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Abstract. In this paper we propose a novel way to measure behavioral heterogene-

ity in a population of stochastic individuals. Our measure is choice-based; it evaluates

the probability that, over a randomly selected menu, the sampled choices of two sam-

pled individuals differ. We provide axiomatic foundations for this measure and a

decomposition result that separates heterogeneity into its intra- and inter-personal

components.
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1. Introduction

In this paper, we provide a way to measure behavioral heterogeneity, which is, by

now, a well-established phenomenon in economics. Ultimately, measuring heterogeneity

will allow for a thorough understanding of its causes and implications. For example,

measuring heterogeneity is essential for comprehending its underlying determinants,

such as demographics, education, or rationality. It can also enhance prediction exer-

cises, as lower heterogeneity is expected to improve predictive accuracy. Additionally,

it is a crucial step in developing a representative stochastic-agent model that captures

population variability. Lastly, accounting for heterogeneity is vital in guiding welfare

analysis.

The behavioral heterogeneity of a population may be the result of two different

phenomena. First, the individuals in the population are heterogeneous; that is, they
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vary in their tastes and, therefore, in their economic choices. Second, the behavior of

any given individual is also subject to variation. Making a distinction between these

two sources of behavioral heterogeneity, which we refer to as inter-personal and intra-

personal, can play an instrumental role in applications. For instance, while classical

welfare tools seem appropriate for dealing with heterogeneity driven mainly by inter-

personal variability, in the presence of widespread intra-personal heterogeneity, the

welfare approach can borrow from the growing literature on behavioral welfare analysis.

Given its prevalence in theoretical and applied work, we adopt a random utility

framework.1 To allow for the possibility of both inter- and intra-personal variability,

we formalize an individual as a random utility model and a population as a distribution

over such individuals. Then, we measure behavioral heterogeneity as the probability

that, over a sampled menu, the sampled choices of two sampled individuals differ.

We call this measure choice heterogeneity, that we refer to by CH. This measure of

heterogeneity aligns well with traditional diversity measurement in various fields, as

discussed in Section 2, and thus it is a natural starting point.

In Section 4 we discuss four convenient features of CH. First, we prove that CH

can be computed even when there is only population aggregate data, a limitation often

faced by the analyst. Second, we obtain a matrix representation of CH that emphasizes

that it is easily implementable in practice. Third, we establish that the measure can be

equivalently derived as a Euclidean distance in the space of choice functions. Finally, by

utilizing this Euclidean representation, we demonstrate that CH enables a convenient

differentiation between inter- and intra-personal components, which can be valuable in

panel data analysis.

In Section 5 we consider properties of a heterogeneity measure with the ultimate goal

of providing axiomatic foundations for CH. The first property is a reduction principle,

establishing that heterogeneity can be computed using aggregate choice data. The

second property is a decomposition principle, stating that heterogeneity is computed

as a weighted sum of the heterogeneity of populations consisting of two deterministic

individuals. Finally, the third property is a monotonicity principle by which an increase

in choice divergence augments heterogeneity. Theorem 1 provides a characterization of

CH based on these three properties.

1In Section 7 we argue that our measure of behavioral heterogeneity readily extends to other

formalizations of individual behavior.
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Having proposed and studied our choice-based measure of behavioral heterogeneity,

in Section 6 we further elaborate on the comparative statics of the two components of

heterogeneity. We start with intra-personal heterogeneity to show that when consider-

ing individuals with a central preference relation, moving mass away from preferences

that are closer to the central preference relation increases intra-personal heterogeneity.

In terms of inter-personal heterogeneity, we show that mixing a given population with

another population with larger heterogeneity increases overall heterogeneity due to the

added inter-personal variability.

2. Related Literature

This paper belongs to a long tradition of research in a variety of disciplines such as

statistics, linguistics, sociology, quantum mechanics, information theory and econom-

ics, where diversity has been measured on the basis of the probability that two random

extractions produce different outcomes (see, for example, the measure of diversity of

Simpson (1949), the measure of linguistic diversity of Greenberg (1956), the measure

of population diversity of Lieberson (1969), the purity parameter in Leonhardt (1997),

the residual variance in Ely, Frankel and Kamenica (2015) or its logarithmic version

known as the Rényi or collision entropy, and the Herfindahl-Hirschman index of market

concentration). Our paper contributes by proposing an overall measure of heterogene-

ity that applies to settings where there are two layers, inter- and intra-personal, of

heterogeneity. In addition, we are concerned with choice behavior, which involves a

number of overlapping situations (i.e., choices from not just one, but different menus),

and we provide axiomatic foundations.

Economics uses a number of alternative approaches for measuring inter-personal

preference variability, as it relates to phenomena such as polarization and segregation.

Esteban and Ray (1994) measures polarization based on income and wealth distri-

butions, Frankel and Volij (2011) studies school segregation based on between-school

distributions, Baldiga and Green (2013) provides a choice-based analysis of consensus,

Gentzkow, Shapiro and Taddy (2019) studies partisanship based on the predictabil-

ity of party speeches, and Bertrand and Kamenica (2023) analyzes temporal trades

in cultural distances between groups. We contribute to this literature by providing

a measure of both intra- and inter-personal behavioral heterogeneity within a unique

choice framework.
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There is a large body of applied literature using specific collections of random utility

models to describe the behavior of a population. A prominent example is mixed-logit,

also known as random-coefficients or random-parameters logit, in which a distribution

of individual Luce behaviors is entertained (see Train, 2009).2 We contribute to this

literature by offering a measure of heterogeneity based on first principles.

3. Preliminaries

Consider a finite set of alternatives X. Denote by A the collection of all subsets of

X with at least two alternatives, which we call menus, and by P the collection of all

linear orders over X, which we call preferences. An individual ψ is formalized as a

random utility model; that is, ψ is a probability distribution on P , such that, when

choosing from menu A ∈ A, each preference P ∈ P is realized with probability ψ(P )

and maximized. As a result, individual choices are stochastic. Denoting by m(A,P )

the maximal alternative in menu A according to preference P , and by I[·] the indicator

function which takes the value 1 when the statement in brackets is true and 0 otherwise,

the probability that individual ψ selects alternative a in menu A is equal to:3

ρψ(a,A) =
∑
P

ψ(P ) · I[a=m(A,P )].

We denote by Ψ the set of all possible individuals and by ΨD the set of all individuals

that are deterministic, i.e., that assign mass 1 to a single preference. For the latter

class, we denote by ψP the deterministic individual associated to preference P . In

addition, we denote by ψU the (uniform) individual that assigns equal mass to all

preferences.

A population is a probability distribution over the space of individuals that assigns

strictly positive mass to only a finite number of them, i.e., an object with the form

θ = [θ1, θ2, . . . , θm;ψ1, ψ2, . . . , ψm],

with θi describing the mass of individual ψi in the population, and
∑

i θi = 1. We

denote by Θ the set of all possible populations and by ΘD the set of all deterministic

populations, i.e., those with the form [θ1, θ2, . . . , θm;ψP1 , ψP2 , . . . , ψPm ], which assign

mass only to deterministic individuals. In words, a deterministic population repre-

sents the case of a population in which all individuals are deterministic but possibly

2Given the relevance of the Luce and mixed-logit models in applications, we use them to illustrate

some of our results.
3For ease of exposition, we avoid the specification of any unconstrained domains in the summands.
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heterogeneous. Alternatively, denote by Θhom the set of all populations that are ho-

mogeneous, i.e., taking the form [1;ψ]. That is, a homogeneous population represents

the case of a population in which all individuals are identical to each other, although

their behavior possibly admits randomness.

