Bigraded structures and the depth of Blow-up algebras

Gemma Colomé Nin
(joint work with J.Elias)

Departament d'Àlgebra i Geometria Universitat de Barcelona

BGW07, 13th July 2007

Notations

(R, \mathfrak{m}) local Cohen-Macaulay ring, $\operatorname{dim} R=d>0, k=R / \mathfrak{m}$ infinite.
$I \mathfrak{m}$-primary ideal ($I^{-i}=0$), $J \subseteq I$ minimal reduction of I, $r_{J}(I)$ reduction number.

Blow-up algebras:

- Rees algebra of $I: \mathcal{R}(I)=\bigoplus_{n \geq 0} I^{n} t^{n} \subset R[t]$
- Associated graded ring to $I: g r_{I}(R)=\bigoplus_{n \geq 0} I^{n} / I^{n+1}$

$$
0 \longrightarrow I \mathcal{R}(I) \longrightarrow \mathcal{R}(I) \longrightarrow \frac{\mathcal{R}(I)}{I \mathcal{R}(I)}=g r_{I}(R) \longrightarrow 0
$$

In this case: $\operatorname{dim} \mathcal{R}(I)=d+1, \quad \operatorname{dim} g r_{I}(R)=d$

Conjectures

Consider the following integers

$$
\begin{gathered}
\Delta(I, J)=\sum_{p \geq 0} l_{R}\left(\frac{I^{p+1} \cap J}{I^{p} J}\right)=\sum_{p \geq 0} \Delta_{p}(I, J) \\
\Lambda(I, J)=\sum_{p \geq 0} l_{R}\left(\frac{I^{p+1}}{I^{p} J}\right)=\sum_{p \geq 0} \Lambda_{p}(I, J)
\end{gathered}
$$

Valabrega-Valla'78: $\Delta=0 \Leftrightarrow g r_{I}(R)$ is CM.

$$
\bigoplus_{p \geq 0} \frac{I^{p+1} \cap J}{I^{p} J} \quad \text { Valabrega-Valla module }
$$

Conjecture (Guerrieri'94)

$$
\operatorname{depth}\left(g r_{I}(R)\right) \geq d-\Delta(I, J)
$$

Guerrieri: $\Delta(I, J)=1$, partial cases for $\Delta(I, J)=2$
Wang: $\Delta(I, J)=2$
Guerrieri-Rossi: partial results for $\Delta(I, J)=3$
Wang: partial results for $\Delta(I, J)=4$
Wang: counterexample for $\Delta(I, J)=5$.

Question (Guerrieri-Huneke'93)
$\Delta_{p}(I, J) \leq 1, p \geq 0 \Rightarrow \operatorname{depth}\left(g r_{I}(R)\right) \geq d-1$?
Wang'02: counterexample. If R is regular?
C-Elias: $\operatorname{depth}\left(g r_{I}(R)\right) \geq d-2$

Huckaba-Marley'95: $e_{1}(I) \leq \Lambda(I, J)$, and there is equality if and only if depth $\left(g r_{I}(R)\right) \geq d-1$.

We define $\delta(I, J)=\Lambda(I, J)-e_{1}(I) \geq 0$.
Wang'00: $\delta(I, J) \leq \Delta(I, J)$. Guerrieri's conjecture is implied by:
Conjecture (Wang'00)

$$
\operatorname{depth}\left(g r_{I}(R)\right) \geq d-1-\delta(I, J)
$$

Conjecture (Wang'00)

$$
\operatorname{depth}\left(g r_{I}(R)\right) \geq d-1-\delta(I, J)
$$

Huckaba-Marley'95: $\delta(I, J)=0$
Wang'00, Polini'00: $\delta(I, J)=1$
Rossi-Guerrieri'99: partial cases for $\delta(I, J)=2$ with R / I Gorenstein

Wang'01: counterexample for $d=6$ and $\delta(I, J)=5$.

