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Chapter 1

The hidden clique problem

In order to warm up and to get a feeling of what we mean by combinatorial statistics,
in this introductory chapter we discuss a classical problem, the so-called hidden
clique (or planted clique) problem. While the question is simple to state, after a
few simple observations one quickly runs into unexpected difficulties and, after
decades of serious attempts, the basic question still remains far from being solved.

1.1 A hypothesis testing problem

The hidden clique problem is a simple hypothesis testing problem in which one
observes a (labeled) graph on the set of vertices V = {1, . . . ,n} = [n]. One is asked
to decide between two possible ways the observed graph is generated: either the
graph is an Erdős-Rényi random graph G(n,1/2) (i.e., each pair of vertices is con-
nected by an edge independently, with probability 1/2) or, alternatively, the graph
is distributed as G(n,1/2, k), in which a random subset of k of the vertices form a
clique and all other edges are present independently, with probability 1/2.

One may formally set up the problem as a hypothesis testing problem in
which the null hypothesis is that an observed graph g is a realization of a random
graph G drawn from the distribution P0 of a G(n,1/2) random graph. The alterna-
tive hypothesis is that g is drawn from the distribution P1 of G(n,1/2, k).

In other words, P0{G = g} = 2−(
n
2) for all graphs g, and

P1{G = g} = 1(n
k

) ∑
S⊂V :|S |=k

PS{G = g} ,

where for each set S of k vertices, PS denotes the distribution of a random graph
with S as a planted clique, that is,

PS{G = g} =
{

0 if S is not a clique of g

2−(
n
2)+(k2) otherwise.

4



One may represent a graph g on the vertex set V = {1, . . . ,n} by a binary vector
of length

(n
2
)

indexed by pairs (i, j) of vertices (1 ≤ i < j ≤ n) such that g(i,j) = 1
if vertices i and j are joined by an edge in g and g(i,j) = 0 otherwise. A test is

a function T : {0,1}(
n
2) → {0,1}. If T (g) = 0, we say that the test accepts the null

hypothesis, otherwise it rejects it.

There are various ways of measuring the performance of a test. The type I
error is the probability that the null hypothesis is incorrectly rejected, that is,

P0 {T (G) = 1} .

Symmetrically, type II error is P1 {T (G) = 0}. A simple way of measuring the quality
of a test T is by its risk, defined as the sum of the two types of errors

R(T ) = P0 {T (G) = 1}+P1 {T (G) = 0} .

As it is well known—and easy to prove—, the test T ∗ that minimizes the risk is the
so-called likelihood ratio test defined by

T ∗(g) = 0 if and only if L(g) ≤ 1 ,

where

L(g) =
P1{G = g}
P0{G = g}

is the likelihood ratio. The risk of the optimal test equals

R∗ = R(T ∗) = 1− 1
2

∑
g

|P1{G = g} −P0{G = g}| = 1− 1
2
E0|L(G)− 1| , (1.1)

where E0 denotes expectation with respect to the probability measure P0. We leave
the derivation of these simple facts as exercises. Note that

R∗ = 1−D(P0,P1) ,

where D(µ,ν) = supA |µ(A) − ν(A)| denotes the total variation distance between the
probability measures µ and ν. (The supremum is taken over all measurable sets
A.)

It is intuitively clear that for large values of k the testing problem is “easy”
in the sense that there exists a test with a small risk. On the other hand, small
hidden cliques are difficult—or even impossible—to detect which means that R∗ is
close to its maximum value 1. (Note that for the trivial test that always accepts the
null hypothesis, one has R(T ) = 1.)

Our goal first is to understand for what values of k (as a function of n) is
R∗ close to zero or one. As it turns out, remarkably tight results may be deduced
quite simply. In particular, in the next two sections we prove the following result
that shows that the transition from asymptotically vanishing to maximal risk is
surprisingly sharp. It all happens in an inteval of length at most two!
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Theorem 1.2. Let ε > 0 be arbitrary and defineωn = 2log2n−2log2 log2n−1+2log2 e.
Then the minimal possible risk of any test for detecting a hidden clique of size k = kn
satisfies

lim
n→∞

R∗ = 0 if kn > bωn + εc

lim
n→∞

R∗ = 1 if kn < bωn − εc .

The theorem follows from Propositions 1.3 and 1.6 below. As in the theorem
above, we are mostly interested in large values of n. Given a sequence of events
(An), we say that An occurs with high probability if the probability of An tends to 1
as n→∞.

1.2 The clique number of the Erdős-Rényi random graph and a

simple test

To prove upper bounds for R∗, it suffices to construct a test with a small risk. A
natural candidate is a test based on the size of the largest clique of the observed
graph. To analyze such a test, we need to understand the behavior of the size
(i.e., the number of vertices) of the largest clique of an Erdős-Rényi random graph
G ∼ G(n,1/2). The clique number of a graph is defined as the size of the largest
clique in the graph.

For our purposes it suffices to derive upper bounds for the clique number
ω(G), of an Erdős-Rényi random graph G. This may be done by the so-called first
moment method as follows. For a positive integer m ≤ n, denote by Nm the number
of cliques of size m in G. Then, by the linearity of expectation,

ENm =
(
n
m

)
2−(

m
2) ,

as each of the
(n
m

)
subsets of V of sizem forms a clique with probability 2−(

m
2). Since

P {ω(G) ≥m} = P {Nm ≥ 1} ≤ ENm ,

we see that ω(G) < m with high probability, whenever
(n
m

)
2−(

m
2) → 0. By a quick

calculation, we see that this is the case for m ≥ 2log2n+ 3. Indeed, for such values,
using nothing but

(n
m

)
≤ nm, we have(
n
m

)
2−(

m
2) ≤

(
n2−(m−1)/2

)m
≤ 2−m→ 0 .