Example 1. Consider the binary setX = {x, y}. P contains only two preferences, xPy

and yQx and, consequently, any individual ψ can be identified by the value ψ(P ) ∈ [0, 1]

(since ψ(Q) = 1− ψ(P ) is uniquely determined). Let us consider three populations of

differing nature, represented graphically in Figure 1.

Figure 1. Populations in Example 1.
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Population θ1 = [1
3
, 2

3
; 3

8
, 3

4
] involves two individuals, given by the values ψ1(P ) = 3

8

and ψ2(P ) = 3
4
, with masses 1

3
and 2

3
respectively. That is, population θ1 is neither

deterministic nor homogeneous. Population θ2 = [1; 5
8
] is a homogeneous population

where all individuals are non-deterministic, placing probability 5
8

on P . Finally, popu-

lation θ3 = [5
8
, 3

8
;ψP , ψQ] is a deterministic population involving the two deterministic

individuals, ψP and ψQ, with masses 5
8

and 3
8

respectively. �

4. Behavioral Heterogeneity

We measure heterogeneity as the probability that, over a sampled menu, the sam-

pled choices of two sampled individuals differ. To formalize this notion, consider a

distribution λ over A, with λ(A) ≥ 0 describing the probability with which menu A is

sampled. Distribution λ may reflect the relative frequency of menus in the dataset, or

some judgement by the analyst as to the relative importance of the menus.4 Formally,

4We allow for the possibility that λ assigns zero value to some menus to cover those cases in which

the analyst makes no observation on such menus or is not interested in them.
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the choice heterogeneity of population θ is:

CHλ(θ) =
∑
A

λ(A)
∑
i

θi
∑
j

θj
∑
a

ρψi(a,A)(1− ρψj(a,A)).

Example 1 (continued). Since there are only two alternatives, it must be that

λ({x, y}) = 1. Considering population θ1, we have CHλ(θ
1) = 1

3
[1
3
(3

8
5
8

+ 5
8

3
8
) + 2

3
(3

8
1
4

+
5
8

3
4
)] + 2

3
[1
3
(3

4
5
8

+ 1
4

3
8
) + 2

3
(3

4
1
4

+ 1
4

3
4
)] = 15

32
. �

Notice that CHλ establishes a complete and transitive ranking of behavioral hetero-

geneity on the space of all populations.5 We now discuss four results on the structure

of CHλ, that may be attractive in certain settings. The first emphasizes the fact that

CHλ can be computed even when there is only population aggregate data. The second

uses a matrix representation that shows the computational convenience of the measure.

The third relates CHλ to a Euclidean distance, connecting the measure with standard

practices in econometric estimations. Finally, we show that CHλ allows for a convenient

distinction between inter- and intra-personal components, that may be of use in the

presence of panel data.

4.1. Aggregate data. CHλ(θ) is formally defined using panel data, with information

on the choices ρψi of every individual in population θ. However, it is often the case that

choice data is only available in aggregate terms, i.e., in the weighted average form given

by
∑

i θiρψi . The question arises on whether computing the behavioral heterogeneity

using aggregate data gives the same overall choice heterogeneity than if one would had

panel data. Below we show that the answer to this question is positive. To formalize

this result, notice that Ψ is convex and thus, aggregate data can be seen as produced

by a homogeneous population where every individual behaves like, what we call, the

representative agent ψθ =
∑

i θiψi. We then have the following result.6

Proposition 1. CHλ(θ) = CHλ([1;ψθ]).

Example 1 (continued). The representative agent of population θ1 is ψθ1(P ) = 1
3

3
8

+
2
3

3
4

= 5
8
. Hence, the homogeneous population associated to θ1 is [1;ψθ1 ] = θ2. Notice

that a direct computation of heterogeneity gives CHλ(θ
2) = 5

8
3
8

+ 3
8

5
8

= 15
32

= CHλ(θ
1).

�
5Therefore, the analysis of choice-based heterogeneity could be equivalently described in terms of

a complete and transitive binary relation over the space of populations.
6All the proofs are contained in the Appendix.
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4.2. A matrix representation of CH. We now show that we can use the represen-

tative agent of the population, together with an account of the heterogeneity of simple

populations, in order to provide a convenient matrix representation of our measure of

heterogeneity.

We refer to a population composed exclusively of two equally-weighted deterministic

individuals, [1
2
, 1

2
;ψP , ψQ], as a couple. Now, compile twice the heterogeneity value of

each possible couple in a |P| × |P|-matrix that we denote by Cλ. Note that this is a

symmetric matrix with zeros in the diagonal and the entry for a given couple equal to

the sum of the λ-weights of the menus where its two individuals differ in their choices.

It is important to stress that this matrix is independent of the specific distribution over

the individuals, and hence independent of the population, since it is characterized by

the choice disagreements between preferences, weighted by measure λ. Therefore, given

P , the matrix does not need to be recalculated for the analysis of different populations,

or for behavioral variations within a population, which is a computationally convenient

property in practice.

Example 2.7 Let X = {x, y, z} and the distribution over menus λ̄ placing equal weight

on the four possible menus. Listing the preferences by xyz, xzy, yxz, yzx, zxy, zyx, the

matrix reporting the heterogeneity of couples is

Cλ̄ =


0 1/4 1/2 3/4 3/4 1

1/4 0 3/4 1 1/2 3/4

1/2 3/4 0 1/4 1 3/4

3/4 1 1/4 0 3/4 1/2

3/4 1/2 1 3/4 0 1/4

1 3/4 3/4 1/2 1/4 0


�

Proposition 2 shows that the choice heterogeneity of any population can be seen as

an inner product involving its representative agent and matrix Cλ.8

Proposition 2. CHλ(θ) = ψθCλψ>θ .

Example 2 (continued). We consider here the case of mixed-logit populations

θ = [θ1, θ2, . . . , θm;u1, u2, . . . , um], where each individual corresponds to a Luce model.9

7We write preferences in the order induced over the alternatives, reading from left to right.
8This is due to the fact that Cλ is a symmetric positive semi-definite matrix, admitting a Cholesky

factorization.
9A Luce model is usually described by means of a strictly positive real value function u, such that

the choice probability of x in menu A is u(x)∑
y∈A u(y)

. Without loss of generality, we can normalize u to
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Given preference P , described by x1Px2P . . . xN−1PxN , the probability assigned by the

representative agent of the mixed-logit population is ψθ(P ) =
∑

i θi
∏N

j=1
ui(xj)∑N
k=j ui(xk)

.

