n,k,k}^T, k \in \mathbb{Z}$ of the level-common components.

(iv) Assuming, for simplicity, that $n = m(q+1)$ for some $m \in \mathbb{N}$, consider the m $q^T + 1$ $q^T + 1$ diagonal blocks of the $\Gamma_{X,n,k,k}^T$'s. From each of them, estimate (via standard AIC or BIC methods) the order, and, via a Yule-Walker method, the coefficients, of a $(q^T + 1)$-dimensional VAR model. This yields, for the ith diagonal blocks, an estimator $A_i(L)$ of the autoregressive filter $A_i(L)$ appearing in (2.4), hence an estimator of the block-diagonal operator in (2.3), which we denote by $A_n^T(L)$. Let $\tilde{Y}_n^T := (I_n - A_n^T(L)) Y_n$.

(v) An estimator $\Gamma_{Y,n,0}^T$ of the covariance matrix $\Gamma_{Y,n,0}$ of $\tilde{Y}_n := (I_n - A_n(L)) Y_n$ can be obtained either in the time domain as

$$\Gamma_{Y,n,0}^T = \frac{1}{T} \sum_{t=1}^{T} \tilde{Y}_n^T \tilde{Y}_n^T,$$

or in the frequency domain as

$$\Gamma_{Y,n,0}^T = \frac{1}{H} \sum_{h=1}^{H} \left(I_n - A_n^T(e^{-i\theta_h}) \right) \Sigma_{Y,n}^T(\theta_h) \left(I_n - A_n^T(e^{i\theta_h}) \right)^T,$$

where $\theta_h = 2h\pi/H$.

11
(vi) Projecting the \hat{Y}_n^T’s onto their q^T largest static principal components (computed from the eigenvectors of $\Gamma^Y_{n:n,0}$) provides an estimate $e_n^T = H_n^T u^T$ of the level-common innovation process e_n.

(vii) The estimator of the idiosyncratic component \hat{Z}_n is then $\hat{Z}_n^T := (I_n - A_n^T(L)) Y_n^T - e_n^T$. Fitting a univariate AR model (the order of which, again, is identified via standard AIC or BIC methods) to each of the n components of \hat{Z}_n^T, denote by v_n^T the resulting $n \times 1$ vector of residuals.

The results of Forni et al. (2015) establish the consistency, as $n, T \to \infty$, of all those estimators.

3.2 Step 2: estimating the market volatility shocks

The estimated innovations e_n^T and v_n^T obtained in Step 1 (vi)-(vii) are the starting point of the block-factor analysis of Step 2, which leads to the estimation of the market volatility shocks.

(viii) From the components of e_n^T and v_n^T, compute the (estimated) volatility proxies s_n^T and w_n^T as in (2.5) and (2.9).

(ix) Apply the Hallin and Liška (2007) method to identify the number of factors in the two subpanels and the pooled panel; this yields Q^T, q^T_s and q^T_w, respectively. As already mentioned, we obtain, for the S&P100 dataset in Section 5, $Q^T = q^T_s = q^T_w = 1$, and we suspect this is a general feature of financial data; the method described in step (x) below applies to this case.

(x) Repeat steps (i)-(vi) of Section 3.1, on the $2n$-dimensional joint panel of centered volatility measures s_{lt} and w_{lt}, with (using obvious notation) an estimator

$$
\Sigma_{\eta,2n}^T(\theta) := \begin{pmatrix}
\Sigma_{\eta,s,n}^T(\theta) & \Sigma_{\eta,w,s,n}^T(\theta) \\
\Sigma_{\eta,w,s,n}^T(\theta) & \Sigma_{\eta,w,n}^T(\theta)
\end{pmatrix}
$$

of their joint spectral density matrix $\Sigma_{\eta,2n}^T(\theta)$.

Step (iv) produces a $2n$-dimensional block-diagonal VAR operator (with n two-dimensional diagonal blocks) of the form $(I_{2n} - B_{2n;\eta}(L))$. Step (vi) eventually yields estimated innovations

$$
\begin{pmatrix}
H_{s,n}^T \\
H_{w,n}^T
\end{pmatrix}
\varepsilon^T_t, \quad t = 1, \ldots, T,
$$

hence transfer or impulse-response functions of the form

$$
C_{2n}^T(L) := (I_{2n} - B_{2n;\eta}(L))^{-1}
\begin{pmatrix}
H_{s,n}^T \\
H_{w,n}^T
\end{pmatrix},
$$

where $H_{s,n}^T$ and $H_{w,n}^T$ are $n \times 1$, while ε^T_t is scalar; $C_{2n}^T(L)$, typically, is a $2n \times 1$ vector of one-sided filters describing the dynamic loading, by the volatility proxies s_{lt}^T and w_{lt}^T, of the market volatility shocks.

If, furthermore, the identification constraint $H_n^T H_n = I_q$ is imposed, estimators H_n^T of the loadings H_n can be disentangled from those, u_n^T, of the shocks u_n by enforcing $H_n^T H_n^T = I_q^T$.