By a more careful bounding of the binomial coefficients using Stirling’s formula
(Exercise 1.2), one may show that for any ε > 0,

ω(G) ≤ bωn + εc with high probability ,
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where ωn = 2log2n− 2log2 log2n− 1 + 2log2 e.

Now we may use this bound to establish a lower bound for the value of k
such that a hidden clique of size k is detectable in the sense that the risk of the
optimal test converges to zero.

Proposition 1.3. Let ε > 0. Consider the test T that, upon observing the graph G
accepts the null hypothesis (i.e., that G ∼ G(n,1/2)) if and only if the largest clique of G
has size less than k. Then R(T )→ 0 as n→∞ whenever k > bωn + εc.

Proof. By the argument above, under the null hypothesis, the largest clique of G
is not larger than bωn + εc, with high probability, and therefore P0{T (X) = 1} → 0.
On the other hand, under the alternative hypothesis, G contains a clique of size
k > bωn + εc with probability one, making P1{T (X) = 0} = 0.

The results of this section show that the simple test that checks whether the
largest clique has at least k vertices has a vanishing risk whenever k > ωn + 1 ≈
2log2n − 2log2 log2n. This test cannot work for smaller values of k because the
largest clique in G(n,1/2) is, in fact, at least bωn − εc, with high probability, for all
ε > 0. In other words, the clique number satisfies the remarkable property that

ω(G) ∈ (bωn − εc,bωn + εc) with high probability .

Thus, ω(G) is concentrated on just two values, with high probability. The lower
bound may be proven by the second moment method whose basic idea is that, for
any integer m ≤ n,

P {ω(G) < m} = P {Nm = 0} = P {Nm −ENm ≤ −ENm} ≤
Var(Nm)

(ENm)2 ,

by Chebyshev’s inequality. As we have already seen in the previous section, ENm =(n
m

)
2−(

m
2). Moreover,

EN 2
m = E

 ∑
S⊂V :|S |=m

1{S is a clique in G}


2

=
∑

S,T⊂V :|S |=|T |=m
P {S,T are both cliques in G}

=
(
n
m

)
2−(

m
2)

m∑
i=0

(
m
i

)(
n−m
m− i

)
2−(

m
2)+(i2) . (1.4)
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Thus,

Var(Nm)

(ENm)2 =
EN 2

m

(ENm)2 − 1

=

∑m
i=0

(m
i

)(n−m
m−i

)
2−(

m
2)+(i2)(n

m

)
2−(

m
2)

− 1

≤
∑m
i=1

(m
i

)(n−m
m−i

)
2(i2)(n

m

) . (1.5)

By careful bounding of the binomial coefficients, one may now show that the ex-
pression above converges to zero whenever m < bωn − εc, concluding the proof of
the two-point concentration of the clique number ω(G).

1.3 Lower bound for the risk

In the previous section we examined of the performance of the simple test that
accepts the null hypothesis if the largest clique has at least k vertices. We showed
that the test has a vanishing risk when k is at least bωn+εc but it has a risk tending
to 1 when k < bωn − εc.

In this section we study whether there exist other tests that work for even
smaller values of k. Do there exist “smarter” tests that are able to distinguish the
null hypothesis from the alternative even if k is smaller than the typical size of the
largest clique in a random graph G(n,1/2)?

To address this question, we derive a lower bound for the minimal risk R∗.
Recall the expression (1.1) for the optimal risk. Using the Cauchy-Schwarz in-
equality and the fact that E0L(G) = 1,

R∗ = 1− 1
2
E0|L(G)− 1| ≥ 1− 1

2

√
E0(L(G)− 1)2 = 1− 1

2

√
E0 [L(G)2]− 1 .

Note that for any g ∈ {0,1}(
n
2), the likelihood ratio equals

L(g) =

1
(nk)

∑
S⊂V :|S |=k PS{G = g}

P0{G = g}

= 2(n2) 1(n
k

) ∑
S⊂V :|S |=k

1{S is a clique in g}2
−(n2)+(k2)

= 2(k2) 1(n
k

) ∑
S⊂V :|S |=k

1{S is a clique in g} .
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Thus,

E0

[
L(G)2

]
= 2k(k−1) 1(n

k

)2

∑
S,T⊂V :|S |=|T |=k

P {S,T are both cliques in G}

=

∑k
i=0

(k
i

)(n−k
k−i

)
2(i2)(n

k

) ,

where we used the expression (1.4). Now observe that

E0

[
L(G)2

]
− 1 ≤

∑k
i=1

(k
i

)(n−k
k−i

)
2(i2)(n

k

) ,

an identical expression with that of (1.5) from the previous section. Thus, we have
that E0

[
L(G)2

]
− 1→ 0 whenever k < bωn − εc.

We have shown the following lower bound, showing that detection of a hid-
den clique of size k is impossible by any test if k < bωn − εc.

Proposition 1.6. For any ε > 0, if k < bωn − εc, then the minimal possible risk of any
test for the hidden clique problem has R∗→ 1 as n→∞.