Following Example 2, consider, e.g., θ = [ 4
11
, 7

11
;ψ1, ψ2], with u1 = (1/2, 1/3, 1/6), and

u2 = (4/9, 3/9, 2/9). The representative agent is ψθ = 1
495

(144, 86, 115, 50, 58, 42) and

hence, CHλ̄(θ) = ψθCλ̄ψ>θ = .5. �

4.3. A Euclidean representation of CH. We now show that the choice heterogeneity

of any population can be seen as a (λ-weighted) Euclidean proximity between the

stochastic choice function of the representative agent and the stochastic choice function

providing maximal heterogeneity, that is the one given by uniformly random behavior.10

Formally, given any two individuals ψ and ψ′, define the λ-Euclidean distance be-

tween their associated stochastic choice functions by

dλ(ρψ, ρψ′) =
∑
A

λ(A)
∑
a

[ρψ(a,A)− ρψ′(a,A)]2.

Consider the constant βλ =
∑

A λ(A)nA−1
nA

, where nA is the number of alternatives in

menu A.

Proposition 3. CHλ(θ) = βλ − dλ(ρψθ , ρψU ) = maxψ∈Ψ dλ(ρψ, ρψU )− dλ(ρψθ , ρψU )

= dλ(ρψP , ρψU )− dλ(ρψθ , ρψU ) for every P ∈ P .

Proposition 3 first shows that the choice heterogeneity of a population is inversely

related to the distance between the stochastic choice function of its representative

agent and uniform choices. Moreover, the second equality in Proposition 3 shows that

the constant βλ is in fact the maximum possible distance between an individual and

uniform choices, and the third equality establishes that this corresponds to the distance

between any deterministic individual and uniform choices.

Example 1 (continued). Since in Example 1 there is only one binary menu, βλ = 1
2
.

Now, using our convention to represent individuals in this simple setting by describing

the probability associated with preference P , ψU = 1
2
. Recall that ψθ1 = 5

8
and hence,

it must be that CHλ(θ
1) = 15

32
= 1

2
− [(5

8
− 1

2
)2 + (3

8
− 1

2
)2]. �

satisfy
∑
x∈X u(x) = 1 and hence, u(x) can be understood as the probability of choosing x in X and,

for every menu A, individual choice probabilities are simply conditional probabilities. Luce models

admit different RUM representations but, since all of them generate the same stochastic choices, this

is inconsequential for our analysis and we will simply write ui instead of ψi whenever needed.
10All our analysis uses the square of Euclidean distances. To simplify the presentation, we just

write Euclidean all along.
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4.4. A decomposition of CH into intra- and inter-personal heterogeneity. We

now show that the Euclidean representation of CHλ in the previous section enables us

to decompose choice heterogeneity into its intra- and inter-personal components.

Proposition 4. CHλ(θ) =
∑

i θi[βλ − dλ(ρψi , ρψU )] +
∑

i θi
∑

i<j θj dλ(ρψi , ρψj).

Proposition 4 shows that choice heterogeneity can be decomposed as the aggregation

of two different terms. The first of these terms,
∑

i θi[βλ − dλ(ρψi , ρψU )], evaluates

how close each of the individuals in the population is in relation to uniform choices,

weighted by their prevalence in the population. This term, then, aggregates only

intra-personal variability across the individuals in the population. The second term,∑
i θi
∑

i<j θj dλ(ρψi , ρψj), evaluates the distance between every pair of individuals in

the population, again weighted by their prevalence in the population. Accordingly,

this second term measures only inter-personal variability between the members of the

population.

Example 1 (continued). Direct computation gives dλ(ρ 3
8
, ρ 1

2
) = (3

8
− 1

2
)2 +(5

8
− 1

2
)2 =

1
32

, dλ(ρ 3
4
, ρ 1

2
) = (3

4
− 1

2
)2 + (1

4
− 1

2
)2 = 1

8
, and dλ(ρ 3

8
, ρ 3

4
) = (3

8
− 3

4
)2 + (5

8
− 1

4
)2 = 9

32
,

leading to CHλ(θ1) = 1
3
(1

2
− 1

32
) + 2

3
(1

2
− 1

8
) + 1

3
2
3

9
32

= 15
32

. �

In Section 6 we return to this decomposition and study formally each of the two

components of CHλ.

5. A characterization of CH

We now discuss three plausible properties for a measure of behavioral heterogeneity

and show they are necessary and sufficient for CHλ. We introduce each property in

relation to a generic heterogeneity function H : Θ → R+, which assigns a level of het-

erogeneity to any possible population, such that H(θ) = 0 if and only if θ ∈ ΘD∩Θhom.

Notice that any population in ΘD ∩ Θhom takes the form [1;ψP ], with all individuals

being described by the same, deterministic, behavior. It is apparent that these pop-

ulations are the only ones in which there is no behavioral variation whatsoever, and

hence our basic assumption.

The first axiom, Reduction, is the formalization of the ideas discussed in Section 4.1

regarding aggregate data.

Reduction. H(θ) = H([1;ψθ]).
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For our next axiom, consider a deterministic population θ ∈ ΘD. We study the

possibility of decomposing its heterogeneity as an aggregation of sub-populations. In

particular, consider hypothetical sub-populations each formed exclusively by two differ-

ent deterministic individuals, with weights in proportion to their masses in the original

population, i.e., sub-populations of the form [ θi
θi+θj

,
θj

θi+θj
;ψPi , ψPj ]. Now, in order to un-

derstand the heterogeneity of θ based on that of the binary sub-populations, we should

correct back their heterogeneity by the inverse of the normalizing factors, (θi + θj)
2.

This leads us to the following property:

Decomposition. For every θ ∈ ΘD, H(θ) =
∑
i<j

(θi + θj)
2 H([ θi

θi+θj
,

θj
θi+θj

;ψPi , ψPj ]).

Example 3. Let X = {x, y, z} and the distribution over menus λ. Consider the

population θ = [1
3
, 1

3
, 1

3
;ψxyz, ψxzy, ψzyx], and the subpopulations θ′ = [1

2
, 1

2
;ψxyz, ψxzy],

θ′′ = [1
2
, 1

2
;ψxyz, ψzyx], and θ′′′ = [1

2
, 1

2
;ψxzy, ψzyx], represented graphically in Figure 2.

Figure 2. Populations in Example 2.
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θ′
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1
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1
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1

1/2

ψzyx
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1

1/2
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1

1/2

ψzyx
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1
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The heterogeneity of θ is then equal to CHλ(θ) = λ({x, y})1
9
· 4 + λ({x, z})1

9
· 4 +

λ({y, z})1
9
·4+λ({x, y, z})1

9
·4 = 4

9
. Decomposition states that we can also see this as (1

3
+

1
3
)2CHλ([

1
2
, 1

2
;ψxyz, ψxzy])+(1

3
+1

3
)2CHλ([

1
2
, 1

2
;ψxyz, ψzyx])+(1

3
+1

3
)2CHλ([

1
2
, 1

2
;ψxzy, ψzyx]) =

4
9
λ({y, z})1

2
+ 4

9
1
2

+ 4
9
[λ({x, y}) + λ({x, z}) + λ({x, y, z})]1

2
= 4

9
. �

Finally, we discuss a monotonicity property involving only couples. Let us start by

defining collections of couples C = {[1
2
, 1

2
;ψPn , ψQn ]}Nn=1. Now, consider two equally-

sized collections of couples C and C ′, that is N = N ′, and suppose that whatever the

menu at hand, we unequivocally observe a larger number of choice-disagreements in

C than in C ′. In such a case, it is natural to conclude that the average heterogeneity

of C must be larger. Formally, for any C, denote by ∆A(C) the number of couples

in C for which the two preferences involved disagree over menu A, and by H(C) =∑
n H([ 1

2
, 1
2

;ψPn ,ψQn ])

N
the average heterogeneity of all couples in collection C. Then:
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Monotonicity. Let C and C ′ be two equally-sized collections of couples. If ∆A(C) ≥
∆A(C ′) for every A ∈ A, then H(C) ≥ H(C ′).