Note that step (vii) here is not required.

1. Forni et al. (2015)
The estimated shocks ε^T in (3.1) still are not fully identified. Their scale can be fixed by enforcing the identification constraint $H_{H_{k;n}}^T H_{H_{k;n}} + H_{H_{w;n}}^T H_{H_{w;n}} = I_{Q^T}$ (here, 1), and their sign (as well as that of $H_{H_{k;n}}^T$ and $H_{H_{w;n}}^T$) can be chosen so that the empirical covariance $(nT)^{-1} \sum_{t=1}^{T} \sum_{i=1}^{n} (s_{it} + w_{it}^T)$ be positive.

This estimator fully exploits the fact that the market shocks are present both in e^T_n and v^T_n. Combining the loadings $H_{H_{k;n}}^T$ and $H_{H_{w;n}}^T$ with the inverse of the VAR operator $(I_{2n} - B_{2n,\eta}^T(L))$, one easily computes, for any given stock i, the volatility impulse-response functions of the market-driven components of the level-common proxies s_{it}, and that of the idiosyncratic proxies w_{it}, respectively.

As already mentioned, the consistency, as $n, T \to \infty$, of all estimators derived in this section is established in Hallin and Liška (2011) and Forni et al. (2015) in case they are computed from observed data. Here, however, they are based on the estimated volatility proxies s^T_n and w^T_n obtained in Section 3.1. A formal consistency proof thus is needed, which, with consistency rates and results on volatility forecasting, is the subject of a companion paper.

4 Monte Carlo simulation study

In order to address the finite-sample properties of the estimation method described in the previous section, we conduct here a small Monte Carlo study. We simulate a model with $n = 100$ time series, representing stock returns, and $T = 1000$ according to the description of Section 2. The choice of the parameters range reflects the empirical findings of Section 5.

In particular, following the model in (2.14), we generate two blocks of volatilities of size n, driven by a single strongly common shock (since $Q = q_n = q_w = 1$) as

$$s_{it} = \phi_{s;i} + \varepsilon^s_{it} = \frac{d_{i}^s}{1 - \alpha L} \varepsilon_{t} + \frac{\theta}{1 - \alpha L} \nu^s_{it}, \quad i = 1, \ldots, 100, \; t = 1, \ldots, 1000,$$

and

$$\hat{w}_{it} = \phi_{w;i} + \varepsilon^w_{it} = \frac{d_{i}^w}{1 - \beta L} \varepsilon_{t} + \frac{1}{1 - \alpha^w L} \nu^w_{it}, \quad i = 1, \ldots, 100, \; t = 1, \ldots, 1000,$$

respectively, where $\alpha \sim U[.8, .9]$, $\beta_i \stackrel{i.i.d.}{\sim} U[.5, .9]$, $d_{i}^s \stackrel{i.i.d.}{\sim} U[.5, 1.5]$, and $a_{i}^s, a_{i}^w \stackrel{i.i.d.}{\sim} U[-.9, .9]$. The innovations ε_{t}, ν^s_{it}, and ν^w_{it} are Gaussian white noise processes with zero mean and unit variance. Moreover, the idiosyncratic innovation cross-covariances are matrices $\Gamma^{s,n,0}$ and $\Gamma^{w,n,0}$ with ones on the main diagonal and, on the 6th diagonal, entries 0.2 and 0.3, respectively, for $k = 1, \ldots, 10$. No lagged cross-sectional dependencies are imposed.

Since the simulated series have the nature of log-volatilities, the above parametrization implies that the common components of level-common volatilities are driven by a single factor following a stochastic volatility process with parameter α. Finally, we set $\theta = .5$. These choices reflect the high collinearity of the level-common innovation panel resulting from the factor structure in the levels and suggested by the S&P500 panel analyzed below. We allow for more heterogeneity in the common components of the level-idiosyncratic volatilities.

We then create the level-common and level-idiosyncratic innovation panels

$$e^s_{it} = \left(\exp \left(\phi_{s;i} + \varepsilon^s_{it}\right)\right)^{1/2} p^s_{it}, \quad i = 1, \ldots, 100, \; t = 1, \ldots, 1000$$

\footnotetext{Due to block-diagonality, computing $(I_{2n} - B_{2n,\eta}^T(L))^{-1}$ only requires the inversion of $(Q^T + 1)$-dimensional VARs, that is, for $Q^T = 1$, the inversion of bivariate autoregressive operators.}