1.4 Finding the hidden clique: detection vs. estimation

So far we have considered the problem of testing whether a certain random graph
has a planted clique of size k. A more challenging problem is, in fact, finding the
planted clique—if it exists. Thus, as opposed to merely detecting the presence of
a hidden clique, one wishes to identify it. One may ask how large k needs to be
such that, upon observing a graph, the hidden clique may be found, with high
probability. This is the so-called estimation problem.

More formally, upon observing a graph G, drawn from the distribution of
G(n,1/2, k), one is required to determine a set Ŝ ⊂ V , of cardinality k. The goal is
that Ŝ equals the (random) subset S of vertices over which the clique is planted. We
may measure the performance of the estimator by the probability of error P1{Ŝ ,
S}. (Recall that P1 denotes the distribution of G(n,1/2, k).)

Here we show that in the hidden clique problem, the estimation problem is
not more difficult than the testing problem. More precisely, we prove that when
k > bωn+εc, a random graphG drawn from the distribution G(n,1/2, k) has a unique
clique of size k, with high probability. Thus, the estimator that outputs any clique
of size k if such a clique exists and the empty set otherwise errs with probability
converging to zero.
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Theorem1.7. If k > bωn+εc, then, with high probability, a random graphG ∼ G(n,1/2, k)
has a unique clique of size k.

Proof. Once again, we use the first moment method. Indeed, by symmetry, we may
fix S = {1, . . . , k} as the planted clique and note that

P1 {G has two cliques of size k}
= PS {G has a clique of size k different from S}
≤ ESN,Sk ,

where ES denotes expectation with respect to the distribution PS and N,Sk denotes
the number of cliques of size k in G that are different from S. Simple counting
shows that

ESN,Sk =
k−1∑
i=0

(
k
i

)(
n− k
k − i

)
2−(

k
2)+(i2) .

It suffices to show that ESN,Sk → 0 whenever k ≥ bωn + εc.

First we examine the case when k is large, say k ≥ n1/3. In this case

ESN,Sk =
bk/2c∑
i=0

(
k
i

)(
n− k
k − i

)
2−(

k
2)+(i2) +

k−1∑
i=bk/2c+1

(
k
i

)(
n− k
k − i

)
2−(

k
2)+(i2)

≤
bk/2c∑
i=0

kink−i2−(
k
2)+(i2) +

k−1∑
i=bk/2c+1

kk−ink−i2−(k−i)(k+i−1)/2

≤
(
n2−k/4+1/2

)k bk/2c∑
i=0

(
k
n

)i
+

k−1∑
i=bk/2c+1

(
kn2−(k+i−1)/2

)k−i
→ 0 .

Suppose now that k ∈ [bωn + εc+ 1,n1/3]. Again, we split the sum as

ESN,Sk =
∑̀
i=0

(
k
i

)(
n− k
k − i

)
2−(

k
2)+(i2) +

k−1∑
i=`+1

(
k
i

)(
n− k
k − i

)
2−(

k
2)+(i2)

for ` = b(2/3)log2(n/2)c. Using
(n−k
k−i

)
≤

(n
k

)
(k/(n− k))i , we write the first term as

∑̀
i=0

(
k
i

)(
n− k
k − i

)
2−(

k
2)+(i2) ≤

(
n
k

)
2−(

k
2)
∑̀
i=0

(
k22(i−1)/2

n− k

)i
,

which tends to zero since
(n
k

)
2−(

k
2)→ 0 by what is shown in Section 1.2 and because

2(i−1)/2 ≤ (n − k)/k2 by our choice of ` and since k ≤ n1/3. It remains to bound the

10



second term on the right-hand side. We may write

k−1∑
i=`+1

(
k
i

)(
n− k
k − i

)
2−(

k
2)+(i2) ≤

k−1∑
i=`+1

kk−ink−i

(k − i)!2
2−(k−i)(k+i−1)/2

≤
k−1∑
i=`+1

(
kne22−(k+i−1)/2

(k − i)2

)k−i
(by Stirling’s formula)

To finish the proof, it suffices to show that the expression within the parentheses
goes to zero uniformly for all i > (2/3)log2(n/2). But this follows since for i ≥ k/2,

2(k+i−1)/2 ≥ 23k/2−1 ≥ n3/2

2log3/2n
� kn

and for i ∈
(
(2/3)log2(n/2), k/2

)
,

2(k+i−1)/2 ≥ 2k/2+(1/3)log2(n/2)−1 ≥ (n/2)4/3

log4/3n
� kn

(k − i)2 .

1.5 Computationally efficient detection

With the limits of possible detection and estimation well understood, one may ask
for efficient algorithms. The optimal (likelihood-ratio) test involves computing
a sum of

(n
k

)
terms, which is clearly not computationally efficient. Also, the test

used to establish upper bounds for the risk requires the computation of the largest
clique in a graph (or at least checking the existence of a clique of size larger than
ωn ≈ 2log2n). One may do this by exhaustively searching over all ωn + 1-tuples of
vertices, taking time proportional to nO(logn). However, finding large cliques in a
computationally efficient way is a notoriously difficult problem and the challenge
of constructing tests computable in polynomial time has been taken up by many
researchers. However, in spite of the considerable effort invested, all known com-
putationally efficient tests have a significantly weaker performance in the sense
that they are only able to detect the presence of much larger cliques than ωn. In
what follows we survey some of the basic results in this direction, with special at-
tention to spectral techniques that prove to be a powerful tool in a wide variety of
problems in combinatorial statistics.