Example 3 (continued). Let C = {[1
2
, 1

2
;ψxyz, ψxzy], [

1
2
, 1

2
;ψxyz, ψzyx], [

1
2
, 1

2
;ψxzy, ψzyx]}

be the collection of couples related to population θ. If we consider the vector of disagree-

ments ∆(·) = (∆{x,y}(·),∆{x,z}(·),∆{y,z}(·),∆{x,y,z}(·)), it is immediate that ∆(C) =

(2, 2, 2, 2). Now, let us consider two other, equally-sized, collections of couples. Col-

lection C ′ is equal to {[1
2
, 1

2
;ψxyz, ψzxy], [

1
2
, 1

2
;ψxyz, ψzyx], [

1
2
, 1

2
;ψzxy, ψzyx]}, while collec-

tion C ′′ is equal to {[1
2
, 1

2
;ψxyz, ψyxz], [

1
2
, 1

2
;ψxyz, ψzyx], [

1
2
, 1

2
;ψyxz, ψzyx]}. Since ∆(C ′) =

(2, 2, 2, 2) and ∆(C ′′) = (2, 2, 2, 3), Monotonicity implies that the average heterogene-

ity of collections C and C ′ must be equal, and lower than the average heterogeneity

of collection C ′′. Indeed, our computation above showed that the average hetero-

geneity of C is 1
3
. Direct computation shows that this is equal to that of C ′ and

below that of C ′′ which is
1+

λ({x,y,z})
2

3
. Notice that, using Decomposition, this ef-

fectively implies that CHλ([
1
3
, 1

3
, 1

3
;ψxyz, ψxzy, ψzyx]) = CHλ([

1
3
, 1

3
, 1

3
;ψxyz, ψzxy, ψzyx]) ≤

CHλ([
1
3
, 1

3
, 1

3
;ψxyz, ψyxz, ψzyx]). �

We can now establish the following characterization result.

Theorem 1. H satisfies Reduction, Decomposition and Monotonicity if and only if

there exists a probability distribution λ on A and k > 0 such that H = k · CHλ.

Reduction renders the heterogeneity of a population θ equal to that of the homoge-

nous population formed by its representative agent [1, ψθ]. Thus, we consider the

deterministic population θd that assigns the same probability to every preference as

the representative agent of θ.11 Hence, since θ and θd have the same representative

agent, Reduction implies that they must have the same heterogeneity. Next, by De-

composition, the heterogeneity of θd can be directly broken down into the aggregation

of the heterogeneities across sub-populations with the form [1 − γ, γ;ψP , ψQ], as long

as the ratio between (1 − γ) and γ is equal to the ratio between the masses of pref-

erences P and Q in θd. Moreover, we show in the proof that the heterogeneity of

population [1 − γ, γ;ψP , ψQ] can indeed be re-expressed as a product of two terms:

(i) a function depending on γ, and (ii) the heterogeneity of the couple involving the

same preferences, [1
2
, 1

2
;ψP , ψQ]. The function is actually the logistic map which yields

11Note that in Example 1, this deterministic population corresponds to population θ3.
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H([1−γ, γ;ψP , ψQ]) = 4γ(1−γ)H([1
2
, 1

2
;ψP , ψQ]). Thus, we can express the heterogene-

ity of any population as a weighted additive sum of the heterogeneity of all possible

couples, with weights derived from the masses of each preference in the population.12

The remaining step in the proof is to obtain the contribution to heterogeneity of each

menu A and find the means to link it to the above representation. The difficulty stems

from the fact that, generally speaking, it is impossible to find a couple that differs over

a given menu A only. Hence, the proof requires the identification of two collections

of couples for which the ∆-vectors differ only over menu A, and the application of

Monotonicity to these collections. Thus, the difference in heterogeneity between these

two collections must correspond to menu A. The proof shows that these added values

can be normalized into a probability distribution λ over A and hence, the heterogeneity

of any given population can be expressed as (a scalar transformation of) CHλ.

6. Comparative statics: Intra- and inter-personal heterogeneity

We now build on the decomposition obtained in Section 4.4 to establish further

results with respect to intra- and inter-personal heterogeneity.

6.1. Intra-personal heterogeneity. Given an individual ψ, it is natural to assess its

intra-personal heterogeneity.13 Proposition 4 shows that we can do so by way of the

λ-Euclidean distance between individual behavior and uniform choices, dλ(ρψ, ρψU ).

We now investigate further the structure of intra-personal heterogeneity. For this,

we use a particular class of individual behaviors, namely, those for which there is

a central preference and, in every menu, better alternatives are chosen with larger

probability. Formally, for a given P ∈ P , we say that ψ is P -central if xPy and

{x, y} ⊆ A implies ρψ(x,A) ≥ ρψ(y, A). The notion of P -centrality is related to the

well-known notion of weak stochastic transitivity. Any P -central individual satisfies

weak stochastic transitivity when binary menus are at stake, but it also requires this

choice consistency in the remaining menus. A prominent example of such individuals

is the Luce model, as well as many of its generalizations.

Given two P -central individuals, ψ1 and ψ2, we say that the latter is a decen-

tralization of the former if there exist ε > 0 and preferences Q1, Q2 such that: (i)

12This provides the type of decomposition described in Proposition 4.
13We are agnostic as for the interpretation of intra-personal variability. For discussions on the

possible connection between rationality and intra-personal heterogeneity see Apesteguia and Ballester

(2015, 2021) and Ok and Tserenjigmid (2023).
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ψ2 = ψ1 − εψQ1 + εψQ2 and (ii) Q2 is farther away from P than Q1 is, i.e., xPy and

xQ2y imply xQ1y. That is, the second individual is obtained from the first by shifting

mass from preference Q1 to preference Q2, which happens to be farther away from

the central preference P . Proposition 5 shows that, in accordance with intuition, this

type of shift increases intra-personal heterogeneity. Indeed, the result is also true when

sequential changes are considered. Formally, we say that ψ2 is a sequential decen-

tralization of ψ1 whenever there is a sequence of decentralizations connecting ψ1 and

ψ2.14

Proposition 5. If ψ2 is a sequential decentralization of ψ1, dλ(ρψ1 , ρψU ) ≥ dλ(ρψ2 , ρψU ).

Proposition 5 establishes some intuitive comparative statics on intra-personal het-

erogeneity for P -central individuals. We now look further into the special case of the

Luce model, in which we can conveniently study intra-personal heterogeneity using the

monotone likelihood ratio principle.15

Proposition 6. Suppose that u1(x1) ≥ · · · ≥ u1(xn) and u2(x1) ≥ · · · ≥ u2(xn). If
u2(xj)

u2(xi)
≥ u1(xj)

u1(xi)
for every i < j, dλ(ρψu1 , ρψU ) ≥ dλ(ρψu2 , ρψU ).