In our work we decompose $\delta(I, J)$ as a finite sum

$$
\delta(I, J)=\sum_{p \geq 0} \delta_{p}(I, J)
$$

with $0 \leq \delta_{p}(I, J) \leq \Delta_{p}(I, J)$.
Theorem
If $\bar{\delta}=\max \left\{\delta_{p}(I, J) \mid p \geq 0\right\} \leq 1$, then

$$
\operatorname{depth} \mathcal{R}(I) \geq d-\bar{\delta} \quad \operatorname{depth} g r_{I}(R) \geq d-1-\bar{\delta}
$$

IDEA: we will define a non-standard bigraded module $\Sigma^{I, J}$ such that

$$
\Delta_{p}(I, J) \geq \delta_{p}(I, J)=\Lambda_{p}(I, J)-e_{0}\left(\Sigma_{[p]}^{I, J}\right)
$$

and

$$
\Delta(I, J) \geq \delta(I, J)=\Lambda(I, J)-e_{1}(I)
$$

Bigraded structures

(R, \mathfrak{m}) Cohen-Macaulay local ring.
$I=\left(b_{1}, \ldots, b_{\mu}\right)$ m-primary ideal of R.
$J=\left(a_{1}, \ldots, a_{d}\right)$ minimal reduction of I.
Associated graded ring of $\mathcal{R}(I)$ with respect to the homogeneous ideal $J t \mathcal{R}(I)=\bigoplus_{n \geq 0} J I^{n-1} t^{n}$:

$$
g r_{J t}(\mathcal{R}(I))=\bigoplus_{j \geq 0} \frac{(J t \mathcal{R}(I))^{j}}{(J t \mathcal{R}(I))^{j+1}} U^{j}
$$

This ring has a natural bigraded structure:
The piece of degree $j=0$ is:

$$
\frac{\mathcal{R}(I)}{J t \mathcal{R}(I)}=\bigoplus_{i \geq 0} \frac{I^{i}}{I^{i-1} J} t^{i}
$$

which is a homomorphic image of the graded ring $R\left[V_{1}, \ldots, V_{\mu}\right]$ by the degree one R-algebra homogeneous morphism

$$
\sigma: R\left[V_{1}, \ldots, V_{\mu}\right] \longrightarrow \frac{\mathcal{R}(I)}{J t \mathcal{R}(I)}=\bigoplus_{i \geq 0} \frac{I^{i}}{I^{i-1} J} t^{i}
$$

defined by $\sigma\left(V_{i}\right)=b_{i} t \in \frac{I}{J} t$.
$R\left[V_{1}, \ldots, V_{\mu}\right]$ is endowed with the standard graduation.

Consider the bigraded ring $B:=R\left[V_{1}, \ldots, V_{\mu} ; T_{1}, \ldots, T_{d}\right]$ with $\operatorname{deg}\left(V_{i}\right)=(1,0)$ and $\operatorname{deg}\left(T_{i}\right)=(1,1)$.
There exists an exact sequence of bigraded B-rings
$0 \longrightarrow K^{I, J} \longrightarrow C^{I, J}:=\frac{\mathcal{R}(I)}{J t \mathcal{R}(I)}\left[T_{1}, \ldots, T_{d}\right] \xrightarrow{\pi} g r_{J t}(\mathcal{R}(I)) \longrightarrow 0$
with $\pi\left(T_{i}\right)=a_{i} t U, i=1, \ldots, d$.
$K^{I, J}$ is the ideal of initial forms of $J t \mathcal{R}(I)$.

Notice that

$$
\begin{gathered}
g r_{J t}(\mathcal{R}(I))_{(i+j, j)}=\frac{I^{i} J^{j}}{I^{i-1} J^{j+1}} t^{i+j} U^{j} \\
C_{(i+j, j)}^{I, J}=\frac{I^{i}}{J I^{i-1}} t^{i}\left[T_{1}, \ldots, T_{d}\right]_{j}
\end{gathered}
$$

and

$$
g r_{J t}(\mathcal{R}(I))=\bigoplus_{i, j \geq 0} \frac{I^{i} J^{j}}{I^{i-1} J^{j+1}} t^{i+j} U^{j}
$$

Diagonals

M bigraded B-module, $p \in \mathbb{Z}$

$$
\begin{gathered}
M_{[p]}=\bigoplus_{m-n=p+1} M_{(m, n)} \quad R\left[T_{1}, \ldots, T_{d}\right]-\text { module } \\
M_{\geq p}=\bigoplus_{n \geq p} M_{[n]} \quad B-\text { submodule of } M
\end{gathered}
$$