Let us start with the possibly simplest reasonable test that one can imagine:
count the number N of edges in the observed graph. Under the null hypothesis,
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N is binomially distributed, with parameters (
(n

2
)
,1/2), while in the presence of a

hidden clique on k vertices,N ∼
(k
2
)
+Bin

((n
2
)
−
(k
2
)
,1/2

)
. Thus, it is natural to define

the test

T (G) = 0 if and only if N ≤
(n

2
)

2
+

(k
2
)

4
.

We may bound errors of both type using Hoeffding’s inequality (see Theorem A.4
in the Appendix), and conclude that the risk of this simple test is at most

R(T ) ≤ 2e−(k−1)4/(16n2) .

In other words, for any δ ∈ (0,1), one may achieve a risk not larger than δwhenever
k > 2n1/2 log1/4(2/δ). A simple argument, using the central limit theorem, shows
that this bound is not improvable in the sense that no test that only uses the total
edge count can perform significantly better than T .

Not surprisingly, this test is considerably weaker than the essentially opti-
mal test studied in Section 1.2, since the edge count ignores any structure of the
graph. Indeed, the gap between the logarithmic clique size detectable by the opti-
mal test and the bound 2n1/2 log1/4(2/δ) achieved here appears abysmal.

It is much more surprising that no computationally efficient test is known
to be able to detect cliques of size o(n1/2). By “computationally efficient” we refer
to the mild notion of computability in time polynomial in n. In what follows, we
describe a spectral method that is able to shave off the log1/4(1/δ) factor from the
simplistic bound described above. While this may not seem to be a remarkable
achievement, this is essentially the best available bound for any computationally
efficient test and the spectral techniques on which the test relies are useful in a
much wider context and they are worth learning.

1.6 The spectral norm of a random graph

The spectral test we study here is based on the spectral norm of the adjacency
matrix of the observed graph G. It is slightly more convenient to work with the
signed adjacency matrix A = (Ai,j), defined by

Ai,j =


0 if i = j
1 if i , j and vertices i and j are joined by an edge
−1 otherwise .

Thus, under the null hypothesis (i.e., when G ∼ G(n,1/2)), the random variables
(Ai,j)1≤i<j≤n are independent symmetric sign variables. Recall that the spectral
norm of A equals

‖A‖ = sup
x∈Sn−1

| 〈x,Ax〉 | ,

12



where the supremum is taken over the Euclidean unit sphere Sn−1 = {x ∈ Rn : ‖x‖ =
1}.

We show that in the presence of a sufficiently large hidden clique, ‖A‖ is
larger, with high probability, than that under the null hypothesis. In particular,
we prove the following.

Theorem 1.8. Let δ ∈ (0,1) and consider the test T that accepts the null hypothesis
if an only if ‖A‖ ≤ 4

√
(log9)n+ log(2/δ). Then the risk of the test satisfies R(T ) ≤ δ

whenever k > 4
√

(log9)n+ log(2/δ).

Thus, the spectral test achieves a better performance than counting edges.
If one is merely interested in a test that has a risk at most (say) δ = 1/10, then the
difference between the bounds 4

√
(log9)n+ log(1/δ) and 2n1/2 log1/4(2/δ) is not im-

portant. (In fact, we obtain better constants for the edge-counting test.) However,
if one insists on exponentially small probabilities of error then the spectral test has
a superior performance. Taking δ = e−n the advantage becomes clear: the spectral
test is able to detect the presence of cliques of size Ω(

√
n) while the edge-counting

bound only gives Ω(n3/4). In this sense the spectral test is much more robust.

Note that the spectral norm of a matrix is computable in polynomial time
and hence this test is computationally feasible though not as efficient as just count-
ing edges.

Proof. When a clique on the vertex set S of size k is present, then we may consider
the unit vector xS with components (x1, . . . ,xn) such that xi = 1/

√
k if i ∈ S and

xi = 0 otherwise. Then

‖A‖ ≥ 〈xS ,AxS〉 =
∑

i,j∈S:i,j

1
k

= k − 1 .

Thus, under the alternative hypothesis, P1{‖A‖ ≥ k − 1} = 1.

It remains to examine the spectral norm of A under the null hypothesis (i.e.,
when G ∼ G(n,1/2)). In order to derive an upper bound, we consider a 1/4-net of
the unit sphere Sn−1, that is, a subset N of Sn−1 of minimal size such that for all
x ∈ Sn−1 there exists y ∈ N with ‖x−y‖ ≤ 1/4. A simple argument based on volumes
shows that |N | ≤ 9n (see Theorem B.2 in the Appendix).

Let x∗ ∈ Sn−1 be such that ‖A‖ = | 〈x∗,Ax∗〉 | and let y ∈ N be such that ‖x∗ −
y‖ ≤ 1/4.

‖A‖ = |
〈
y,Ay

〉
+
〈
x∗ − y,Ax∗

〉
+
〈
y,A(x∗ − y)

〉
|

≤ |
〈
y,Ay

〉
|+ 2‖A‖ · ‖x∗ − y‖

(by the Cauchy-Schwarz inequality)

≤ |
〈
y,Ay

〉
|+ 1

2
‖A‖ .
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Thus, ‖A‖ ≤ 2maxy∈N |
〈
y,Ay

〉
| and therefore it suffices to bound the maximum

over the finite 1/4-net.

