Bigraded structures and the depth of blow-up algebras

Gemma Colomé Nin and Joan Elias

Universitat de Barcelona

Let $(R, \mathbf{m}, \mathbf{k})$ be a d-dimensional Cohen-Macaulay local ring. Let I be an \mathbf{m}-primary ideal of R with minimal
reduction J.
Problem: to estimate the depth of the associated graded ring $g r_{I}(R)=\oplus_{n \geq 0} I^{n} / I^{n+1}$ and the Rees algebra $\mathcal{R}(I)=\oplus_{n \geq 0} I^{n} t^{n}$ for ideals I having good properties.

$$
\Delta(I, J)=\sum_{p \geq 1} \text { length }_{R}\left(\frac{I^{p+1} \cap J}{I^{p} J}\right) \quad, \quad \Lambda(I, J)=\sum_{p \geq 0} \text { length }_{R}\left(\frac{I^{p+1}}{J I^{p}}\right)
$$

Related conjectures on the depth of $g r_{l}(R)$:
Conjecture (Guerrieri, [2]) $\operatorname{depth}\left(g r_{I}(R)\right) \geq d-\Delta(I, J)$.
$(\Delta(I, J)=0$ Valabrega-Valla, $\Delta(I, J)=1$ Guerrieri, $\Delta(I, J)=2$ Wang.)
We consider the non-negative integer $\delta(I, J)=\Lambda(I, J)-e_{1}(I) \geq 0$ (Huckaba-Marley). Wang showed that $\delta(I, J) \leq \Delta(I, J)$ and that Guerrieri's conjecture is implied by the following one
Conjecture (Wang, [8]) depth $\left(\operatorname{gr}_{I}(R)\right) \geq d-1-\delta(I, J)$.
$(\delta(I, J)=0$ Huckaba-Marley, $\delta(I, J)=1$ Wang and Polini gave a simpler proof, $\delta(I, J)=2$ GuerrieriRossi in the Gorenstein case. Counterexample of Wang for $\delta(I, J)=3$.)

These conjectures aren't true in general case.
Our main result is to prove a refined version of Wang's conjecture, Theorem 2.2. We naturally de compose the integer $\delta(I, J)=\sum \delta_{p}(I, J)$ as a finite sum of non-negative integers $\delta_{p}(I, J)$, with $\Delta_{p}(I, J) \geq \delta_{p}(I, J) \geq 0$. Let us consider the maximum, say $\bar{\delta}(I, J)$, of the integers $\delta_{p}(I, J)$ for $p \geq 0$.

Theorem 2.2. Assume that $\bar{\delta}(I, J) \leq 1$
Then depth $(\mathcal{R}(I)) \geq d-\bar{\delta}(I, J)$ and depth $\left(g r_{r}(R)\right)>d-1-\bar{\delta}(I, J)$.
The aim of this work is to introduce a non-standard bigraded module $\Sigma^{1, J}$ in order to study the depth of the associated graded ring $g r_{I}(R)$ and the Rees algebra $\mathcal{R}(I)$ of I. This module can be considered as a refinement of the Sally module previously introduced by W . Vasconcelos. A secondary purpose is to present a unified framework where several results and objects appearing in the papers on the above conjectures can be studied. The key tool of this paper is the Hilbert function of non-standard bigraded modules.

1 Bigraded Sally module
Let $I=\left(b_{1}, \ldots, b_{\mu}\right)$ be an m -primary ideal of a Cohen-Macaulay local ring R and $J=\left(a_{1}, \ldots, a_{d}\right)$ a minimal reduction of I. The associated graded ring of $\mathcal{R}(I)$ with respect to the homogeneous ideal $J t \mathcal{R}(I)=$ $\oplus_{n \geq 0} J I^{n-1} t^{n}$ is

$$
g r_{J t}(\mathcal{R}(I))=\bigoplus_{j \geq 0} \frac{(J t \mathcal{R}(I))^{j}}{(J t \mathcal{R}(I))^{j+1}} U^{j} .
$$

It has a natural bigraded structure.

Now, given a bigraded A-module $M, A=R / J\left[V_{1}, \ldots, V_{\mu} ; T_{1}, \ldots, T_{d}\right]$, we can consider the Hilbert function
of M defined by

$$
h_{M}(m, n)=\sum_{0 \leq j \leq n} \operatorname{length}_{A}\left(M_{(m, j)}\right)
$$

As $\operatorname{deg}\left(V_{i}\right)=(1,0)$ and $\operatorname{deg}\left(T_{j}\right)=(1,1)$, there exist integers $f_{i}(M) \in \mathbb{Z}, i \geq 0$, and an integer $c \geq 0$, such
that the polynomial

$$
p_{M}(m)=\sum_{i=0}^{c-1} f_{i}(M)\binom{m+c-i}{c-i},
$$

verifies $h_{M}(m, n)=p_{M}(m)$ for all $m \geq m_{0}$ and $n \geq n_{0}+m$ for some integers $m_{0}, n_{0} \geq 0$. This situation holds for the A-modules $\Sigma^{I, J}, \mathcal{M}^{I, J}$, and $K^{I, S}$

