Bigraded structures

Multiplicities

Depth of Blow-up algebras

Bigraded structures and the depth of Blow-up algebras

Gemma Colomé Nin (joint work with J.Elias)

Departament d'Àlgebra i Geometria Universitat de Barcelona

BGW07, 13th July 2007

onjectures	Bigraded structures	Multiplicities	Depth of Blow-up algebras
	0000	00	0
0	0	000	0000
00	00	000	0000
			0

Notations

 (R,\mathfrak{m}) local Cohen-Macaulay ring, $\dim R=d>0,\,k=R/\mathfrak{m}$ infinite.

 $I \mathfrak{m}$ -primary ideal ($I^{-i} = 0$), $J \subseteq I$ minimal reduction of I, $r_J(I)$ reduction number.

Blow-up algebras:

- Rees algebra of $I: \mathcal{R}(I) = \bigoplus_{n \geq 0} I^n t^n \subset R[t]$
- Associated graded ring to $I: gr_I(R) = \bigoplus_{n \ge 0} I^n / I^{n+1}$

$$0 \longrightarrow I\mathcal{R}(I) \longrightarrow \mathcal{R}(I) \longrightarrow \frac{\mathcal{R}(I)}{I\mathcal{R}(I)} = gr_I(R) \longrightarrow 0$$

In this case: dim $\mathcal{R}(I) = d + 1$, dim $gr_I(R) = d$

Bigraded structures

Multiplicities

Depth of Blow-up algebras

Conjectures

Consider the following integers

$$\Delta(I,J) = \sum_{p\geq 0} l_R\left(\frac{I^{p+1}\cap J}{I^p J}\right) = \sum_{p\geq 0} \Delta_p(I,J)$$
$$\Lambda(I,J) = \sum_{p\geq 0} l_R\left(\frac{I^{p+1}}{I^p J}\right) = \sum_{p\geq 0} \Lambda_p(I,J)$$

Valabrega-Valla'78: $\Delta = 0 \Leftrightarrow gr_I(R)$ is CM.

$$\bigoplus_{p\geq 0} rac{I^{p+1}\cap J}{I^p J}$$
 Valabrega-Valla module

	popul of biott up digobido
o ooo oo c	D
••• • • • • • • • • • • • • • • • • • •	0000
000 00 000 0	0000

Conjecture (Guerrieri'94)

$$\operatorname{depth}(gr_I(R)) \ge d - \Delta(I, J)$$

Guerrieri: $\Delta(I, J) = 1$, partial cases for $\Delta(I, J) = 2$

Wang: $\Delta(I, J) = 2$

Guerrieri-Rossi: partial results for $\Delta(I,J)=3$

Wang: partial results for $\Delta(I, J) = 4$

Wang: counterexample for $\Delta(I, J) = 5$.

Conjectures	Bigraded structures	Multiplicities	Depth of Blow-up algebras
0	0000	00	0
0.	0	000	0000
000	00	000	0000
			0

Question (Guerrieri-Huneke'93) $\Delta_p(I, J) \le 1, p \ge 0 \Rightarrow \operatorname{depth}(gr_I(R)) \ge d - 1$?

Wang'02: counterexample. If R is regular?

C-Elias: depth $(gr_I(R)) \ge d-2$

Conjectures	Bigraded structures	Multiplicities	Depth of Blow-up algebras
0	0000	00	0
00	0	000	0000
000	00	000	0000
			0

Huckaba-Marley'95: $e_1(I) \leq \Lambda(I, J)$, and there is equality if and only if $\operatorname{depth}(gr_I(R)) \geq d-1$.

We define $\delta(I, J) = \Lambda(I, J) - e_1(I) \ge 0$.