13
and

\[v_{it} = \left(\exp \left(\phi_{W;i} + \xi_{W;i} \right) \right)^{1/2} p_i, \quad i = 1, \ldots, 100, \ t = 1, \ldots, 1000, \]

where \(p_i \) and \(p_i^w \) are Bernoulli random variables taking values ±1 with equal probabilities. For small values of \(\theta \), the level-common innovations then are approximately \(e_{it} \sim h_{it} u_t \), with \(u_t = \left(\exp(1 - \alpha L)^{-1} \varepsilon_t \right) \) and \(h_i = \left(\exp(d_i^u) \right)^{1/2} \), as it is the \(i \)th component of the \(n \)-dimensional vector \(H_n \) such that \(e_n \sim H_n u_t \). The model for levels is then simulated as

\[Y_{it} = X_{it} + Z_{it} = \frac{h_i}{1 - \gamma_i L} u_t + \frac{1}{1 - a_i^Z L} \nu_{it}^Z, \quad i = 1, \ldots, 100, \ t = 1, \ldots, 1000, \]

with \(h_i \) as defined above, \(\gamma_i \sim U[-.5,.5] \), and \(a_i^Z \sim U[-.9,.9] \). The innovations \(\nu_{it}^Z \) are Gaussian white noise processes with zero mean and unit variance and, as before, cross-covariances given by a matrix \(\Gamma_{\nu_Z,n,0} \) with ones on the main diagonal and, on the \(k \)th diagonal, entries equal to \(0.5^k \) for \(k = 1, \ldots, 10 \). No cross-sectional dependencies are imposed other than the contemporaneous ones. Finally, given the non-linear transformations involved, we cannot directly control for the auto-correlation of \(u_t \), but it can be observed that the simulated series is almost uncorrelated, thus resembling a white noise process.

Estimation is carried out as described in Section 3.1-3.2, by applying twice the one-sided estimation method by Forni et al. (2015).\(^7\) We simulate and estimate the model described above 1000 times. At each replication, we compute the following standardized mean squared errors (MSE) (see also Forni et al., 2000)

\[
R^2(X_{n,1}^T, X_{n,2}) = \frac{\sum_{i=1}^{n} \sum_{t=1}^{T} (X_{it} - X_{it})^2}{\sum_{i=1}^{n} \sum_{t=1}^{T} X_{it}^2}, \\
R^2(\phi_{S:n,1}^T, \phi_{S:n,2}) = \frac{\sum_{i=1}^{n} \sum_{t=1}^{T} (\phi_{S;i} - \phi_{S;i})^2}{\sum_{i=1}^{n} \sum_{t=1}^{T} \phi_{S;i}^2}, \\
R^2(\phi_{W:n,1}^T, \phi_{W:n,2}) = \frac{\sum_{i=1}^{n} \sum_{t=1}^{T} (\phi_{W;i} - \phi_{W;i})^2}{\sum_{i=1}^{n} \sum_{t=1}^{T} \phi_{W;i}^2}.
\]

The first part of Table 1 reports the mean and the 10th and 90th percentiles of the distribution of these MSEs over the 1000 Monte Carlo simulations. The MSEs \(R^2(\phi_{S:n,1}^T, \phi_{S:n,2}) \) and \(R^2(\phi_{W:n,1}^T, \phi_{W:n,2}) \) obtained in the second step are comparable to that, \(R^2(X_{n,1}^T, X_{n,2}) \), in the first step, thus showing that the second step is not too much affected by first step estimation errors.

Lastly, we compare our methodology with a static approach based on traditional principal components\(^8\) as in Stock and Watson (2005) or Forni et al. (2009). In this case, we first have to determine the number of static factors driving both the levels and the volatility panels. Given the dynamic structure of the model a static approach is likely to require more than one factor to explain the same amount of variance as explained by the common shocks \(u_t \) and \(\varepsilon_t \). This is confirmed by the second part of Table 1, where, along with the MSEs defined in (4.1) for the static approach, we also report the average (over all replications) number of factors identified by the Alessi et al. (2010) criterion (\(r \) for the levels; \(r_s \) and \(r_v \) for the volatility panels).\(^9\) On average, the dynamic approach is more parsimonious, and it seems to outperform the static one.

\(^7\)When estimating the level-common innovations \(e_n \) we do not estimate \(H_n \) but we take it as given in order to identify the innovations’ vector. Moreover, all centering steps required by the model are taken into account when estimating.

\(^8\)That is, the principal components resulting from the spectral factorization of instantaneous \(n \times n \) covariance matrices.

\(^9\)Results using Bai and Ng (2002) criterion are similar and not reported.
TABLE 1: Monte Carlo simulation results.