Proposition 1.3

$$
p_{\Sigma^{\ell}, u}(m)=\sum_{i=0}^{d-1}(-1)^{i} e_{i+1}(I)\binom{m-1+d-i-1}{d-i-1}
$$

And the following conditions hold:
(i) $e_{0}\left(\mathcal{M}^{I, J}\right)=\Lambda(I, J)$
(ii) If $\Sigma^{I, J}=0$, then $g r_{I}(R)$ is Cohen-Macaulay

If $\Sigma^{I, J} \neq 0$, then $e_{0}\left(\Sigma^{I, J}\right)=\sum_{p \geq 0} e_{0}\left(\Sigma_{[p]}^{I, J}\right)=e_{1}(I)$
and $e_{0}\left(\sum_{[p]}^{I, J}\right)=$ length $_{R}\left(\frac{I p+1}{I^{p}}\right)-e_{0}\left(K_{[p]}^{I, T}\right)$
(iii) $e_{0}\left(K^{I, J}\right)=\sum_{p \geq 0} e_{0}\left(K_{[p]}^{I, J}\right)=\delta(I, J)$
(iv) length $h_{R}\left(\frac{I^{p+1} \cap J J}{J I^{P}}\right) \geq e_{0}\left(K_{[p]}^{I, J}\right)$

We have $\Delta(I, J) \geq \delta(I, J)=\Lambda(I, J)-e_{1}(I) \geq 0$. In the next result we show that these inequalities can we deduced from some "local" inequalities. For all $p \geq 0$ we define the following the integers

$$
\Delta_{p}(I, J)=\text { length }_{R}\left(\frac{I^{p+1} \cap J}{J I^{p}}\right), \delta_{p}(I, J)=e_{0}\left(K_{[p]}^{L, J}\right) \quad \text { and } \quad \Lambda_{p}(I, J)=\text { length }_{R}\left(\frac{I^{p+1}}{J I^{p}}\right)
$$

From the last result we deduce

Proposition 1.4 For all $p \geq 0$ the following inequalities hold
$\Delta_{p}(I, J) \geq \delta_{p}(I, J)=\Lambda_{p}(I, J)-e_{0}\left(\Sigma_{[p]}^{I, J}\right) \geq 0$.
Summing up these inequalities with respect p we get
$\Delta(I, J) \geq \delta(I, J)=\Lambda(I, J)-e_{1}(I) \geq 0$.

Consider the bigraded ring $B:=R\left[V_{1}, \ldots, V_{i} ; T_{1}, \ldots, T_{d}\right]$ with $\operatorname{deg}\left(V_{i}\right)=(1,0)$ and $\operatorname{deg}\left(T_{i}\right)=(1,1)$. There exists an exact sequence of bigraded B-rings

$$
0 \longrightarrow K^{I, J} \longrightarrow C^{I, J}:=\frac{\mathcal{R}(I)}{J t \mathcal{R}(I)}\left[T_{1}, \ldots, T_{d}\right] \xrightarrow{\pi} g r_{J t}(\mathcal{R}(I)) \longrightarrow 0
$$

with $\pi\left(T_{i}\right)=a_{i} t U, i=1, \ldots, d ; K^{I, J}$ is the ideal of initial forms of $J t \mathcal{R}(I)$.
Given a B-bigraded module M and an integer $p \in \mathbb{Z}, M_{[p]}$ is the additive sub-group of M defined by the direct sum of the pieces $M_{[m, n)}$ such that $m-n=p+1 . M_{\geq p}=\bigoplus_{n \geq p} M_{[n]}$ is a sub-B-module of M, and we can consider the exact sequence of $R\left[T_{1}, \ldots, T_{d}\right]$-modules

$$
0 \longrightarrow M_{[p]} \longrightarrow M_{\geq p} \longrightarrow M_{\geq p+1} \longrightarrow 0
$$

In the case of our modules $K_{[p]}^{I, J}, C_{[p]}^{I, J}$ and $g r_{, J t}(\mathcal{R}(I))_{[p]}$, they are $\mathcal{R}(J)$-modules.
Let us consider the following bigraded finitely generated B-modules:

$$
\begin{aligned}
& \Sigma^{I, J}=\bigoplus_{p \geq 0} g r_{J t}(\mathcal{R}(I))_{[p]} \\
& \mathcal{M}^{I, J}=\bigoplus_{p \geq 0} C_{[p]}^{I, J} \cong \bigoplus_{p \geq 0} \supseteq I^{I^{p+1},}
\end{aligned} t^{p+1}\left[T_{1}, \ldots, T_{d}\right] .
$$

$K^{I, J}=\bigoplus_{p \geq 0} K_{[p]}^{I, J}$
There exists a natural isomorphism of $\mathcal{R}(J)-$ modules $g r_{J t}(\mathcal{R}(I)) \cong \mathcal{R}(J) \oplus \Sigma^{I, J}$
There exists the following exact sequence of $A=B \otimes_{R} R / J \cong R / J\left[V_{1}, \ldots, V_{\mu} ; T_{1}, \ldots, T_{d}\right]$-bigraded module

$$
0 \longrightarrow K^{I, J} \longrightarrow \mathcal{M}^{I, J} \longrightarrow \Sigma^{I, J} \longrightarrow 0 .
$$