Wang'00: $\delta(I, J) \leq \Delta(I, J)$. Guerrieri's conjecture is implied by:

Conjecture (Wang'00)

 $depth(gr_I(R)) \ge d - 1 - \delta(I, J).$

Conjectures	Bigraded structures	Multiplicities	Depth of Blow-up algebras
0	0000	00	0
00	0	000	0000
000	00	000	0000
			0

Conjecture (Wang'00)

$$depth(gr_I(R)) \ge d - 1 - \delta(I, J).$$

Huckaba-Marley'95: $\delta(I, J) = 0$

Wang'00, Polini'00: $\delta(I, J) = 1$

Rossi-Guerrieri'99: partial cases for $\delta(I,J)=2$ with R/I Gorenstein

Wang'01: counterexample for d = 6 and $\delta(I, J) = 5$.

Conjectures	Bigraded structures	Multiplicities	Depth of Blow-up algebras
C	0000	00	0
00	0	000	0000
000	00	000	0000

In our work we decompose $\delta(I, J)$ as a finite sum

$$\delta(I,J) = \sum_{p \ge 0} \delta_p(I,J)$$

with $0 \leq \delta_p(I, J) \leq \Delta_p(I, J)$.

Theorem If $\overline{\delta} = \max\{\delta_p(I, J) \mid p \ge 0\} \le 1$, then $\operatorname{depth} \mathcal{R}(I) \ge d - \overline{\delta} \qquad \operatorname{depth} gr_I(R) \ge d - 1 - \overline{\delta}$

IDEA: we will define a non-standard bigraded module $\Sigma^{I,J}$ such that

$$\Delta_p(I,J) \ge \delta_p(I,J) = \Lambda_p(I,J) - e_0(\Sigma_{[p]}^{I,J})$$

and

$$\Delta(I,J) \ge \delta(I,J) = \Lambda(I,J) - e_1(I)$$

Bigraded structures

Multiplicities

Depth of Blow-up algebras

Bigraded structures

 (R, \mathfrak{m}) Cohen-Macaulay local ring. $I = (b_1, \ldots, b_\mu) \mathfrak{m}$ -primary ideal of R. $J = (a_1, \ldots, a_d)$ minimal reduction of I.

Associated graded ring of $\mathcal{R}(I)$ with respect to the homogeneous ideal $Jt\mathcal{R}(I) = \bigoplus_{n \ge 0} JI^{n-1}t^n$:

$$gr_{Jt}(\mathcal{R}(I)) = \bigoplus_{j\geq 0} \frac{(Jt\mathcal{R}(I))^j}{(Jt\mathcal{R}(I))^{j+1}} U^j$$

Conjectures	Bigraded structures	Multiplicities	Depth of Blow-up algebras
0	0000	00	0
00	0	000	0000
000	00	000	0000
			0

This ring has a natural bigraded structure: The piece of degree j = 0 is:

$$\frac{\mathcal{R}(I)}{Jt\mathcal{R}(I)} = \bigoplus_{i \ge 0} \frac{I^i}{I^{i-1}J} t^i$$

which is a homomorphic image of the graded ring $R[V_1, \ldots, V_\mu]$ by the degree one *R*-algebra homogeneous morphism

$$\sigma: R[V_1, \dots, V_{\mu}] \longrightarrow \frac{\mathcal{R}(I)}{Jt\mathcal{R}(I)} = \bigoplus_{i \ge 0} \frac{I^i}{I^{i-1}J} t^i$$

defined by $\sigma(V_i) = b_i t \in \frac{I}{J}t$. $R[V_1, \dots, V_{\mu}]$ is endowed with the standard graduation.

Conjectures	Bigraded structures	Multiplicities	Depth of Blow-up algebras
0	0000	00	0
00	0	000	0000
000	00	000	0000
			0

Consider the bigraded ring $B := R[V_1, \ldots, V_\mu; T_1, \ldots, T_d]$ with $\deg(V_i) = (1, 0)$ and $\deg(T_i) = (1, 1)$. There exists an exact sequence of bigraded *B*-rings

$$0 \longrightarrow K^{I,J} \longrightarrow C^{I,J} := \frac{\mathcal{R}(I)}{Jt\mathcal{R}(I)} [T_1, \dots, T_d] \xrightarrow{\pi} gr_{Jt}(\mathcal{R}(I)) \longrightarrow 0$$

with $\pi(T_i) = a_i t U$, i = 1, ..., d.