In our case, $K_{[p p}, C_{[p]}^{I, J}=\frac{I^{p+1}}{J I^{p}} t^{p+1}\left[T_{1}, \ldots, T_{d}\right]$ and

$$
g r_{J t}(\mathcal{R}(I))_{[p]}=\bigoplus_{i \geq 1} \frac{J^{i} I^{p+1}}{J^{i+1} I^{p}} t^{p+1+i} U^{i}
$$

are $\mathcal{R}(J)$-modules, and they vanish for $p \leq-2$ and $p \geq r_{J}(I)$.

$$
g r_{J t}(\mathcal{R}(I))_{[-1]} \cong \mathcal{R}(J)
$$

We define the following bigraded B-modules

Bigraded Sally module:

$$
\begin{gathered}
\Sigma^{I, J}:=\bigoplus_{p \geq 0} g r_{J t}(\mathcal{R}(I))_{[p]} \\
\mathcal{M}^{I, J}:=\bigoplus_{p \geq 0} C_{[p]}^{I, J}=\bigoplus_{p \geq 0} \frac{I^{p+1}}{J I^{p}} t^{p+1}\left[T_{1}, \ldots, T_{d}\right] \\
K^{I, J}:=\bigoplus_{p \geq 0} K_{[p]}
\end{gathered}
$$

We have the following isomorphism of $\mathcal{R}(J)$-modules

$$
g r_{J t}(\mathcal{R}(I)) \cong \mathcal{R}(J) \oplus \Sigma^{I, J}
$$

Since $\Sigma^{I, J}$ and $\mathcal{M}^{I, J}$ are vanished by J, there is the exact sequence of bigraded
$A=(R / J)\left[V_{1}, \ldots, V_{\mu}, T_{1}, \ldots, T_{d}\right]-$ modules

$$
0 \longrightarrow K^{I, J} \longrightarrow \mathcal{M}^{I, J} \longrightarrow \Sigma^{I, J} \longrightarrow 0
$$

and for each $p \geq 0$ there is the exact sequence of $(R / J)\left[T_{1}, \ldots, T_{d}\right]$-modules (diagonals)

$$
0 \longrightarrow K_{[p]}^{I, J} \longrightarrow \mathcal{M}_{[p]}^{I, J} \longrightarrow \Sigma_{[p]}^{I, J} \longrightarrow 0
$$

(in this case we can use the classical Hilbert function)

Bigraded Hilbert function

(Roberts'00 with C a field)
Let M be a finitely generated bigraded module over a bigraded algebra

$$
R=C\left[X_{1}, \ldots, X_{r}, Y_{1}, \ldots, Y_{s}, T_{1}, \ldots, T_{u}\right]
$$

with $\operatorname{deg}\left(X_{i}\right)=(1,0), \operatorname{deg}\left(Y_{i}\right)=(0,1), \operatorname{deg}\left(T_{i}\right)=(1,1)$ and C an Artin ring.

Hilbert function of M :

$$
h_{M}(m, n)=\sum_{j \leq n} l_{R}\left(M_{(m, j)}\right)
$$

There exist a polynomial $p_{M}(m, n)$ and integers m_{0}, n_{0} such that

$$
h_{M}(m, n)=p_{M}(m, n)
$$

for $m \geq m_{0}$ and $n \geq m+n_{0}$.

Note: If there are no generators of degree $(0,1)$, the polynomial doesn't depend on n

$$
p_{M}(m, n)=p_{M}(m)
$$

We are interested in computing the Hilbert function of $\Sigma^{I, J}$.
Notice that

$$
\Sigma_{(m, *)}^{I, J}=\bigoplus_{j=0}^{m-1} \frac{I^{m-j} J^{j}}{I^{m-1-j} J^{j+1}} t^{m} U^{j}
$$

Considering the length as an R-module,

$$
\begin{aligned}
l_{R}\left(\Sigma_{(m, *)}^{I, J}\right) & =\sum_{j=0}^{m-1} l_{R}\left(\frac{I^{m-j} J^{j}}{I^{m-1-j} J^{j+1}}\right) \\
& =l_{R}\left(\frac{I^{m}}{I J^{m-1}}\right)+l_{R}\left(\frac{I J^{m-1}}{J^{m}}\right) \\
& =l_{R}\left(S_{J}(I)_{m-1}\right)+l_{R}\left(\frac{I J^{m-1}}{J^{m}}\right)
\end{aligned}
$$

where $S_{J}(I)$ is the Sally module of I with respect to J. ?