For all $p \geq 0$ we have an exact sequence of $R / J\left[T_{1}, \ldots, T_{d}\right]$-modules

$$
0 \longrightarrow K_{[p]}^{[, \mid} \longrightarrow \mathcal{M}_{[p \mid}^{[, J}=\frac{I^{p+1}}{J I^{p}}\left[T_{1}, \ldots, T_{d]}\right] \longrightarrow \Sigma_{[p]}^{, J} \longrightarrow 0,
$$

so we can consider the (classic) Hilbert function of $\Sigma_{[p]}^{[, J}, \mathcal{M}_{[P]}^{I, J}$ and $K_{[p]}^{L, J}$ with respect the variables T_{1}, \ldots, T_{d}
Definition $1.1 \Sigma^{t, J}$ is the bigraded Sally module of I with respect J

Remark 1.2
length $_{R}\left(\Sigma_{(m+1, *)}^{I, J}\right)=$ length $_{R}\left(S_{J}(I)_{m}\right)+$ length $_{R}\left(\frac{I J^{m}}{J^{m+1}}\right)$

2 On the depth of the blow-up algebras
The aim of this section is to prove a refined version of Wang's conjecture by considering some special configurations of the set $\left\{\delta_{p}(I, J)\right\}_{p \geq 0}$ instead of $\delta=\sum_{p \geq 0} \delta_{p}(I, J)$, Theorem 2.2. As a by-product we recover the known cases of Wang's conjecture, Corollary 2.5. Let us consider $\delta(I, J)$ the maximum of the integers $\delta_{p}(I, J)$ for $p \geq 0$.

Theorem 2.1 Assume that $d \geq 3$. Let us assume that $K^{I, J} \neq 0$, and either $K_{[p]}^{I, J}=0$ or $K_{[p]}^{I, J}$ is a rank one torsion free $\mathbf{k}\left[T_{1}, \ldots, T_{d}\right]$-module for $p \geq 0$. Then $\operatorname{depth}\left(g r_{J t}(\mathcal{R}(I))\right) \geq d-1$.

Theorem 2.2 Assume that $\delta(I, J) \leq 1$. Then $\operatorname{depth}(\mathcal{R}(I)) \geq d-\bar{\delta}(I, J) \quad$ and $\quad \operatorname{depth}\left(g r_{I}(R)\right) \geq d-1-\bar{\delta}(I, J)$

Remark 2.3 An example of Wang in [9] shows that the last result is sharp in the sense that we cannot expect to have $\operatorname{depth}\left(g r_{I}(R)\right) \geq d-1$ provided $\delta(I, J)=1$. Precisely, it is a counterexample for the question formulated by Guerrieri in [1]. She asked if it were true that $\operatorname{depth}\left(g r_{(}(R)\right) \geq d-1$ for an m -primary ideal I in a d-dimensional Cohen-Macaulay ring provided that $\Delta_{p}(I, J) \leq 1 \forall p \geq 1$. Wang reformulate the question in the regular case. Relating to this, we are able to improve the bound for the Cohen-Macaulay case:

Proposition 2.4 Assuming that $\Delta_{p}(I, J) \leq 1$ for all $p \geq 1$ we have that $\operatorname{depth}\left(g r_{l}(R)\right) \geq d-2$.
Now we prove the Conjecture of Wang in the known cases, [8], as a corollary of the previous results.

Corollary 2.5
$\operatorname{depth}\left(g r_{l}(R)\right) \geq d-1-\delta(I, J)$
for $\delta(I, J)=0,1$.

References

(1) A. Guerrieri, On the depth of certain graded rings associated to an ideal, Ph.D. dissertation, Purdue University, 1993
[2] A. Guerrieri, On the depth of the associated graded ring of an m-primary ideal of a Cohen-Macculay local ring, J. of
[3] A. Guarrieri and M. E. Rossi, Estimates on the depth of the associated graded ring, J. Algebra 211 (1999), no. 2,
[4] C. Poinin, A filtration of the Sally module and the associated graded ring of an ideal, Comm. Algebra 28 (2000), no. 3.
(5) P. Valabrega and G. Valla, Form rings and regular sequences, Nagoya Math. J. 72 (1978), 93-101.
[6] W.V. Vasconcelos, Hilbert functions, analytic spread, and Koszul homology, Contemp. Math. 159 (1994), 401-422.
[7] M.T.R. Vaz Pinto, Structure of Sally modules and Hilbert functions, Ph.D. thesis, Rutgers University, 1995.
[8] H. J. Wang, Hilbert coefficients and the associated graded rings, Proc. Amer. Math. Soc. 128 (2000), no. 4, 785-801.
$[9]$ H. J. Wang, On the associated graded rings of ideals of Cohen-Macaulay rings, Comm. Algebra 30 (2002) no 4 ,