 $K^{I,J}$ is the ideal of initial forms of $Jt\mathcal{R}(I)$.

Conjectures	Bigraded structures	Multiplicities	Depth of Blow-up algebras
0	0000	00	0
00	0	000	0000
000	00	000	0000
			0

Notice that

$$gr_{Jt}(\mathcal{R}(I))_{(i+j,j)} = \frac{I^{i}J^{j}}{I^{i-1}J^{j+1}}t^{i+j}U^{j}$$
$$C_{(i+j,j)}^{I,J} = \frac{I^{i}}{JI^{i-1}}t^{i}[T_{1},\ldots,T_{d}]_{j}$$

and

$$gr_{Jt}(\mathcal{R}(I)) = \bigoplus_{i,j\geq 0} \frac{I^i J^j}{I^{i-1} J^{j+1}} t^{i+j} U^j$$

Bigraded structures	Multiplicities	Depth of Blo
0000	00	0
•	000	0000
00	000	0000
		0

Diagonals

M bigraded $B{-}{\rm module},\,p\in\mathbb{Z}$

$$M_{[p]} = \bigoplus_{m-n=p+1} M_{(m,n)}$$
 $R[T_1, \dots, T_d] -$ module

$$M_{\geq p} = \bigoplus_{n \geq p} M_{[n]} \qquad B - \text{submodule of } M$$

In our case, $K_{[p]}$, $C_{[p]}^{I,J} = \frac{I^{p+1}}{JI^p} t^{p+1}[T_1,\ldots,T_d]$ and

$$gr_{Jt}(\mathcal{R}(I))_{[p]} = \bigoplus_{i \ge 1} \frac{J^i I^{p+1}}{J^{i+1} I^p} t^{p+1+i} U^i$$

are $\mathcal{R}(J)$ -modules, and they vanish for $p \leq -2$ and $p \geq r_J(I)$.

$$gr_{Jt}(\mathcal{R}(I))_{[-1]} \cong \mathcal{R}(J)$$

Conjectures o oo ooo Bigraded structures

Multiplicities

Depth of Blow-up algebras 0 0000 0 0

We define the following bigraded *B*-modules

Bigraded Sally module:

 $\Sigma^{I,J} := \bigoplus_{p \ge 0} gr_{Jt}(\mathcal{R}(I))_{[p]}$

$$\mathcal{M}^{I,J} := \bigoplus_{p \ge 0} C^{I,J}_{[p]} = \bigoplus_{p \ge 0} \frac{I^{p+1}}{JI^p} t^{p+1}[T_1, \dots, T_d]$$
$$K^{I,J} := \bigoplus K_{[p]}$$

 $p \ge 0$

We have the following isomorphism of $\mathcal{R}(J)$ -modules $gr_{Jt}(\mathcal{R}(I))\cong \mathcal{R}(J)\oplus \Sigma^{I,J}$

Conjectures	Bigraded structures	Multiplicities	Depth of Blow-up algebras
0	0000	00	0
00	0	000	0000
000	0	000	0000
			0

Since $\Sigma^{I,J}$ and $\mathcal{M}^{I,J}$ are vanished by J, there is the exact sequence of bigraded $A = (R/J)[V_1, \dots, V_{\mu}, T_1, \dots, T_d] - \text{modules}$

$$0 \longrightarrow K^{I,J} \longrightarrow \mathcal{M}^{I,J} \longrightarrow \Sigma^{I,J} \longrightarrow 0$$

and for each $p \ge 0$ there is the exact sequence of $(R/J)[T_1, \ldots, T_d]$ -modules (diagonals)

$$0 \longrightarrow K^{I,J}_{[p]} \longrightarrow \mathcal{M}^{I,J}_{[p]} \longrightarrow \Sigma^{I,J}_{[p]} \longrightarrow 0$$