For any fixed y = (y1, . . . , yn) ∈ Sn−1 and t > 0,

P0 {|
〈
y,Ay

〉
| > t} = P0


∣∣∣∣∣∣∣∣

∑
1≤i<j≤n

Ai,jyiyj

∣∣∣∣∣∣∣∣ > t2


≤ 2exp

 −t2

8
∑

1≤i<j≤n y
2
i y

2
j

 (by Hoeffding’s inequality–Theorem A.4)

≤ 2exp
(
−t

2

4

)
,

where we used the fact that ‖y‖ = 1 and therefore

∑
1≤i<j≤n

y2
i y

2
j =

1
2

 ∑
i,j∈[n]

y2
i y

2
j −

∑
i∈[n]

y4
i

 ≤ 1
2

∑
i,j∈[n]

y2
i y

2
j =

1
2
.

Thus, using the union bound, we obtain that

P0 {‖A‖ > t} ≤ 9nmax
y∈N

P0 {|
〈
y,Ay

〉
| > t/2} ≤ 2 · 9ne−t

2/16 = δ (1.9)

when t = 4
√

(log9)n+ log(2/δ), as desired.

The constants appearing in the theorem are not optimal. In fact, under
the null hypothesis, ‖A‖ is known to converge to 2

√
n by a celebrated result of

Füredi and Komlós [34]. However, the elementary proof shown here provides non-
asymptotic bounds with exponential inequalities and the techniques extend to a
wider class of random matrices—see Vershynin [72] for a survey.

The value of the constant can always be improved at the price of increas-
ing the computational cost. In fact, if one has an algorithm that is able to detect
hidden cliques of size c

√
n+ log(1/δ) with a probability of error at most 1/δ, one

may obtain another algorithm able to detect hidden cliques of size c
√
n/2 + log(n/δ)

by multiplying the computational complexity by O(
√
n log(1/δ)). Indeed one may

pick a random vertex v. If v happens to belong to the hidden clique, then running
the algorithm on the subgraph induced by the vertices adjacent to v, the clique
will correctly be detected. This subgraph has about half of the size of the orig-
inal graph, hence the improvement in the constant. If the algorithm fails to de-
tect, one may repeat the procedure with another randomly drawn vertex. After
(n/k) log(1/δ) random vertices, one hits the hidden clique with probability at least
1− δ.

14



Spectral methods may be used not only for detecting the presence of a hid-
den clique but also to identify it, provided that the clique is sufficiently large. Such
an algorithm is discussed in the next section.

1.7 A spectral algorithm for finding the hidden clique

In this section we show that spectral methods may also be used not only to detect
but also to find hidden cliques. A simple method considers the eigenvector cor-
responding to the largest eigenvalue of the signed adjacency matrix A introduced
in the previous section. In other words, we consider the random vector V ∈ Sn−1

defined by
V = argmax

x∈Sn−1
〈x,Ax〉 .

As it is pointed out in the previous section, if the vertex set of the hidden clique
is S, the value of the quadratic form 〈x,Ax〉 is quite large for the vector x = xS
(whose components are xi = 1/

√
k if i ∈ S and xi = 0 otherwise). Thus, one might

expect that the components of V tend to be large within S and small outside of S.
Indeed, in what follows, we confirm this intuition and establish a simple procedure
based on the largest entries of the eigenvector V . Since V may be computed in
polynomial time, the following simple algorithm is computationally efficient:

(1) Let T ⊂ {1, . . . ,n} be the set of vertices corresponding to the k largest entries of
V = (V1, . . . ,Vn).

(2) Let Ŝ ⊂ {1, . . . ,n} be the subset of vertices of size k that have the highest number
of adjacent vertices in T .

We have the following performance guarantee.

Theorem 1.10. Let δ ∈ (0,1) and let S ⊂ {1, . . . ,n} have cardinality k. Assume that
a random graph is generated according to PS , that is, with S as a planted clique. If
k ≥ 25

(
8
√

(log9)n+ log(4/δ) + 1
)
, then

P
{
Ŝ , S

}
≤ δ .

The key of the proof is to show that T contains a large fraction of the ver-
tices of the hidden clique. In order to show this, first we prove that V puts most of
its “weight” on the components in S. In a second step we prove that this weight is
roughly uniformly distributed in S. The following two lemmas make these state-
ments rigorous.

Let U be the vector whose components are

Ui =
{
Vi if i ∈ S
0 otherwise.
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Lemma 1.11. Assume k ≥ 25
(
8
√

(log9)n+ log(4/δ) + 1
)
. Consider the decomposition

V = U +W . Then, with probability at least 1− δ/2, ‖W ‖ ≤ 1/5.

Proof. By the defining optimality property of V ,

k − 1 = 〈xS ,AxS〉
≤ 〈V ,AV 〉
= 〈U ,AU 〉+ 2〈U ,AW 〉+ 〈W ,AW 〉
≤ k ‖U ‖2 + 2〈U ,AW 〉+ 〈W ,AW 〉 (1.12)

where we used the fact that

〈U ,AU 〉 =

 k∑
i=1

Ui


2

≤ k ‖U ‖2

by Cauchy-Schwarz. Define the symmetric random matrix A(0) =
(
A

(0)
i,j

)
n×n

such

that A(0)
i,j = Ai,j whenever at least one of i and j is not in S, A(0)

i,i = 0 for i ∈ S and

all other entries A(0)
i,j for i, j ∈ S, i < j are independent symmetric sign variables.