<table>
<thead>
<tr>
<th></th>
<th>Levels $R^2 (X^T_n, X_n)$</th>
<th>Volatility $R^2 (\phi_{n,n}^T, \phi_{n,n})$</th>
<th>Volatility $R^2 (\phi_{n,n}^T, \phi_{n,n})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>0.1225</td>
<td>0.1383</td>
<td>0.2217</td>
</tr>
<tr>
<td>10th percentile</td>
<td>0.1104</td>
<td>0.0767</td>
<td>0.1886</td>
</tr>
<tr>
<td>90th percentile</td>
<td>0.1352</td>
<td>0.2137</td>
<td>0.2652</td>
</tr>
<tr>
<td>number of factors</td>
<td>$q = 1$</td>
<td>$q_s = 1$</td>
<td>$q_w = 1$</td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>0.1756</td>
<td>0.4141</td>
<td>0.3062</td>
</tr>
<tr>
<td>10th percentile</td>
<td>0.1115</td>
<td>0.2382</td>
<td>0.1926</td>
</tr>
<tr>
<td>90th percentile</td>
<td>0.2507</td>
<td>0.5895</td>
<td>0.4730</td>
</tr>
<tr>
<td>number of factors</td>
<td>$r = 6.5$</td>
<td>$r_s = 1$</td>
<td>$r_w = 2.5$</td>
</tr>
</tbody>
</table>

5 The S&P100 panel

As an application, we consider the panel of stocks used in the construction of the Standard & Poor’s 100 (S&P100) index and, based on daily adjusted closing prices, we compute daily log-returns from January 3rd 2000 to September 30th 2013. We have thus an observation period of $T = 3457$ days. Since not all 100 constituents of the index were traded during the observation period, we end up with a panel of $n = 90$ time series.\(^{10}\)

5.1 Extracting the market volatility shocks

We first run Step 1 of the method to estimate model (2.4) on the centered log-returns Y_{it}. Applying the Hallin and Liška (2007) criterion, we obtain $q^T = 1$, that is, a one-dimensional common shock. Proceeding as described in Section 3.1, we compute the estimated shocks u^T, the estimated residuals $e^T_n = H_n^T u^T$, and the the n-dimensional vector of idiosyncratic shocks v^T_n to be used in Step 2 of the procedure. Autocorrelation in the level-idiosyncratic components apparently is weak, as AIC mostly returns an autoregressive fit of order zero of the \tilde{Z}_{it}’s; those components thus can be treated as white noise without the need of further filtering.

Figure 1 shows a plot of the estimated market shock u^T_t on the returns. From that plot, one easily can spot some well-identified periods of high volatility: the 2001-2003 series of crises, related to the dot-com bubble, the Enron (late 2001) and Worldcom (mid-2002) scandals; the 2003 Iraq war; the Great 2008-2009 Financial crisis starting with Lehman Brothers bankruptcy (September 2008); the 2010-2012 euro sovereign bond crisis. The largest shocks over the period, by far, are those related with the 2008-2009 financial crisis.

Still from Step 1, we can quantify the contribution of market shocks to the total variation of returns, as the ratio between the sum of the (empirical) variances of the estimated common components X^T_n.

\(^{10}\) The dataset is downloadable from Yahoo Finance and a list of the series used is provided in the Appendix.
to the sum of the (empirical) variances of the observed returns:

$$R^2_{Y,\text{market}} := \frac{\sum_{i=1}^{n} \sum_{t=1}^{T} (X_{it}^T)^2}{\sum_{i=1}^{n} \sum_{t=1}^{T} (Y_{it})^2}.$$

Those common components can be obtained at the end of part (vi) of Step 1, as

$$X_{n,t}^T = (I_n - A^T(L))^{-1}H_{n}^T u_t^T = (I_n - A^T(L))^{-1}e_{n,t}, \quad t = 1, \ldots, T.$$

The same quantity equivalently can be estimated in the spectral domain, as the ratio of (an approximate value of) the integral over all frequencies of Y_n’s first dynamic eigenvalue and (an approximate value of) the integral over all frequencies of the sum of Y_n’s first n dynamic eigenvalue, that is,

$$R^2_{Y,\text{market}} := \frac{\sum_{h=1}^{H} \lambda_{Y,n,1} (2h \pi / H)}{\sum_{h=1}^{H} \sum_{j=1}^{n} \lambda_{Y,n,j} (2h \pi / H)}.$$

In both cases, we obtain $R^2_{Y,\text{market}} \approx 0.36$: the market-driven level-common component accounts for about 36% of the total variance of returns. The same quantity can be evaluated for each individual stock, or each time point, by computing

$$R^2_{Y,i,\text{market}} := \frac{\sum_{t=1}^{T} (X_{it}^T)^2}{\sum_{t=1}^{T} (Y_{it})^2}, \quad i = 1, \ldots, n, \quad \text{and} \quad R^2_{Y,t,\text{market}} := \frac{\sum_{i=1}^{n} (X_{it}^T)^2}{\sum_{i=1}^{n} (Y_{it})^2}, \quad t = 1, \ldots, T,$$

respectively. A histogram of the $R^2_{Y,i,\text{market}}$’s ($i = 1, \ldots, n$) and a plot of the $R^2_{Y,t,\text{market}}$’s ($t = 1, \ldots, T$) are shown in Figures 2 and 3, respectively. Concerning the distribution of explained variances we notice that market shocks explain up to 60% of the total variation of returns, but in general this percentage is lower, pointing towards an important role and significant heterogeneity of idiosyncratic returns. On the other hand, when looking at the series of $R^2_{Y,t,\text{market}}$ values, the periods of crisis are clearly captured by the market shocks to returns.