(in this case we can use the classical Hilbert function)

Bigraded structures

Depth of Blow-up algebras

Bigraded Hilbert function

(Roberts'00 with C a field)

Let ${\cal M}$ be a finitely generated bigraded module over a bigraded algebra

$$R = C[X_1, \ldots, X_r, Y_1, \ldots, Y_s, T_1, \ldots, T_u]$$

with $\deg(X_i) = (1, 0)$, $\deg(Y_i) = (0, 1)$, $\deg(T_i) = (1, 1)$ and C an Artin ring.

Hilbert function of M:

$$h_M(m,n) = \sum_{j \le n} l_R(M_{(m,j)})$$

onjectures	Bigraded structures	Multiplicities	Depth of Blow-up algebras
	0000	0.	0
C	0	000	0000
00	00	000	0000

There exist a polynomial $p_M(m,n)$ and integers m_0, n_0 such that

 $h_M(m,n) = p_M(m,n)$

for $m \ge m_0$ and $n \ge m + n_0$.

Note: If there are no generators of degree (0,1), the polynomial doesn't depend on n

$$p_M(m,n) = p_M(m)$$

onjectures	Bigraded structures	Multiplicities	Depth of Blow-up algebras
	0000	00	0
0	0	000	0000
00	00	000	0000
			0

We are interested in computing the Hilbert function of $\Sigma^{I,J}$. Notice that

$$\Sigma_{(m,*)}^{I,J} = \bigoplus_{j=0}^{m-1} \frac{I^{m-j}J^j}{I^{m-1-j}J^{j+1}} t^m U^j$$

Considering the length as an *R*-module,

$$\begin{aligned} l_R(\Sigma_{(m,*)}^{I,J}) &= \sum_{j=0}^{m-1} l_R\left(\frac{I^{m-j}J^j}{I^{m-1-j}J^{j+1}}\right) \\ &= l_R\left(\frac{I^m}{IJ^{m-1}}\right) + l_R\left(\frac{IJ^{m-1}}{J^m}\right) \\ &= l_R(S_J(I)_{m-1}) + l_R\left(\frac{IJ^{m-1}}{J^m}\right) \end{aligned}$$

where $S_J(I)$ is the Sally module of I with respect to J.

Conjectures	Bigraded structures	Multiplicities	Depth of Blow-up algebras
0	0000	00	0
00	0	000	0000
000	00	000	0000

For $m \ge m_0, n \ge m + n_0$, for some $m_0, n_0 \ge 0$,

$$\begin{split} h_{\Sigma^{I,J}}(m,n) &= h_{S_J(I)}(m-1) + l_R\left(\frac{IJ^{m-1}}{J^m}\right) \\ &= h_{S_J(I)}(m-1) + l_R(I/J)\binom{m-1+d-1}{d-1} \end{split}$$

and hence

$$p_{\Sigma^{I,J}}(m,n) = p_{\Sigma^{I,J}}(m) = \sum_{i=0}^{d-1} (-1)^i e_{i+1}(I) \binom{m-1+d-i-1}{d-i-1}$$

We deduce:

 $e_0(\Sigma^{I,J}) = e_1(I)$

Conjectures	Bigraded structures	Multiplicities	Depth of Blow-up algebras
0	0000	00	0
00	0	000	0000
000	00	000	0000
			0

For
$$\mathcal{M}^{I,J} = \bigoplus_{p \ge 0} \frac{I^{p+1}}{JI^p} t^{p+1}[T_1, \dots, T_d]$$
 (CM, $d - \dim$), for $m \ge m_0 \ge r_J(I), n \ge m + n_0$ (for some integers m_0, n_0)

$$p_{\mathcal{M}^{I,J}}(m,n) = p_{\mathcal{M}^{I,J}}(m) = \sum_{i \ge 1} l_R \left(\frac{I^i}{I^{i-1}J}\right) \binom{m-i+d-1}{d-1}$$

and

$$e_0(\mathcal{M}^{I,J}) = \sum_{i \ge 1} l_R\left(\frac{I^i}{I^{i-1}J}\right) = \sum_{p \ge 0} l_R\left(\frac{I^{p+1}}{I^pJ}\right) = \Lambda(I,J)$$