Note that A(0) is the signed adjacency matrix of a G(n,1/2) random graph. Since
the entries of W with index in S are zero, AW = A(0)W , and therefore (1.12) equals

k ‖U ‖2 + 2
〈
U ,A(0)W

〉
+
〈
W ,A(0)W

〉
≤ k ‖U ‖2 +

∥∥∥A(0)
∥∥∥(2‖U ‖ · ‖W ‖+ ‖W ‖2

)
≤ k

(
1− ‖W ‖2

)
+ 2

∥∥∥A(0)
∥∥∥ .

Rearranging the obtained inequality, we have

‖W ‖2 ≤
2
∥∥∥A(0)

∥∥∥+ 1

k
.

Recalling (1.9) from the previous section, we see that the right-hand side is at most
1/25 with probability at least 1 − δ/2 whenever k ≥ 25

(
8
√

(log9)n+ log(4/δ) + 1
)
.

The next lemma shows that the components of V that belong to S are ap-
proximately even.

Lemma 1.13. Assume k ≥ 25
(
8
√

(log9)n+ log(4/δ) + 1
)
. Let V = U + W be as in

Lemma 1.11 and write U = αxS +R where α ∈ R and 〈xS ,R〉 = 0. On the same event of
probability at least 1− δ/2 as in Lemma 1.11, α2 ≥ 24/25 and ‖R‖ ≤ 1/5.
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Proof. Recall from the proof of Lemma 1.11 that

〈U ,AU 〉 ≥ k − 1−
(
2
〈
U ,A(0)W

〉
+
〈
W ,A(0)W

〉)
≥ k − 1− 2

∥∥∥A(0)
∥∥∥

≥ 24
25
k .

On the other hand, by the orthogonality of R and xS ,
∑k
i=1Ri = 0 and therefore

〈U ,AU 〉 = α2 〈xS ,AxS〉+ 2α 〈R,AxS〉+ 〈R,AR〉

= α2k + 2α
k − 1
√
k

k∑
i=1

Ri +

 k∑
i=1

Ri


2

= α2k .

Thus, α2 ≥ 24/25. On the other hand,

‖R‖2 = ‖U ‖2 −α2 ≤ 1
25

as claimed.

Now we are prepared to prove Theorem 1.10.

Proof. Lemmas 1.11 and 1.13 imply that, with probability at least 1 − δ/2, V =
αxS + R + W where α2 ≥ 24/25, ‖W ‖ ≤ 1/5 and also ‖R‖ ≤ 1/5. This implies that
the number of indices i ∈ {1, . . . ,n} such that |Wi | > 1/(3

√
k) is at most 3k/25 and

the same holds for R. Thus, |T ∩ S | ≥ 19k/25, that is, at least a fraction of 19/25 of
the vertices that correspond to the k largest components of V belong to the hidden
clique S.

It remains to show that, with high probability, the subset Ŝ of vertices that
have the highest number of adjacent vertices in T equals S. To this end, simply
note that on an event of probability at least 1− δ/2, each vertex in S is adjacent to
at least 19k/25 vertices in T . On the other hand, if i < S, then the number of edges
between i and T is at most 6k/25 plus the number of edges between i and vertices
in S. Thus, by the union bound and Hoeffding’s inequality,

P
{
Ŝ , S

}
≤ δ

2
+nP

{
6k
25

+ Bin(k,1/2) ≥ 19k
25

}
≤ δ

2
+nP

{
Bin(k,1/2) ≥ 13k

25

}
≤ δ

2
+ne−k

2/1250 < δ .
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1.8 Bibliographic notes

The systematic study of random graphs such as G(n,p) originates with the work of
Erdős and Rényi [29, 30]. The sharp bounds for the clique number cited in the text
are due to Matula [54]. We refer the reader to Palmer [59], Bollobás [13], Janson,
Łuczak, and Ruciński [41], Chung and Lu [20], Durrett [27] and van der Hofstad
[70] for monographs dedicated to random graphs.

The hidden clique problem dates back at least to Jerrum [42] and Kučera
[48]. It was Alon, Krivelevich, and Sudakov [2] who showed how spectral methods
can be used to find a hidden clique of size proportional to n1/2. Efficient non-
spectral algorithms that work in the same regime we introduced by Feige and Ron
[32] and Dekel, Gurel-Gurevich and Peres [21]. The latter paper introduces a par-
ticularly simple method that reconstructs the hidden clique with computational
complexity of optimal order (O(n2)). Deshpande and Montanari [22] show that
cliques of size

√
n/e(1 + o(1)) can be recovered, with high probability, by an algo-

rithm of nearly optimal complexity. This is the best known constant achievable to
date.

For more on spectral algorithms, we refer to Kannan and Vempala [46] and
Vershynin [72].

Quite some effort has been invested in trying to prove that it is impossible to
find hidden cliques of size o(

√
n) with computationally efficient methods. Progress

has been made in this direction by restricting the class of allowed algorithms. For
a sample of such results, see Meka, Potechin, and Wigderson [55], Montanari, Re-
ichman, and Zeitouni [57] Barak, Hopkins, Kelner, Kothari, Moitra, and Potechin
[9], and Feldman, Grigorescu, Reyzin, Vempala, and Xiao [33]. For an interesting
“semi-random” version of the problem, see Steinhardt [65].

1.9 Exercises

Exercise 1.1. Consider the simple hypothesis testing problem described in Section 1.1.
Prove that the likelihood ratio test minimizes the risk among all tests and prove that the
minimal risk equals

R∗ = 1− 1
2

∑
g

|P1{G = g)} −P0{G = g)}| = 1− 1
2
E0|L(G)− 1| .