Both this analysis of the impact of market shocks and the fact that $q^T = 1$ are in close agreement with most of the empirical literature on financial returns, and with classical asset pricing theory models like the CAPM or APT, which imply that the unexpected return of risky assets can be
expressed as a linear function of a systematic common factor representing the market and an idiosyncratic component. Moreover, the single common shock u^T has a correlation of 0.95 with the total daily return $\sum_{t=1}^{n} Y_{it}$ of the panel, which is consistent with the interpretation of u^T as the market return shock.

Turning to Step 2, as described in Section 3.2, we first compute the volatility proxies s_n^T and w_n^T from the logs of squared estimated residuals (equations (2.5) and (2.9)), and center them about their empirical means, obtaining the centered proxies \hat{s}_n^T and \hat{w}_n^T which constitute the two blocks of the joint panel η_n^T.

Before estimating a dynamic factor model from the η_n^T's, however, it is wise to check for possible departures from stationarity. It is well known that realized volatilities typically exhibit long-memory dependence (see for example Andersen et al., 2003). Therefore, we first estimate an ARFIMA$(1, d, 0)$

Some exceptions in the financial econometrics literature are, for example, the Nelson and Siegel (1987) level-slope-curvature 3-factor model for yield curves, the Fama and French (1993) 3-factor model for equity returns, and the Fung and Hsieh (2004) 7-factor model for hedge fund returns. However, the “factors” in these models are not always latent dynamic shocks, as in the present paper, but covariables (sometimes observed) explaining the contemporaneous (and not dynamic) variation of the data.
on each component of s^T_n and w^T_n. Following Beran (1995), we obtain estimators d^T for the fractional differencing parameters d which are compatible with the assumption of stationarity. Indeed, the maximum values of these estimators indicate that d^T never reaches 0.25, which is significantly less than 0.50.

A general dynamic factor structure for volatility proxies is justified by looking at the behavior of their dynamic eigenvalues. In particular, in Figure 4 (a)-(c), we show, for subpanels of increasing sizes $n_j \uparrow n = 90$, the dynamic eigenvalues, averaged over frequencies, of the level-common volatility and the level-idiosyncratic volatility panels, and for subpanels of increasing sizes $n_j \uparrow 2n = 180$ for the joint volatility panel. For all three of them, we clearly see one eigenvalue dominating over all others, and diverging faster as n_j increases. This finding is the empirical justification for Assumptions (B2) and (C2) on the factor structure of the two volatility subpanels, and supports the idea that
a unique common shock is driving both subpanels. The Hallin-Liška identification method confirms (see Figure 4 (d)-(f)) that fact–recall that the method identifies the number of common shocks as the value shown by the red curve at the second stability interval\(^{12}\) of the blue one. We thus proceed with estimation and \(Q^T = q_s^T = q_w^T = 1\).

Figure 5: The market shock \(\exp(\varepsilon^T_t)\) on volatilities, period 2000-2013.

The block decomposition (2.13) in this case reduces, in each block, to a sum of two terms: a strongly common component, and a strongly idiosyncratic one. Those strongly common components are estimated by \(\phi^T_{s,n} = \chi_{T,n}^s\) and \(\phi^T_{w,n} = \chi_{T,n}^w\), respectively. Since \(Q^T = 1\), a single volatility market shock \(\varepsilon^T_t\) driving both the level-common and level-idiosyncratic volatilities of the S&P100 is identified, in line with the remark made after (3.1). Rather than a plot of \(\varepsilon^T_t\) itself, Figure 5 is providing a plot of the multiplicative shocks \(\exp(\varepsilon^T_t)\), which have the same scale as the squared level-residuals \(e^2_{it}\) and \(v^2_{it}\); that series of course is intrinsically non-negative, and does not represent the volatility of the market shock on returns \(u^T\). Compared to the plot of \(u^T\) in Figure 1, the market volatility shocks \(\varepsilon^T_t\) show periods of high volatility, mainly in correspondence with the 2008-2009 and 2010-2012 crises, while the 2002-2003 crisis yields a somewhat lower volatility level.

5.2 Analyzing the volatility shocks and their impact

The method described in the previous sections does not just yield an estimation of the market volatility shocks (as plotted in Figure 5), it also provides insightful information on the way those shocks are loaded by the various stocks in the panel.