Conjectures	Bigraded structures	Multiplicities	Depth of Blow-up algebras
0	0000	00	0
00	0	000	0000
000	00	000	0000
			0

Proposition

The following conditions hold:

$$\Lambda(I,J) \ge e_1(I).$$

Conjectures	Bigraded structures	Multiplicities	Depth of Blow-up algebras
0	0000	00	0
00	0	000	0000
000	00	000	0000
			0

Proposition

(i) $\forall p \ge 0$

$$e_0(\Sigma_{[p]}^{I,J}) = l_R\left(\frac{I^{p+1}}{JI^p}\right) - e_0(K_{[p]}^{I,J}) \ge 0,$$
$$e_1(I) = \sum_{p\ge 0} e_0(\Sigma_{[p]}^{I,J}) = \sum_{p\ge 0} \left(l_R\left(\frac{I^{p+1}}{JI^p}\right) - e_0(K_{[p]}^{I,J})\right).$$

(ii) $\forall p \ge 0$ $l_R\left(\frac{I^{p+1} \cap J}{JI^p}\right) \ge e_0(K_{[p]}^{I,J}),$ $\delta(I,J) = e_0(K^{I,J}) = \sum_{p\ge 0} e_0(K_{[p]}^{I,J}) \ge 0.$

Conjectures	Bigraded structures	Multiplicities	Depth of Blow-up algebras
0	0000	00	0
00	0	000	0000
000	00	000	0000
			0

$$\delta_p(I,J) = e_0(K_{[p]}^{I,J})$$

$$\Lambda_p(I,J) = l_R(I^{p+1}/JI^p)$$

$$\Delta_p(I,J) = l_R(I^{p+1} \cap J/JI^p)$$

For all $p \ge 0$

$$\Delta_p(I,J) \ge \delta_p(I,J) = \Lambda_p(I,J) - e_0(\Sigma_{[p]}^{I,J}) = e_0(K_{[p]}^{I,J}) \ge 0$$

and adding with respect to p, we recover the known

 $\Delta(I,J) \ge \delta(I,J) = \Lambda(I,J) - e_1(I) \ge 0$

Bigraded structures

Multiplicities

Depth of Blow-up algebras

Depth of Blow-up algebras

Conjecture (Wang)

$$\operatorname{depth} gr_I(R) \ge d - 1 - \delta(I, J)$$

True for $\delta(I, J) = 0, 1$.

We have decomposed, as finite sum,

$$\delta(I,J) = \sum_{p\geq 0} \delta_p(I,J) = \sum_{p\geq 0} e_0(K_{[p]}^{I,J})$$

We consider the hypotheses over $\delta_p(I, J)$ instead of over $\delta(I, J)$ to refine this conjecture.

onjectures	Bigraded structures	Multiplicities	Depth of Blow-up algebras
	0000	00	0
0	0	000	0000
00	00	000	0000
			0

Consider
$$\overline{\delta} = \max\{\delta_p(I, J) \mid p \ge 0\}$$

Theorem
If $\overline{\delta} \le 1$, then
 $\operatorname{depth} \mathcal{R}(I) \ge d - \overline{\delta}$
 $\operatorname{depth} gr_I(R) \ge d - 1 - \overline{\delta}$

Bigraded structures

Multiplicities

Depth of Blow-up algebras

Sketch of the Proof

We use several times the Depth Formulas proved by Huckaba and Marley:

Theorem (Huckaba-Marley'94) (R, \mathfrak{m}) *CM local ring*, dim R = d > 0, *I* \mathfrak{m} -*primary ideal. Then*