Exercise 1.2. Finish the calculations of the proof of Matula’s theorem for the two-point
concentration of the clique number of G(n,1/2). Namely, show that for all ε > 0,(

n
m

)
2−(

m
2)→ 0
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whenever m > bωn + εc and that∑m
i=1

(m
i

)(n−m
m−i

)
2(i2)(n

m

) → 0

whenever m < bωn − εc, where ωn = 2log2n− 2log2 log2n− 1 + 2log2 e (Matula [54],
Palmer [59]).

Exercise 1.3. (hidden dense subgraph.) Generalize the hidden clique problem to the
case when the hidden subgraph is not a clique of size k, but rather a random graph
G(k,q) for some q > 1/2.

Exercise 1.4. (hidden clique in G(n,p).) Generalize the hidden clique problem to the
case when a clique of size k is hidden in a random graph G(n,p) for some q , 1/2.

Exercise 1.5. Consider the hidden clique problem with k ≥ c
√
n logn. Show that the

clique may be recovered, with high probability, by only looking at the degrees of the
vertices.
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Chapter 2

Combinatorial testing problems

2.1 Problem formulation

In this chapter we study a general class of hypothesis testing problems with a
combinatorial flavor. One observes an n-dimensional vector X = (X1, . . . ,Xn). Un-
der the null hypothesis the components of X are independent standard normal
random variables. As usual, we denote the probability measure and expectation
under the null hypothesis by P0 and E0, respectively.

To describe the alternative hypothesis, consider a class C = {S1, . . . ,SN } of N
sets of indices such that Sj ⊂ {1, . . . ,n} for all j = 1, . . . ,N . Under the alternative
hypothesis there exists a set of indices S ∈ C such that

Xi has distribution
{
N (0,1) if i < S
N (µ,1) if i ∈ S

where µ > 0 is a positive parameter. The components of X are independent under
the alternative hypothesis as well. The probability measure of X defined this way
by an S ∈ C is denoted by PS . Similarly, we write ES for the expectation with respect
to PS . Throughout we will assume that every S ∈ C has the same cardinality |S | = k.

A test is a binary-valued function T : Rn → {0,1}. If T (X) = 0 then we say
that the test accepts the null hypothesis, otherwise it is rejected. One would like
to design tests such that the null hypothesis is accepted with a large probability
when X is distributed according to P0 and it is rejected when the distribution of X
is PS for some S ∈ C. We consider the risk of a test T measured by

R(T ) = P0{T (X) = 1}+ 1
N

∑
S∈C

PS{T (X) = 0} . (2.1)

This measure of risk corresponds to the view that, under the alternative hypothe-
sis, a set S ⊂ C is selected uniformly at random and the components of X belonging
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to S have mean µ. Similarly to Chapter 1, we refer to the first and second terms on
the right-hand side of (2.1) as the type I and type II errors, respectively.

We are interested in determining, or at least estimating the value of µ under
which the risk can be made small. Our aim is to understand the order of magni-
tude, as a function of n, k, and the structure of C, of the value of the smallest µ
for which risk can be made small. The value of µ for which the risk of the best
possible test equals 1/2 is called critical.

In some interesting examples, the n components of X represent weights
over the n edges of a given graph G and each S ∈ C is a subgraph of G. When
Xi ∼ N (µ,1) then the edge i is “contaminated” and we wish to test whether there
is a subgraph in C that is entirely contaminated.

Some other interesting examples are when C is

• the set of all subsets S ⊂ {1, . . . ,n} of size k;

• the set of all cliques of a given size in a complete graph—this is the Gaussian
hidden clique problem, a Gaussian version of the problem studied in detail in
Chapter 1.

• the set of all bicliques (i.e., complete bipartite subgraphs) of a given size in a
complete bipartite graph;

• the set of all spanning trees of a complete graph;

• the set of all perfect matchings in a complete bipartite graph;

• the set of all sub-cubes of a given size of a binary hypercube.

Regardless of what C is, one may determine explicitly the test T ∗minimizing
the risk. This follows from a simple generalization of Exercise 1.1: for a given
vector x = (x1, . . . ,xn), T ∗(x) = 1 if and only if the ratio of the likelihoods of x under
(1/N )

∑
S∈CPS and P0 exceeds 1. Writing

φ0(x) = (2π)−n/2e−
∑n
i=1 x

2
i /2

and
φS(x) = (2π)−n/2e−

∑
i∈S (xi−µ)2/2−

∑
i<S x

2
i /2

for the probability densities of P0 and PS , respectively, the likelihood ratio at x is

L(x) =
1
N

∑
S∈CφS(x)
φ0(x)

=
1
N

∑
S∈C

eµxS−kµ
2/2 ,
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where xS =
∑
i∈S xi . Thus, the optimal test is given by

T ∗(x) = 1{L(x)>1} =

 0 if
1
N

∑
S∈C

eµxS−kµ
2/2 ≤ 1

1 otherwise.

The risk of T ∗ (often called the Bayes risk) may then be written as

R∗ = R∗C(µ) = R(T ∗) = 1− 1
2
E0|L(X)− 1|

= 1− 1
2

∫ ∣∣∣∣∣∣∣φ0(x)− 1
N

∑
S∈C

φS(x)

∣∣∣∣∣∣∣dx .
We are interested in the behavior of R∗ as a function of C and µ. Clearly, R∗ is a
monotone decreasing function of µ (Exercise 2.1). For µ sufficiently large, R∗ is
close to zero while for very small values of µ, R∗ is near its maximum value 1,
indicating that testing is virtually impossible. Our aim is to understand for what
values of µ the transition occurs. This depends on the combinatorial and geometric
structure of the class C. We describe various general conditions in both directions
and illustrate them on examples.