Proposition 6 considers two Luce individuals with the same central preference. By

the monotone likelihood ratio, u2 places more mass on worse alternatives, and hence

Proposition 6 establishes that it must have a larger amount of intra-personal hetero-

geneity.

Example 2 (continued). Since the monotone likelihood ratio holds for u1 and u2,

Proposition 6 implies that dλ(ρψu1 , ρψU ) ≥ dλ(ρψu2 , ρψU ). Since ψu1 = 1
60

(20, 10, 15, 5, 6, 4)

and ψu2 = 1
315

(84, 56, 70, 35, 40, 30), it follows immediately that dλ(ρψu1 , ρψU ) = .1 and

dλ(ρψu2 , ρψU ) = .07. Consider now the representative agent ψθ. Since this is not a

Luce individual, Proposition 6 cannot be applied. However, ψθ happens to be a P -

central individual, and it can be seen that ψu2 is a decentralization of ψθ, which in

turn is a decentralization of ψu1 . Hence, Proposition 5 implies that dλ(ρψθ , ρψU ) ∈
[dλ(ρψu2 , ρψU ), dλ(ρψu1 , ρψU )]. Notice that dλ(ρψθ , ρψU ) = .08, consistent with the claim.

�

14The result could be formulated alternatively in terms of first-order stochastic dominance over the

space of preferences, partially ordered by their distance to the central preference P .
15The required notation is given in Example 2.
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6.2. Inter-personal heterogeneity. Proposition 4 provides a decomposition of total

heterogeneity into intra-personal and inter-personal components. The inter-personal

part,
∑

i θi
∑

i<j θj dλ(ρψi , ρψj), is a weighted aggregate of the λ-Euclidean distances

among individual behaviors in the population. We now show that this value proves

useful when studying changes in heterogeneity by mixing two populations. This is the

case because the reasoning in Proposition 4 can be extended to combinations of any

two populations θ and θ′.16

Corollary 1. For every α ∈ [0, 1],

CHλ(αθ + (1− α)θ′) = αCHλ(θ) + (1− α)CHλ(θ
′) + α(1− α)dλ(ρψθ , ρψθ′ ).

Corollary 1 shows that the behavioral heterogeneity of a mixture of sub-populations

is the result of: (i) the weighted average of the original choice-based heterogeneities and

(ii) the inter-personal heterogeneity arising from the, possibly different, representative

agents of the sup-populations. The result describes the practical nature of the choice

heterogeneity measure when considering existing information on sub-populations. The

aggregate heterogeneity can be computed merely from the heterogeneity of the sub-

populations and the added inter-population heterogeneity, via the representative agents

of these populations. It is thus apparent how heterogeneity responds to some specific

aggregations. For example, consider the case in which the two sub-populations have

the same heterogeneity. If the sub-populations are not identical, one would expect the

level of heterogeneity to increase when the two are combined. Corollary 1 confirms this

by showing that the additional heterogeneity can be obtained simply by inspecting the

distance between the representative agents.

Another particular case of interest is that of the tremble model, where a population

θ is mixed with a uniform distribution over preferences. Here, since the heterogeneity

of uniform choices is higher than that of any other population, the mixing with the

uniform distribution produces an increase (through both channels (i) and (ii)) of hetero-

geneity; the mixture is unequivocally more heterogeneous than the original population

θ. In particular,

Proposition 7. For every α ∈ [0, 1], CHλ(αθ + (1− α)[1;ψU ]) = βλ − α2dλ(ψθ, ψU).

16We write αθ+(1−α)θ′ to represent the population induced by the combination of sub-populations

θ and θ′ with weights α and 1− α.
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Example 1 (continued). Let θ′ be the population obtained by mixing α of the

original population θ1 and 1− α of uniform behavior, i.e., θ′ = αθ1 + (1− α)[1;ψU ] =

[α
3
, 2α

3
, 1 − α; 3

8
, 3

4
, 1

2
]. Corollary 1 allows the computation of the heterogeneity of the

tremble mixture as α 15
32

+ (1−α)1
2

+α(1−α) 1
32

which, as claimed by Proposition 7, is
1
2
− α2 1

32
, a value that increases with the trembling weight 1− α. �

7. Discussion

Based on the prevalence of RUMs in the modeling of heterogeneity, we have offered

a choice-based measure of heterogeneity for populations composed of individuals be-

having á la RUM. Notice that our measure of heterogeneity is directly applicable in

settings where behavioral structures other than RUMs are in place. In particular, if

the individuals in a population can be described by any sort of stochastic choice func-

tion, the measure CHλ is well-defined, and the decomposition into intra-personal and

inter-personal heterogeneity described in Proposition 4 holds. Moreover, our character-

ization result goes through as long as the setting satisfies the following two properties:

(i) the domain of individual behaviors must be convex, allowing for the existence of

a representative behavior in any population, and (ii) it should be possible to link any

menu to a pair of deterministic behaviors, or, possibly, to a collection of pairs of deter-

ministic behaviors, as explained in the discussion after Theorem 1. A simple, general

example that meets these two properties is the space of all stochastic choice functions,

where no rationality requirement whatsoever is imposed on individuals. This domain is

convex and, for any given menu, it is possible to construct a pair of deterministic choice

functions that differ only over the given menu. Hence, our characterization result can

be adapted to this setting.

Our modeling of individual behavior implicitly assumes that individual choices are

independent. One may be interested in introducing the possibility of correlated choices.

This can be incorporated into our framework by considering state-dependent prefer-

ences. That is, there is a common set of states across individuals and a common

probability distribution over them, and each individual is described by a mapping

from states to preferences. In this setting, choice heterogeneity could be measured by

the probability that the choices of two sampled individuals differ over a sampled state

within a sampled menu.
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We close by commenting on the empirical implementation of our measure of choice

heterogeneity. The natural dataset would involve multiple choices by different individ-

uals, or different types of individuals, such as those given by age groups, gender, etc.

Practitioners would then proceed by estimating the individual RUMs, or, based on the

above discussion, by using a preferred stochastic behavioral model. There is a series of

papers proposing statistical tests and estimation techniques for a variety of stochastic

models that could be used to determine the appropriate class of individual stochas-

tic models and their specification (see, e.g., Agranov and Ortoleva (2017), Halevy,

Persitz, and Zrill (2018), Kitamura and Stoye (2018), Natenzon (2019), Cattaneo,

Ma, Masatlioglu, and Suleymanov (2020), Fudenberg, Newey, Strack, and Strzalecki

(2020), Aguiar and Kashaev (2021), Alós-Ferrer, Fehr, and Netzer (2021), Apesteguia

and Ballester (2021), Barseghyan, Molinari, and Thirkettle (2021), Caplin and Martin

(2021), Dardanoni, Manzini, Mariotti, Petri, and Tyson (2022), Dean, Ravindran, and

Stoye (2022), de Clippel and Rozen (2022), Jagelka (2023), and Kocourek, Steiner, and

Stewart (2023)). Once the individual stochastic models are specified, the application

of our measure is direct, as discussed in the main text (see, in particular, Section 6).