 $\operatorname{depth} \mathcal{R}(I) \ge \operatorname{depth} gr_I(R)$

If $gr_I(R)$ is not CM,

 $\operatorname{depth} \mathcal{R}(I) = \operatorname{depth} gr_I(R) + 1$

Conjectures	Bigraded structures	Multiplicities	Depth of Blow-up algebras
0	0000	00	0
00	0	000	0000
000	00	000	0000
			0

Case $\overline{\delta} = 0$: Then $K^{I,J} = 0$, and hence $\mathcal{M}^{I,J} \cong \Sigma^{I,J}$ as A-modules. Since $\mathcal{M}^{I,J}$ is d-dimensional CM, then $\operatorname{depth} \Sigma^{I,J} = d$, and by depth counting on

$$0 \longrightarrow \Sigma^{I,J} \longrightarrow gr_{Jt}(\mathcal{R}(I)) \longrightarrow \mathcal{R}(J) \longrightarrow 0$$

we get that depth $gr_{Jt}(\mathcal{R}(I)) \geq d$.

Then depth $\mathcal{R}(I) \ge d = d - \overline{\delta}$.

- If $gr_I(R)$ is CM, $\operatorname{depth} gr_I(R) = d \ge d \overline{\delta} 1$.
- If $gr_I(R)$ is not CM, by [HM94], depth $gr_I(R) = \operatorname{depth} \mathcal{R}(I) - 1 \ge d - \overline{\delta} - 1$.

Conjectures	Bigraded structures	Multiplicities	Depth of Blow-up algebras
0	0000	00	0
00	0	000	0000
000	00	000	0000
			0

Case $\overline{\delta} = 1$: Cases d = 1, 2 are true by [HM94]. Case $d \ge 3$: Since $K_{[p]}^{I,J} \subset \frac{I^{p+1}}{JI^p}[T_1, \dots, T_d] = \mathcal{M}_{[p]}^{I,J}$, if $\delta_p = 1$, then $K_{[p]}^{I,J}$ is a rank one torsion-free $k[T_1, \dots, T_d]$ -module.

Now, by Theorem **Co**,

 $\operatorname{depth} gr_{Jt}(\mathcal{R}(I)) \ge d-1$

and so,

$$\operatorname{depth} \mathcal{R}(I) \ge d - 1 = d - \overline{\delta}$$

Now, by [HM94],

- If $gr_I(R)$ is CM, then depth $gr_I(R) = d > d 1 \overline{\delta}$
- If $gr_I(R)$ is not CM, then depth $gr_I(R) = \operatorname{depth} \mathcal{R}(I) - 1 \ge d - 1 - \overline{\delta}$

onjectures	Bigraded structures	Multiplicities	Depth of Blow-up algebras
	0000	00	0
0	0	000	0000
00	00	000	0000
			0

Theorem If $d \ge 3$, $K^{I,J} \ne 0$ and for all p, $K^{I,J}_{[p]} = 0$ or $K^{I,J}_{[p]}$ is a rank one torsion-free $k[T_1, \ldots, T_d]$ -module, then

 $\operatorname{depth} gr_{Jt}(\mathcal{R}(I)) \ge d-1$

۲

Bigraded structures

Multiplicities

Depth of Blow-up algebras

Sketch of the Proof

Let $p_1 < \cdots < p_n$ be the integers such that $K_{[p_i]}^{I,J} \neq 0$.

For all p, there is the exact sequence,

$$0 \longrightarrow K^{I,J}_{[p]} \longrightarrow \mathcal{M}^{I,J}_{[p]} \longrightarrow \Sigma^{I,J}_{[p]} \longrightarrow 0 \qquad (*)$$

If
$$p \neq p_1, ..., p_n$$
, then $\Sigma_{[p]}^{I,J} \cong \mathcal{M}_{[p]}^{I,J} = \frac{I^{p+1}}{JI^p} [T_1, ..., T_d]$ (**).
If $p = p_1, ..., p_n$, $(\delta_{p_i} = 1) K_{[p_i]}^{I,J}$ is an ideal of $D = k[T_1, ..., T_d]$.