For $m \geq m_{0}, n \geq m+n_{0}$, for some $m_{0}, n_{0} \geq 0$,

$$
\begin{aligned}
h_{\Sigma^{I, J}}(m, n) & =h_{S_{J}(I)}(m-1)+l_{R}\left(\frac{I J^{m-1}}{J^{m}}\right) \\
& =h_{S_{J}(I)}(m-1)+l_{R}(I / J)\binom{m-1+d-1}{d-1}
\end{aligned}
$$

and hence

$$
p_{\Sigma^{I, J}}(m, n)=p_{\Sigma^{I, J}}(m)=\sum_{i=0}^{d-1}(-1)^{i} e_{i+1}(I)\binom{m-1+d-i-1}{d-i-1}
$$

We deduce:

$$
e_{0}\left(\Sigma^{I, J}\right)=e_{1}(I)
$$

For $\mathcal{M}^{I, J}=\bigoplus_{p \geq 0} \frac{I^{p+1}}{J I^{p}} t^{p+1}\left[T_{1}, \ldots, T_{d}\right]$ (CM, $d-\operatorname{dim}$), for $m \geq m_{0} \geq r_{J}(I), n \geq m+n_{0}$ (for some integers m_{0}, n_{0})

$$
p_{\mathcal{M}^{I, J}}(m, n)=p_{\mathcal{M}^{I, J}}(m)=\sum_{i \geq 1} l_{R}\left(\frac{I^{i}}{I^{i-1} J}\right)\binom{m-i+d-1}{d-1}
$$

and

$$
e_{0}\left(\mathcal{M}^{I, J}\right)=\sum_{i \geq 1} l_{R}\left(\frac{I^{i}}{I^{i-1} J}\right)=\sum_{p \geq 0} l_{R}\left(\frac{I^{p+1}}{I^{p} J}\right)=\Lambda(I, J)
$$

Proposition

The following conditions hold:
(i) $\operatorname{deg}\left(p_{\mathcal{M}^{I, J}}\right)=d-1$ and $e_{0}\left(\mathcal{M}^{I, J}\right)=\Lambda(I, J)$.
(ii) If $\Sigma^{I, J}=0$ then $g r_{I}(R)$ is a Cohen-Macaulay ring. If $\Sigma^{I, J} \neq 0$ then $\operatorname{deg}\left(p_{\Sigma^{I, J}}\right)=d-1$ and $e_{0}\left(\Sigma^{I, J}\right)=e_{1}(I)$.
(iii) $e_{0}\left(K^{I, J}\right)=\delta(I, J)=\Lambda(I, J)-e_{1}(I)$; if $K^{I, J} \neq 0$ then $\operatorname{deg}\left(p_{K^{I, J}}\right)=d-1$. In particular,

$$
\Lambda(I, J) \geq e_{1}(I)
$$

Proposition

(i) $\forall p \geq 0$

$$
\begin{gathered}
e_{0}\left(\Sigma_{[p]}^{I, J}\right)=l_{R}\left(\frac{I^{p+1}}{J I^{p}}\right)-e_{0}\left(K_{[p]}^{I, J}\right) \geq 0, \\
e_{1}(I)=\sum_{p \geq 0} e_{0}\left(\Sigma_{[p]}^{I, J}\right)=\sum_{p \geq 0}\left(l_{R}\left(\frac{I^{p+1}}{J I^{p}}\right)-e_{0}\left(K_{[p]}^{I, J}\right)\right) .
\end{gathered}
$$

(ii) $\forall p \geq 0$

$$
\begin{gathered}
l_{R}\left(\frac{I^{p+1} \cap J}{J I^{p}}\right) \geq e_{0}\left(K_{[p]}^{I, J}\right), \\
\delta(I, J)=e_{0}\left(K^{I, J}\right)=\sum_{p \geq 0} e_{0}\left(K_{[p]}^{I, J}\right) \geq 0 .
\end{gathered}
$$