The overall contribution of market shocks to the variances of the volatility proxies \(s_{it}\) and \(w_{it}\) can be evaluated by means of the ratios

\[
R_{s,.\text{market}}^2 := \frac{\sum_{t=1}^T \sum_{i=1}^n (\phi^T_{s,lt})^2}{\sum_{t=1}^T \sum_{i=1}^n (s^T_{it})^2} \quad \text{and} \quad R_{w,.\text{market}}^2 := \frac{\sum_{t=1}^T \sum_{i=1}^n (\phi^T_{w,lt})^2}{\sum_{t=1}^T \sum_{i=1}^n (s^T_{it})^2}. \tag{5.1}
\]

For each individual stock \(i\), a measure of the same impact is

\[
R_{s,.i\text{market}}^2 := \frac{\sum_{t=1}^T (\phi^T_{s,lt})^2}{\sum_{t=1}^T (s^T_{it})^2} \quad \text{and} \quad R_{w,.i\text{market}}^2 := \frac{\sum_{t=1}^T (\phi^T_{w,lt})^2}{\sum_{t=1}^T (s^T_{it})^2}, \quad i = 1, \ldots, n; \tag{5.2}
\]

\(^{12}\)A stability interval is an interval over which the blue curve coincides with the horizontal axis; see Hallin and Liška (2007) for details.
while their evolution through time is captured by

\[R^2_{s_t, \text{market}} := \frac{\sum_{i=1}^{n}(\phi^T_{s_t i})^2}{\sum_{i=1}^{n}(s^T_{i})^2} \quad \text{and} \quad R^2_{w_t, \text{market}} := \frac{\sum_{i=1}^{n}(\phi^T_{w_t i})^2}{\sum_{i=1}^{n}(s^T_{i})^2}, \quad t = 1, \ldots, T. \]

(5.3)

The values of \(R^2_{s_t, \text{market}} \) and \(R^2_{w_t, \text{market}} \) in (5.1) are displayed in Table 2: the market-driven components \(\phi^T_{s_t i} \) of the volatility of level-common components account for about 60% of the total variance of the \(s^T_{i} \) panel. The same measure, for the market-driven components \(\phi^T_{w_t i} \) of the \(w^T_{i} \) panel, is still about 13%, which is highly non-negligible.

Figures 6 and 7 show histograms of the ratios \(R^2_{s_t, \text{market}} \) and \(R^2_{w_t, \text{market}} \) in (5.2) and evolution through time of the market impact, i.e., plots of \(R^2_{s_t, \text{market}} \) and \(R^2_{w_t, \text{market}} \) against time. The distribution of explained variances is quite homogeneous inside each block. As for the evolution through time of proportions of explained variances, most of the contribution of market volatility shocks to level-idiosyncratic volatility is observed during the recent Great Financial crisis (2008-2009); during that period, that contribution is comparable to the one observed for level-common volatility.

Table 2: Explained variances of market volatility proxies, period 2000-2013.

<table>
<thead>
<tr>
<th>Volatility</th>
<th>Strongly common</th>
<th>Strongly idiosyncratic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level-common (s^T_{i})</td>
<td>(R^2_{s, \text{market}} = 0.5997)</td>
<td>(1 - R^2_{s, \text{market}} = 0.4003)</td>
</tr>
<tr>
<td>Level-idiosyncratic (w^T_{i})</td>
<td>(R^2_{w, \text{market}} = 0.1740)</td>
<td>(1 - R^2_{w, \text{market}} = 0.8260)</td>
</tr>
</tbody>
</table>

Figure 6: Distribution of market-driven variances of volatility proxies, period 2000-2013.

Histograms for the proportions of variances explained by the market volatility shocks across the panel: \(R^2_{s_t, \text{market}} \) (left) and \(R^2_{w_t, \text{market}} \) (right).
The transfer or impulse-response functions (3.2), which describe how market shocks are loaded dynamically by the volatility proxies, is another most informative byproduct of our method. For each stock i, those functions take the form of scalar filters (one for s_{it}, another one for w_{it}), hence a sequence of coefficients associated with the various lags. Those coefficients are shown in Figure 9 for a selection of ten stocks; median, maximum and minimum values are provided in Figure 8. Two findings emerge from inspection of Figures 8 and Figures 9. First, the reaction to market shocks of level-common volatilities (the s_{it}’s) and level-idiosyncratic volatilities (the w_{it}’s) are markedly different. That reaction, for the s_{it}’s, is extremely homogenous across the panel, with a strong loading coefficient at lag zero and very short persistence: the coefficients rapidly decrease with the lag, and essentially vanish within one week time (5 lags). Quite on the contrary, the same reaction, for the w_{it}’s, varies considerably across the panel, and is more persistent, sometimes lasting over one month (20 lags). Finally, except for a few level-idiosyncratic volatilities (such as Apple Inc.), the instantaneous impact of a market shock is always positive.
To conclude, we turn to the analysis, for a few selected stocks, of the market-driven volatilities, which, referring to (2.15) and (2.16), we define as

\[\chi_{\varepsilon^{2};it} := \exp(\phi_{\varepsilon^{2};it} + \bar{s}_{\varepsilon^{2};it}), \quad \chi_{\nu^{2};it} := \exp(\phi_{\nu^{2};it} + \bar{w}_{\nu^{2};it}), \quad i = 1, \ldots, n, \quad t = 1, \ldots, T, \]

where \(\bar{s}_{\varepsilon^{2};it} \) and \(\bar{w}_{\nu^{2};it} \) stand for empirical means. In Figure 10, we show kernel-smoothed cross-sectional averages of these quantities, while in Figures 11 and 12 we show the market volatilities (level-common and level-idiosyncratic), for selected stocks from the Financial and Technology sectors respectively, together with their smoothed versions.