Conjectures	Bigraded structures	Multiplicities	Depth of Blow-up algebras
0	0000	00	0
00	0	000	0000
000	00	000	0000
			0

Since depth $S_J(I) \ge 1$ (Polini'00), and by depth counting on (*), (**) and in the exact sequences (Vaz-Pinto)

with $C_p = \bigoplus_{n \ge 0} \frac{I^{n+p}}{J^n I^p}$, and since D is factorial, we can prove that in fact, $K_{[p_i]}^{\overline{I},J}$ is a principal ideal, and so depth $K_{[p_i]}^{\overline{I},J} = d$. By depth counting again in (*), $\forall p \ge 0$,

 $\operatorname{depth} \Sigma_{[p]}^{I,J} \ge d-1.$

Conjectures	Bigraded structures	Multiplicities	Depth of Blow-up algebras
)	0000	00	0
00	0	000	0000
000	00	000	0000
			0

Now, by depth counting on

we get that

depth $\Sigma^{I,J} \ge d-1$.

Finally, by depth counting on

$$0 \longrightarrow \Sigma^{I,J} \longrightarrow gr_{Jt}(\mathcal{R}(I)) \longrightarrow \mathcal{R}(J) \longrightarrow 0$$

since depth $\mathcal{R}(J) = d + 1$ and depth $\Sigma^{I,J} \ge d - 1$ then

 $\operatorname{depth} gr_{Jt}(\mathcal{R}(I)) \ge d-1$

Conjectures	Bigraded structures	Multiplicities	Depth of Blow-up algebras
0	0000	00	0
00	0	000	0000
000	00	000	0000

Question (Guerrieri-Huneke'93) $\Delta_p(I, J) \leq 1, p \geq 0 \Rightarrow \operatorname{depth}(gr_I(R)) \geq d - 1$? (Wang: Negative answer)

As a corollary, we obtain:

Proposition

 $\Delta_p(I,J) \le 1, \forall p \ge 0 \Rightarrow \operatorname{depth} gr_I(R) \ge d-2$

Proof: Since $0 \le \delta_p \le \Delta_p \le 1$, then $\overline{\delta} \le 1$ and hence

 $\operatorname{depth} gr_I(R) \ge d - 1 - \overline{\delta} \ge d - 2$

Bigraded structures

Multiplicities

Depth of Blow-up algebras 0 0000 0000 0

BIGRAZIE !

Conjectures	Bigraded structures	Multiplicities	Depth of Blow-up algebras
0	0000	00	0
00	0	000	0000
000	00	000	0000
			0

Conjectures	s
0	
00	
000	

Bigraded structures

Multiplicities

Depth of Blow-up algebras

Sally module

(Vasconcelos'94, Vaz Pinto'95)

The Sally module $S_J(I)$ of I with respect to J, is defined by the exact sequence of $\mathcal{R}(J)$ -modules:

$$0 \to I\mathcal{R}(J) \hookrightarrow I\mathcal{R}(I) \to S_J(I) = \bigoplus_{n \ge 0} \frac{I^{n+1}}{J^n I} \to 0$$

Conjectures	Bigraded structures	Multiplicities	Depth of Blow-up algebras
0	0000	00	0
00	0	000	0000
000	00	000	0000
			0

Hilbert function of the Sally module:

$$h_{S_J(I)}(n) = l_R(I^{n+1}/J^nI)$$

If $S_J(I) \neq 0$, then dim $S_J(I) = d$, and the Hilbert polynomial is

$$p_{S_J(I)}(n) = \sum_{i=0}^{d-1} (-1)^i s_i \binom{n+d-i-1}{d-i-1}$$

If R is CM: $e_0(I) = l_R(R/J)$ $e_1(I) = s_0 + l_R(I/J)$ $e_i(I) = s_{i-1}$, for i = 2, ..., d.