$\delta_{p}(I, J)=e_{0}\left(K_{[p]}^{I, J}\right)$
$\Lambda_{p}(I, J)=l_{R}\left(I^{p+1} / J I^{p}\right)$
$\Delta_{p}(I, J)=l_{R}\left(I^{p+1} \cap J / J I^{p}\right)$
For all $p \geq 0$

$$
\Delta_{p}(I, J) \geq \delta_{p}(I, J)=\Lambda_{p}(I, J)-e_{0}\left(\Sigma_{[p]}^{I, J}\right)=e_{0}\left(K_{[p]}^{I, J}\right) \geq 0
$$

and adding with respect to p, we recover the known

$$
\Delta(I, J) \geq \delta(I, J)=\Lambda(I, J)-e_{1}(I) \geq 0
$$

Depth of Blow-up algebras

Conjecture (Wang)

$$
\operatorname{depth} g r_{I}(R) \geq d-1-\delta(I, J)
$$

True for $\delta(I, J)=0,1$.
We have decomposed, as finite sum,

$$
\delta(I, J)=\sum_{p \geq 0} \delta_{p}(I, J)=\sum_{p \geq 0} e_{0}\left(K_{[p]}^{I, J}\right)
$$

We consider the hypotheses over $\delta_{p}(I, J)$ instead of over $\delta(I, J)$ to refine this conjecture.

Consider $\bar{\delta}=\max \left\{\delta_{p}(I, J) \mid p \geq 0\right\}$ Theorem
If $\bar{\delta} \leq 1$, then

$$
\begin{gathered}
\operatorname{depth} \mathcal{R}(I) \geq d-\bar{\delta} \\
\operatorname{depth} g r_{I}(R) \geq d-1-\bar{\delta}
\end{gathered}
$$

Sketch of the Proof

We use several times the Depth Formulas proved by Huckaba and Marley:
Theorem (Huckaba-Marley'94)
(R, \mathfrak{m}) CM local ring, $\operatorname{dim} R=d>0, I \mathfrak{m}$-primary ideal. Then

$$
\operatorname{depth} \mathcal{R}(I) \geq \operatorname{depth} g r_{I}(R)
$$

If $\operatorname{gr}_{I}(R)$ is not CM,

$$
\operatorname{depth} \mathcal{R}(I)=\operatorname{depth} g r_{I}(R)+1
$$

Case $\bar{\delta}=0$:
Then $K^{I, J}=0$, and hence $\mathcal{M}^{I, J} \cong \Sigma^{I, J}$ as A-modules. Since $\mathcal{M}^{I, J}$ is d-dimensional CM, then depth $\Sigma^{I, J}=d$, and by depth counting on

$$
0 \longrightarrow \Sigma^{I, J} \longrightarrow g r_{J t}(\mathcal{R}(I)) \longrightarrow \mathcal{R}(J) \longrightarrow 0
$$

we get that depth $g r_{J t}(\mathcal{R}(I)) \geq d$.
Then depth $\mathcal{R}(I) \geq d=d-\bar{\delta}$.

- If $g r_{I}(R)$ is CM , depth $g r_{I}(R)=d \geq d-\bar{\delta}-1$.
- If $g r_{I}(R)$ is not CM, by [HM94], $\operatorname{depth} \operatorname{gr}_{I}(R)=\operatorname{depth} \mathcal{R}(I)-1 \geq d-\bar{\delta}-1$.

Case $\bar{\delta}=1$:
Cases $d=1,2$ are true by [HM94].
Case $d \geq 3$: Since $K_{[p]}^{I, J} \subset \frac{I^{p+1}}{J I^{p}}\left[T_{1}, \ldots, T_{d}\right]=\mathcal{M}_{[p]}^{I, J}$, if $\delta_{p}=1$, then $K_{[p]}^{I, J}$ is a rank one torsion-free $k\left[T_{1}, \ldots, T_{d}\right]$-module.

Now, by Theorem \square

$$
\operatorname{depth} g r_{J t}(\mathcal{R}(I)) \geq d-1
$$

and so,

$$
\operatorname{depth} \mathcal{R}(I) \geq d-1=d-\bar{\delta}
$$

Now, by [HM94],

- If $g r_{I}(R)$ is CM, then depth $g r_{I}(R)=d>d-1-\bar{\delta}$
- If $g r_{I}(R)$ is not CM, then $\operatorname{depth} g r_{I}(R)=\operatorname{depth} \mathcal{R}(I)-1 \geq d-1-\bar{\delta}$