Appendix A. Proofs

Proof of Proposition 1: The choice-based heterogeneity of population θ can be

rewritten as:

CHλ(θ) =
∑
A

λ(A)
∑
i

θi
∑
j

θj
∑
a

ρψi(a,A)(1− ρψj(a,A))

=
∑
A

λ(A)
∑
i

θi
∑
j

θj
∑
P

ψi(P )
∑
Q

ψj(Q) · I[m(A,P )6=m(A,Q)]

=
∑
A

λ(A)
∑
i

∑
P

θiψi(P )
∑
j

∑
Q

θjψj(Q) · I[m(A,P ) 6=m(A,Q)]

=
∑
A

λ(A)
∑
P

ψθ(P )
∑
Q

ψθ(Q) · I[m(A,P ) 6=m(A,Q)]

=
∑
A

λ(A)
∑
a

ρψθ(a,A)(1− ρψθ(a,A)) = CHλ([1;ψθ]).

�

Proof of Proposition 2: The proof follows from the proof of Theorem 1. �
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Proof of Proposition 3: We start by proving a series of useful claims. The first

is that, conditional on having sampled the ordered pair of individuals (ψ, ψ′), the

probability that a random choice from ψ disagrees with a random choice from ψ′, over

a random menu, can be written as:

1

2
[CHλ([1;ψ]) + CHλ([1;ψ′]) + dλ(ρψ, ρψ′)].

We call this probability the conditional heterogeneity of (ψ, ψ′).

To prove the claim, suppose that we have sampled the ordered pair of individuals

(ψ, ψ′). Conditional heterogeneity is
∑

A λ(A)
∑

a ρψ(a,A)(1 − ρψ′(a,A)), or equiva-

lently ∑
A

λ(A)
∑
a

[ρψ(a,A)(1− ρψ(a,A)) + ρψ(a,A)(ρψ(a,A)− ρψ′(a,A))].

By similar reasoning, conditional heterogeneity is also equal to∑
A

λ(A)
∑
a

[ρψ′(a,A)(1− ρψ′(a,A)) + ρψ′(a,A)(ρψ′(a,A)− ρψ(a,A))].

Thus, conditional heterogeneity must be equal to the average of the last two expres-

sions, which is simply

1

2

∑
A

λ(A)
∑
a

[ρψ(a,A)(1− ρψ(a,A)) + ρψ′(a,A)(1− ρψ′(a,A))

+(ρψ(a,A)− ρψ′(a,A)2)] =
1

2
[CHλ([1;ψ]) + CHλ([1;ψ′]) + dλ(ρψ, ρψ′)].

Second, we claim that for every population θ ∈ Θ, CHλ(θ) =
∑

i θiCHλ([1;ψi]) +∑
i θi
∑

i<j θj dλ(ρψi , ρψj). To see this, notice that CHλ(θ) is simply the aggregation

of conditional heterogeneities across all possible ordered pairs of individuals weighted

by their corresponding sampling probabilities. Hence, we proceed by aggregating the

expression given above. Since every individual ψi appears as the first individual in

the sampling with probability θi and again, as the second individual in the sampling

with probability θi, the aggregation of conditional heterogeneities creates the value∑
i θiCHλ([1;ψi]). Given ψi and ψj, with i < j, these two individuals appear in the

sampling with probability 2 θiθj and given the symmetry of dλ, the aggregation of all

expressions creates the value
∑

i θi
∑

i<j θj dλ(ρψi , ρψj), thus proving the claim.

Third, we claim that for any individual ψ, CHλ([1;ψ]) = βλ − dλ(ρψ, ρψU ) holds.

To see this, consider the couple θ = [1
2
, 1

2
;ψ, ψU ]. From the previous claim, CHλ(θ) =
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1
2
CHλ([1;ψ]) + 1

2
CHλ([1;ψU ]) + 1

4
dλ(ρψ, ρψU ). Now, notice that, since one of the in-

dividuals involved is uniform, direct computation of the heterogeneity of θ yields

CHλ(θ) = 1
4
CHλ([1;ψ]) + 3

4
βλ. By putting these two expressions together, we obtain:

CHλ([1;ψ]) = 3βλ − 2CHλ([1;ψU ])− dλ(ρψ, ρψU )

= 3βλ − 2βλ − dλ(ρψ, ρψU ) = βλ − dλ(ρψ, ρψU ).

Now, to prove the statement, note that Proposition 1 guarantees that CHλ(θ) =

CHλ([1;ψθ]), and by the third claim CHλ(θ) = βλ − dλ(ρψθ , ρψU ) holds. Finally, notice

that maxψ∈Ψ dλ(ρψ, ρψU ) will be achieved by any deterministic individual, leading to∑
A λ(A)[(1− 1

nA
)2 + (nA− 1)( 1

nA
− 0)2] =

∑
A λ(A)[ (nA−1)2

n2
A

+ nA−1
n2
A

] =
∑

A λ(A)nA−1
nA

=

βλ, which concludes the proof. �

Proof of Proposition 4: The proof follows directly from the second and third claims

in the proof of Proposition 3. �

Proof of Theorem 1: The necessity of Reduction is shown in Proposition 1. For

Decomposition, let θ = [θ1, θ2, . . . , θm;ψP1 , ψP2 , . . . , ψPm ] be a deterministic population.

The probability that a deterministic individual makes two different choices is zero, and

hence the heterogeneity of θ can be written as

CHλ(θ) =
∑
A

λ(A)
∑
i

θi
∑
j

θj
∑
a

ρψPi (a,A)(1− ρψPj (a,A))

=
∑
A

λ(A)
∑
i<j

2 θiθj
∑
a

ρψPi (a,A)(1− ρψPj (a,A)) =
∑
A

λ(A)
∑
i<j

2θiθjI[m(A,Pi) 6=m(A,Pj)]

=
∑
i<j

(θi + θj)
2
∑
A

λ(A)
2θiθj

(θi + θj)2
I[m(A,Pi)6=m(A,Pj)]

=
∑
i<j

(θi + θj)
2 CHλ([

θi
θi + θj

,
θj

θi + θj
;ψPi , ψPj ]).

For Monotonicity, note that the average heterogeneity of C = {[1
2
, 1

2
;ψPn , ψQn ]}Nn=1 is:

CHλ(C) =
1

N

∑
n

∑
A

λ(A)
1

2
· I[m(A,Pn) 6=m(A,Qn)] =

1

2N

∑
A

λ(A)
∑
n

I[m(A,Pn)6=m(A,Qn)]

=
1

2N

∑
A

λ(A)∆A(C).

Given that λ is a positive-valued function, the necessity of Monotonicity follows.
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Finally, it is also immediate that CHλ(θ) = 0 if and only if θ ∈ ΘD∩Θhom, as required

by our basic assumption over the heterogeneity map.

We now prove the sufficiency part. Let us consider any menu A ∈ A and proceed by

fixing one pair of different alternatives {a, b} ⊆ A. Then, for every menu B with the

property {a, b} ⊆ B ⊆ A, let us fix a preference PA
B satisfying (X\B)PA

B aP
A
B b P

A
B (B\

{a, b}). By considering the couple formed by preference PA
B and the preference QA

B that

is obtained by swapping the position of alternatives a and b in PA
B , we are able to define

the value ∑
B:{a,b}⊆B⊆A

(−1)|A|−|B| H(
[

1
2
, 1

2
;ψPAB , ψQAB

]
). (1)

Claim 1. Expression (1) is independent of the selected pair of alternatives and

collection of preferences. Accordingly, we denote the value defined by expression (1)

as τ(A).