The time span under study is known to display at least three periods of high volatility: (i) the Great Financial crisis of 2008-2009, (ii) the European Sovereign debt crisis of 2011-2012, and (iii) a period in the early 2000s including the dot-com bubble, the Enron and Worldcom scandals, and the Second Iraq war. The market volatilities of the level-common and level-idiosyncratic components exhibit somewhat distinct reactions to those events. Level-idiosyncratic volatility is affected mainly by the Great Financial crisis of 2008-2009, the effect of which is particularly significant for the Financial sector. The more recent European Sovereign debt crisis of 2011-2012 is contributing to the market volatility of level-common components only, in agreement with the fact that this crisis represents an external shock to the US market, so that no idiosyncratic return is likely to be seriously affected. Finally, the dot-com bubble of the early 2000s affects the Technology sector through level-common market volatilities only. Overall, these figures confirm the heterogeneity in the contributions of market volatility shocks to level-idiosyncratic volatilities, with a significant impact on the Financial sector but a more limited one on the Technology sector.

6 Conclusion

In this paper, we propose a two-step general dynamic factor method for the analysis of financial volatilities in large panels of stock returns. Our focus throughout is on identifying and recovering the market volatility shocks. We show that the decomposition into “common” or “market-driven” and “idiosyncratic” component of the returns does not necessarily coincide with the corresponding...
The figure shows kernel-smoothed cross-sectional averages of market volatilities. The bandwidth used corresponds to three weeks of trading (15 working days).

decomposition for volatilities, in the sense that level-idiosyncratic components, just as much as the level-common ones, are affected by market volatility shocks. The empirical study of Section 5 actually suggests that the market shocks are univariate quantities, a finding most practitioners seem to agree with. Whether this is a general feature of financial data is quite plausible, but should be checked against other financial datasets.

A Monte Carlo simulation study assesses the validity of the two-step estimation approach in finite samples. Results from this study also show the superiority in this setting of dynamic factor analysis over static factor models.

The present framework can be extended in many directions of potential interest in financial econometrics and risk management. Our approach is a first step towards a general model-free and non-parametric analysis of covolatilities, with obvious applications in risk management and the optimization of financial portfolios. Moreover, the various variance decompositions and impulse-response functions following as by-products of our approach open the way to model-free and non-parametric simultaneous forecasting of large numbers of volatilities.

References

Bai, J. and S. Ng (2002). Determining the number of factors in approximate factor models. *Econometrica* 70, 191–221.

Figure 11: Market volatilities - Financial sector.

Estimated market volatilities for five selected stocks from the Financial sector, along with their smoothed versions (black solid line); see Appendix for tickers’ definitions.
The figure shows the estimated market volatilities for five selected stocks from the Technology sector, along with their smoothed versions (black solid line); see Appendix for tickers’ definitions.