Theorem If $d \geq 3, K^{I, J} \neq 0$ and for all $p, K_{[p]}^{I, J}=0$ or $K_{[p]}^{I, J}$ is a rank one torsion-free $k\left[T_{1}, \ldots, T_{d}\right]$-module, then

$$
\operatorname{depth}^{\operatorname{gr}} r_{J t}(\mathcal{R}(I)) \geq d-1
$$

Sketch of the Proof

Let $p_{1}<\cdots<p_{n}$ be the integers such that $K_{\left[p_{i}\right]}^{I, J} \neq 0$.
For all p, there is the exact sequence,

$$
\begin{equation*}
0 \longrightarrow K_{[p]}^{I, J} \longrightarrow \mathcal{M}_{[p]}^{I, J} \longrightarrow \Sigma_{[p]}^{I, J} \longrightarrow 0 \tag{*}
\end{equation*}
$$

If $p \neq p_{1}, \ldots, p_{n}$, then $\Sigma_{[p]}^{I, J} \cong \mathcal{M}_{[p]}^{I, J}=\frac{I^{p+1}}{J I^{p}}\left[T_{1}, \ldots, T_{d}\right](* *)$.
If $p=p_{1}, \ldots, p_{n},\left(\delta_{p_{i}}=1\right) K_{\left[p_{i}\right]}^{I, J}$ is an ideal of $D=k\left[T_{1}, \ldots, T_{d}\right]$.

Since depth $S_{J}(I) \geq 1$ (Polini'00), and by depth counting on $(*),(* *)$ and in the exact sequences (Vaz-Pinto)

with $C_{p}=\bigoplus_{n \geq 0} \frac{I^{n+p}}{J^{n} I^{p}}$, and since D is factorial, we can prove that in fact, $K_{\left[p_{i}\right]}^{\bar{I}, J}$ is a principal ideal, and so depth $K_{\left[p_{i}\right]}^{I, J}=d$. By depth counting again in ($*$), $\forall p \geq 0$,

$$
\operatorname{depth} \Sigma_{[p]}^{I, J} \geq d-1
$$

Now, by depth counting on

we get that

$$
\operatorname{depth} \Sigma^{I, J} \geq d-1
$$

Finally, by depth counting on

$$
0 \longrightarrow \Sigma^{I, J} \longrightarrow g r_{J t}(\mathcal{R}(I)) \longrightarrow \mathcal{R}(J) \longrightarrow 0
$$

since depth $\mathcal{R}(J)=d+1$ and depth $\Sigma^{I, J} \geq d-1$ then

$$
\operatorname{depth} g r_{J t}(\mathcal{R}(I)) \geq d-1
$$

Question (Guerrieri-Huneke'93)
$\Delta_{p}(I, J) \leq 1, p \geq 0 \Rightarrow \operatorname{depth}\left(g r_{I}(R)\right) \geq d-1$?
(Wang: Negative answer)

As a corollary, we obtain:
Proposition

$$
\Delta_{p}(I, J) \leq 1, \forall p \geq 0 \Rightarrow \operatorname{depth} g r_{I}(R) \geq d-2
$$

Proof: Since $0 \leq \delta_{p} \leq \Delta_{p} \leq 1$, then $\bar{\delta} \leq 1$ and hence depth $g r_{I}(R) \geq d-1-\bar{\delta} \geq d-2$

BlGR $\underset{\text { aZIE }}{\text { ACIES }}$!

Conjectures
\circ

Bigraded structures 0000
\bigcirc

Multiplicities
00 000
000

Depth of Blow-up algebras
-
0000
0000
-

Sally module

(Vasconcelos'94, Vaz Pinto'95)
The Sally module $S_{J}(I)$ of I with respect to J, is defined by the exact sequence of $\mathcal{R}(J)$-modules:

$$
0 \rightarrow I \mathcal{R}(J) \hookrightarrow I \mathcal{R}(I) \rightarrow S_{J}(I)=\bigoplus_{n \geq 0} \frac{I^{n+1}}{J^{n} I} \rightarrow 0
$$

Hilbert function of the Sally module:

$$
h_{S_{J}(I)}(n)=l_{R}\left(I^{n+1} / J^{n} I\right)
$$

If $S_{J}(I) \neq 0$, then $\operatorname{dim} S_{J}(I)=d$, and the Hilbert polynomial is

$$
p_{S_{J}(I)}(n)=\sum_{i=0}^{d-1}(-1)^{i} s_{i}\binom{n+d-i-1}{d-i-1}
$$

If R is CM :
$e_{0}(I)=l_{R}(R / J)$
$e_{1}(I)=s_{0}+l_{R}(I / J)$
$e_{i}(I)=s_{i-1}$, for $i=2, \ldots, d$.