To prove Claim 1, let us fix a menu A and consider any two pairs of alterna-

tives {a, b} and {a′, b′} in this menu and any two associated collections of prefer-

ences {PA
B , Q

A
B}B:{a,b}⊆B⊆A and {P ′AB′ , Q′AB′}B′:{a′,b′}⊆B′⊆A. Let us then distinguish the

following collections of couples (i) CA
1 is formed by all couples [1

2
, 1

2
;ψPAB , ψQAB ] where

{a, b} ⊆ B ⊆ A is such that (−1)|A|−|B| = 1, (ii) CA
2 is formed by all couples

[1
2
, 1

2
;ψPAB , ψQAB ] where {a, b} ⊆ B ⊆ A is such that (−1)|A|−|B| = −1, (iii) C ′A1 is the col-

lection of all couples [1
2
, 1

2
;ψP ′A

B′
, ψQ′A

B′
] where {a′, b′} ⊆ B′ ⊆ A satisfies (−1)|A|−|B

′| = 1

and, finally (iv) C ′A2 is formed by all couples [1
2
, 1

2
;ψP ′A

B′
, ψQ′A

B′
] where {a′, b′} ⊆ B′ ⊆ A

is such that (−1)|A|−|B
′| = −1. It is immediate to see that, for every S 6= A,

∆S(CA
1 ) = ∆S(CA

2 ) and ∆S(C ′A1 ) = ∆S(C ′A2 ), while ∆A(CA
1 ) = ∆A(C ′A1 ) = 1 > 0 =

∆A(CA
2 ) = ∆A(C ′A2 ). Hence, the ∆-values of the collections of couples CA

1 ∪ C ′A2 and

CA
2 ∪C ′A1 must coincide and, since they are equally-sized, Monotonicity guarantees that∑
θ∈CA1

H(θ) +
∑

θ∈C′A
2

H(θ) is equal to
∑

θ∈CA2
H(θ) +

∑
θ∈C′A

1
H(θ). By rearranging,

we obtain ∑
B:{a,b}⊆B⊆A

(−1)|A|−|B| H(
[

1
2
, 1

2
;ψPAB , ψQAB

]
) =

∑
θ∈CA1

H(θ)−
∑
θ∈CA2

H(θ) =∑
θ∈C′A

1

H(θ)−
∑
θ∈C′A

2

H(θ) =
∑

B′:{a′,b′}⊆B′⊆A

(−1)|A|−|B
′| H(

[
1
2
, 1

2
, ψP ′A

B′
, ψQ′A

B′

]
) = τ(A).

Claim 2. For every pair of preferences P,Q ∈ P , it must be that
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H([1
2
, 1

2
;ψP , ψQ]) =

∑
A

τ(A) · I[m(A,P )6=m(A,Q)].

If P is equal to Q, we know by assumption that H([1
2
, 1

2
;ψP , ψQ]) = 0, as desired.

Then, let us assume that {A : m(A,P ) 6= m(A,Q)} is non-empty, and denote by n ≥ 0

the number of menus with two alternatives over which P and Q differ. For every menu

A such that m(A,P ) 6= m(A,Q), denote by CA
1 and CA

2 the corresponding collections

of couples defined in the proof of Claim 1.

Consider the following two collections of couples: (i)
⋃
A:m(A,P ) 6=m(A,Q) C

A
1 and (ii)⋃

A:m(A,P )6=m(A,Q) C
A
2 ∪ {[1

2
, 1

2
;ψP , ψQ]}. Notice that, for every binary menu such that

m(A,P ) 6= m(A,Q), (i) contains one couple while (ii) contains none. In addition,

(ii) has the extra population defined by [1
2
, 1

2
;ψP , ψQ]. Hence, if n = 0, select any

preference R and add the population [1;ψR] = [1
2
, 1

2
;ψR, ψR] to (i). If n > 1, add n− 1

copies of the population [1;ψR] = [1
2
, 1

2
;ψR, ψR] to (ii). In any case, we have defined

two equally-sized collections of couples which we call, respectively, C and C ′.

From the analysis in Claim 1, we know that ∆S(CA
1 ) = ∆S(CA

2 ) for every S 6= A

and ∆A(CA
1 ) = 1 > 0 = ∆A(CA

2 ). Since populations [1
2
, 1

2
;ψR, ψR] are irrelevant in this

respect, and population [1
2
, 1

2
;ψP , ψQ] is such that ∆A({[1

2
, 1

2
;ψP , ψQ]}) = 1 if and only

if m(A,P ) 6= m(A,Q), it is indeed the case that C and C ′ have the same vector ∆ over

all menus. Given that H([1
2
, 1

2
;ψR, ψR]) = 0, we can apply Monotonicity to obtain∑

A:m(A,P1)6=m(A,P2)

∑
θ∈CA1

H(θ) =
∑

A:m(A,P1) 6=m(A,P2)

∑
θ∈CA2

H(θ) + H([1
2
, 1

2
;ψP , ψQ]).

It then follows that

H([1
2
, 1

2
;ψP , ψQ]) =

∑
A:m(A,P )6=m(A,Q)

(
∑
θ∈CA1

H(θ)−
∑
θ∈CA2

H(θ)) =
∑

A:m(A,P )6=m(A,Q)

τ(A).

Claim 3. The map λ given by λ(A) = τ(A)∑
A τ(A)

is a probability distribution over A.

Given our choice of normalization method, we simply need to show that τ is pos-

itive and non-null. To prove positivity, consider any menu A and the corresponding

collections CA
1 and CA

2 , as defined in the proof of Claim 1. We know that τ(A) =∑
θ∈CA1

H(θ)−
∑
θ∈CA2

H(θ). Hence, if |A| = 2, collection CA
1 is formed by a unique popu-

lation, while collection CA
2 is empty and the positivity of H guarantees the positivity

of τ(A). If |A| > 2, collections CA
1 and CA

2 are equally-sized, ∆S(CA
1 ) = ∆S(CA

2 ) holds

for every S 6= A, and ∆A(CA
1 ) = 1 > 0 = ∆A(CA

2 ), and again positivity holds. To

prove that τ is non-null, assume, by contradiction, that this is not the case. Then,
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Claim 2 implies that every couple has zero heterogeneity. Since there are couples not

belonging to Θhom, this is a contradiction. Hence, τ must be non-null and λ must be

a probability distribution over menus.

Claim 4. For every pair of preferences P,Q ∈ P and constant γ ∈ [0, 1], it is the

case that H([1− γ, γ;ψP , ψQ]) = 4γ(1− γ)H([1
2
, 1

2
;ψP , ψQ]).