A Data

<table>
<thead>
<tr>
<th>Ticker</th>
<th>Name</th>
<th>Ticker</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAPL</td>
<td>Apple Inc.</td>
<td>HPQ</td>
<td>Hewlett Packard Co.</td>
</tr>
<tr>
<td>ABT</td>
<td>Abbott Laboratories</td>
<td>IBM</td>
<td>International Business Machines</td>
</tr>
<tr>
<td>AEP</td>
<td>American Electric Power Co.</td>
<td>INTC</td>
<td>Intel Corporation</td>
</tr>
<tr>
<td>AIG</td>
<td>American International Group Inc.</td>
<td>JNJ</td>
<td>Johnson & Johnson Inc.</td>
</tr>
<tr>
<td>ALL</td>
<td>Allstate Corp.</td>
<td>JPM</td>
<td>JP Morgan Chase & Co.</td>
</tr>
<tr>
<td>AMGN</td>
<td>Amgen Inc.</td>
<td>KO</td>
<td>The Coca-Cola Company</td>
</tr>
<tr>
<td>AMZN</td>
<td>Amazon.com</td>
<td>LLY</td>
<td>Eli Lilly and Company</td>
</tr>
<tr>
<td>APA</td>
<td>Apache Corp.</td>
<td>LMT</td>
<td>Lockheed-Martin</td>
</tr>
<tr>
<td>APC</td>
<td>Anadarko Petroleum Corp.</td>
<td>LOW</td>
<td>Lowe’s</td>
</tr>
<tr>
<td>AXP</td>
<td>American Express Inc.</td>
<td>MCD</td>
<td>McDonald’s Corp.</td>
</tr>
<tr>
<td>BA</td>
<td>Boeing Co.</td>
<td>MDT</td>
<td>Medtronic Inc.</td>
</tr>
<tr>
<td>BAC</td>
<td>Bank of America Corp.</td>
<td>MMM</td>
<td>3M Company</td>
</tr>
<tr>
<td>BAX</td>
<td>Baxter International Inc.</td>
<td>MO</td>
<td>Altria Group</td>
</tr>
<tr>
<td>BK</td>
<td>Bank of New York</td>
<td>MRK</td>
<td>Merck & Co.</td>
</tr>
<tr>
<td>BMY</td>
<td>Bristol-Myers Squibb</td>
<td>MS</td>
<td>Morgan Stanley</td>
</tr>
<tr>
<td>BRK.B</td>
<td>Berkshire Hathaway</td>
<td>MSFT</td>
<td>Microsoft</td>
</tr>
<tr>
<td>C</td>
<td>Citigroup Inc.</td>
<td>NKE</td>
<td>Nike</td>
</tr>
<tr>
<td>CAT</td>
<td>Caterpillar Inc.</td>
<td>NOV</td>
<td>National Oilwell Varco</td>
</tr>
<tr>
<td>CL</td>
<td>Colgate-Palmolive Co.</td>
<td>NSC</td>
<td>Norfolk Southern Corp.</td>
</tr>
<tr>
<td>CMCSA</td>
<td>Comcast Corp.</td>
<td>ORCL</td>
<td>Oracle Corporation</td>
</tr>
<tr>
<td>COF</td>
<td>Capital One Financial Corp.</td>
<td>OXY</td>
<td>Occidental Petroleum Corp.</td>
</tr>
<tr>
<td>COP</td>
<td>ConocoPhillips</td>
<td>PEP</td>
<td>Pepsico Inc.</td>
</tr>
<tr>
<td>COST</td>
<td>Costco</td>
<td>PFE</td>
<td>Pfizer Inc.</td>
</tr>
<tr>
<td>CSCO</td>
<td>Cisco Systems</td>
<td>PG</td>
<td>Procter & Gamble Co.</td>
</tr>
<tr>
<td>CVS</td>
<td>CVS Caremark</td>
<td>QCOM</td>
<td>Qualcomm Inc.</td>
</tr>
<tr>
<td>CVX</td>
<td>Chevron</td>
<td>RTN</td>
<td>Raytheon Co.</td>
</tr>
<tr>
<td>DD</td>
<td>DuPont</td>
<td>SBUX</td>
<td>Starbucks Corporation</td>
</tr>
<tr>
<td>DELL</td>
<td>Dell</td>
<td>SLB</td>
<td>Schlumberger</td>
</tr>
<tr>
<td>DIS</td>
<td>The Walt Disney Company</td>
<td>SO</td>
<td>Southern Company</td>
</tr>
<tr>
<td>DOW</td>
<td>Dow Chemical</td>
<td>SPG</td>
<td>Simon Property Group, Inc.</td>
</tr>
<tr>
<td>DVN</td>
<td>Devon Energy</td>
<td>T</td>
<td>AT&T Inc.</td>
</tr>
<tr>
<td>EBay</td>
<td>eBay Inc.</td>
<td>TGT</td>
<td>Target Corp.</td>
</tr>
<tr>
<td>EMC</td>
<td>EMC Corporation</td>
<td>TXW</td>
<td>Time Warner Inc.</td>
</tr>
<tr>
<td>EMR</td>
<td>Emerson Electric Co.</td>
<td>TXN</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>EXC</td>
<td>Exelon</td>
<td>UNH</td>
<td>UnitedHealth Group Inc.</td>
</tr>
<tr>
<td>F</td>
<td>Ford Motor</td>
<td>UNP</td>
<td>Union Pacific Corp.</td>
</tr>
<tr>
<td>FCX</td>
<td>Freeport-McMoran</td>
<td>UPS</td>
<td>United Parcel Service Inc.</td>
</tr>
<tr>
<td>FDX</td>
<td>FedEx</td>
<td>USB</td>
<td>US Bancorp</td>
</tr>
<tr>
<td>GD</td>
<td>General Dynamics</td>
<td>UTX</td>
<td>United Technologies Corp.</td>
</tr>
<tr>
<td>GE</td>
<td>General Electric Co.</td>
<td>VZ</td>
<td>Verizon Communications Inc.</td>
</tr>
<tr>
<td>GILD</td>
<td>Gilead Sciences</td>
<td>WAG</td>
<td>Walgreens</td>
</tr>
<tr>
<td>GS</td>
<td>Goldman Sachs</td>
<td>WFC</td>
<td>Wells Fargo</td>
</tr>
<tr>
<td>HAL</td>
<td>Halliburton</td>
<td>WMB</td>
<td>Williams Companies</td>
</tr>
<tr>
<td>HD</td>
<td>Home Depot</td>
<td>WMT</td>
<td>Wal-Mart</td>
</tr>
<tr>
<td>HON</td>
<td>Honeywell</td>
<td>XOM</td>
<td>Exxon Mobil Corp.</td>
</tr>
</tbody>
</table>