To see this, fix two preferences P,Q ∈ P . Then consider any two values α, β ∈ [0, 1]

and the mixing of populations [1−α, α;ψP , ψQ] and [1−β, β;ψP , ψQ] with weights β
α+β

and α
α+β

. That is, let θ′ = [ β
α+β

(1− α), α
α+β

(1− β), β
α+β

α, α
α+β

β;ψP , ψP , ψQ, ψQ]. Since

this population is deterministic, the application of Decomposition, together with the

fact that homogeneous and deterministic populations have zero heterogeneity, leads to

H(θ′) = 2[(
β

α + β
)2 H([1− α, α;ψP , ψQ]) + (

α

α + β
)2 H([1− β, β;ψP , ψQ])].

Since we have β
α+β

(1 − α) + α
α+β

(1 − β) = α+β−2αβ
α+β

, Reduction guarantees that the

heterogeneity of population [α+β−2αβ
α+β

, 2αβ
α+β

;ψP , ψQ] must be equivalent to that of θ′,

leading to

H([
α + β − 2αβ

α + β
,

2αβ

α + β
;ψP , ψQ]) =

2[(
β

α + β
)2H([1− α, α;ψP , ψQ]) + (

α

α + β
)2H([1− β, β;ψP , ψQ])].

Direct manipulation shows that H([1− γ, γ;ψP , ψQ]) = 4γ(1− γ)H([1
2
, 1

2
;ψP , ψQ]).

Claim 5. For every θ ∈ ΘD, H(θ) =
∑
i<j

4 θiθjH([1
2
, 1

2
;ψPi , ψPj ]).

Consider θ ∈ ΘD. The result follows from combining Decomposition and Claim 4.

H(θ) =
∑
i<j

(θi + θj)
2 H([

θi
θi + θj

,
θj

θi + θj
;ψPi , ψPj ])

=
∑
i<j

(θi + θj)
2 4

θi
θi + θj

θj
θi + θj

H([
1

2
,
1

2
;ψPi , ψPj ]) =

∑
i<j

4 θiθjH([
1

2
,
1

2
;ψPi , ψPj ]).

Claim 6. H = k · CHλ for some k > 0.

Consider any population θ. Construct the unique deterministic population θd ∈ ΘD

with the property that, for every P ∈ P , θd(ψP ) = ψθ(P ) (where, recall that ψθ is the

representative agent of θ). From Claim 5, H(θd) =
∑
i<j

4 θdi θ
d
jH([1

2
, 1

2
;ψPi , ψPj ]). Using
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Claim 2, we have H(θd) =
∑
i<j

4 θdi θ
d
j

∑
A:m(A,Pi)6=m(A,Pj)

τ(A). We can rewrite this expres-

sion as H(θd) = k
∑

A λ(A)
∑

i θ
d
i

∑
j θ

d
j I[m(A,Pi) 6=m(A,Pj)], which, given the fact that θd

is deterministic, coincides with CHλ(θ
d). Now, simply notice that the representative

agent of θd coincides with that of θ, and Reduction (and the fact that CHλ satisfies

this property) guarantees that H(θ) = H(θd) = CHλ(θ
d) = CHλ(θ). This concludes the

proof. �

Proof of Proposition 5: Suppose that ψ2 is a sequential decentralization of ψ1.

By definition, there exists a sequence {ψj}Jj=1 of individuals such that ψ1 = ψ1 and

ψJ = ψ2, and ψj is a decentralization of ψj−1 for j = 2, . . . , J , with the central

preference denoted as P . At each stage j, mass εj > 0 shifts from preference Qj
1 to

another preference Qj
2, i.e., ψj+1 = ψj − εjψQj1 + εjψQj2

. Since every decentralization

can indeed be obtained as a sequence of decentralizations in which the two preferences

differ in their ranking of two alternatives, we assume w.l.o.g. that Qj
1 and Qj

2 differ in

their ranking of only two alternatives, with xjPyj, xjQj
1y
j and yjQj

2x
j.

First, consider any menu A that does not contain either xj or yj or such that

m(A,Qj
1) 6= xj. Preferences Qj

1 and Qj
2 have the same maximizer over such a menu

and hence, it is evident that ρψj+1(·, A) = ρψj(·, A), i.e., the transfer of mass is ir-

relevant for the intra-personal heterogeneity over such menus. Second, consider any

menu satisfying {xj, yj} ⊆ A and xj = m(A,Qj
1). Within such menus, the transfer

of mass increases the choice probability of alternative yj while reducing that of alter-

native xj, with no other changes for the remaining alternatives. Thus, we know that

ρψj(x
j, A) ≥ ρψj+1(xj, A) ≥ ρψj+1(yj, A) ≥ ρψj(y

j, A) holds. Given that the hetero-

geneity of population [1;ψj] within menu A is equal to 1−
∑

z∈A ρ
2
ψj(z, A), the transfer

must increase the heterogeneity of menu A. Additivity across menus guarantees that

CHλ([1;ψj+1]) ≥ CHλ([1;ψj]). The recursive application of this argument over the se-

quence of individuals together with Proposition 3 concludes the proof. �

Proof of Proposition 6: Consider any menu A ∈ A and denote its alternatives as

{yk}Kk=1 with the property that u1(y1) ≥ · · · ≥ u1(yK) and u2(y1) ≥ · · · ≥ u2(yK).

First, notice that the assumption guarantees that u2(ys)
u2(yt)

≥ u1(ys)
u1(yt)

for every s > t and,

hence,
ρψu2

(ys,A)

ρψu2
(yt,A)

=

u2(ys)∑K
k=1

u2(yk)

u2(yt)∑K
k=1

u2(yk)

≥
u1(ys)∑K
k=1

u1(yk)

u1(yt)∑K
k=1

u1(yk)

=
ρψu1

(ys,A)

ρψu1
(yt,A)

. That is, the choice proba-

bilities in menu A are also related by the monotone likelihood ratio property. As
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a result, we know that there exists T ≤ K such that ρψu1 (yt, A) ≥ ρψu2 (yt, A) if

and only if t ≤ T . Since
∑K

k=1 ρψu1 (yk, A) =
∑K

k=1 ρψu2 (yk, A) = 1, the uniform

distribution over {ρψu2 (yk, A)}Kk=1 second-order stochastically dominates the uniform

distribution over {ρψu1 (yk, A)}Kk=1. The strict convexity of the quadratic function guar-

antees that
∑K
k=1(ρψu1

(yk,A))2

K
≥

∑K
k=1(ρψu2

(yk,A))2

K
, or equivalently

∑K
k=1(ρψu1 (yk, A))2 ≥∑K

k=1(ρψu2 (yk, A))2. Conditional on menu A ∈ A, we can write intra-personal hetero-

geneity as 1 minus the previous sums of squares and, hence, the heterogeneity within

menu A is larger for the Luce defined by v. Additivity of intra-personal heterogeneity

across menus concludes the proof. �

Proof of Proposition 7: From Corollary 1, CHλ(αθ + (1 − α)[1;ψU ]) = αCHλ(θ) +

(1 − α)CHλ([1;ψU ]) + α(1 − α)dλ(ψθ, ψU). From Proposition 3, this is equivalent to

CHλ(αθ + (1 − α)[1;ψU ]) = α(βλ − dλ(ψθ, ψU)) + (1 − α)βλ + α(1 − α)dλ(ψθ, ψU) =

βλ − α2dλ(ψθ, ψU). �
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