2.2 Simple tests: averanging and scan statistics

Even though the test T ∗ minimizing the risk is explicitly determined, its perfor-
mance is not always easy to analyze. Moreover, efficient computation of the opti-
mal test is often a non-trivial problem though efficient algorithms are available in
many interesting cases.

Here we consider two simple, though suboptimal, tests. These are often
easier to analyze and help understand the behavior of the optimal test as well. In
many cases one of these tests turn out to have a near-optimal performance.

A simple test based on averaging

Perhaps the simplest possible test is based on the fact that the sum of the compo-
nents of X is zero-mean normal under P0 and has mean µk under the alternative
hypothesis. Thus, it is natural to consider the averaging test

T (x) = 1{∑n
i=1Xi>µk/2} .

Proposition 2.2. Let δ > 0. The risk of the averaging test T satisfies R(T ) ≤ δ whenever

µ ≥
√

8n
k2 log

2
δ
.
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Proof. Observe that under P0, the statistic
∑n
i=1Xi has normalN (0,n) distribution

while for each S ∈ C, under PS , it is distributed as N (µk,n). By a Gaussian tail
bound (see (A.1) in the Appendix), we have R(T ) ≤ 2e−(µk)2/(8n).

A test based on scan statistics

Another natural test is based on the fact that under the alternative hypothesis for
some S ∈ C, XS =

∑
i∈SXi is normalN (µk,k). Consider the scan-statistic test

T (x) = 1 if and only if max
S∈C

XS ≥
µk +E0 maxS∈CXS

2
.

The test statistic maxS∈CXS is often referred to as a scan statistic. Here we only
need the following simple observation.

Proposition 2.3. The risk of the maximum test T satisfies R(T ) ≤ δ whenever

µ ≥ E0 maxS∈CXS
k

+ 2

√
2
k

log
2
δ
.

Proof. Simply note that under the null hypothesis, for each S ∈ C,XS is a zero-mean
normally distributed random variable with variance k = |S |. Since maxS∈CXS is a
Lipschitz function of X with Lipschitz constant

√
k, by the Gaussian concentration

inequality of Theorem A.11 in the Appendix, for all t > 0,

P0

{
max
S∈C

XS ≥ E0 max
S∈C

XS + t
}
≤ e−t

2/(2k) .

On the other hand, under PS for a fixed S ∈ C,

max
S ′∈C

XS ′ ≥ XS ∼N (µk,k)

and therefore
PS

{
max
S∈C

XS ≤ µk − t
}
≤ e−t

2/(2k) ,

which completes the proof.

The scan statistics is often easier to compute than the optimal test T ∗, though
maximization is not always possible in polynomial time. If the value of E0 maxS∈CXS
is not exactly known, one may replace it in the definition of T by any upper bound
and then the same upper bound will appear in the performance bound.

Proposition 2.3 shows that the scan-statistic test is guaranteed to work when-
ever µ is at least E0 maxS∈CXS /k + const./

√
k. Thus, in order to better understand
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the behavior of the scan-statistic test (and thus obtain sufficient conditions for the
optimal test to have a low risk), one needs to understand the expected value of
maxS∈CXS (under P0). As the maximum of Gaussian processes have been studied
extensively, there are plenty of results available for expected maxima.

Here we simply note that if |C| = N , by Theorem B.3 in the Appendix, one
always has

E0 max
S∈C

XS ≤
√

2k logN .

2.3 Lower bounds

In this section we investigate conditions under which the risk of any test is large.
We start with a simple universal bound that implies that regardless of what the
class C is, small risk cannot be achieved unless µ is substantially large compared
to k−1/2.

A universal lower bound

An often convenient way of bounding the Bayes risk R∗ is in terms of the Bhat-
tacharyya measure of affinity

ρ = ρC(µ) =
1
2
E0

√
L(X) .

It is well known (see Exercise 2.2) that

1−
√

1− 4ρ2 ≤ R∗ ≤ 2ρ .

Thus, 2ρ essentially behaves as the Bayes error in the sense that R∗ is near 1 when
2ρ is near 1, and is small when 2ρ is small. Observe that, by Jensen’s inequality,

2ρ = E0

√
L(X) =

∫ √
1
N

∑
S∈C

φS(x)φ0(x)dx ≥ 1
N

∑
S∈C

∫ √
φS(x)φ0(x)dx .

Straightforward calculation shows that for any S ∈ C,∫ √
φS(x)φ0(x)dx = e−µ

2k/8

and therefore we have the following.

Proposition 2.4. For all classes C, R∗ ≥ 1/2 whenever µ ≤
√

(4/k) log(4/3).

This shows that no matter what the class C is, detection is hopeless if µ is of
the order of k−1/2.

24



A lower bound based on overlapping pairs

Proposition 2.5. Let S and S ′ be drawn independently, uniformly, at random from C
and let Z = |S ∩ S ′ |. Then

R∗ ≥ 1− 1
2

√
Eeµ2Z − 1 .

Proof. In order to lower bound the optimal risk, we use the Cauchy–Schwarz in-
equality, exactly the way we did in Section 1.3:

R∗ = 1− 1
2
E0|L(X)− 1| ≥ 1− 1

2

√
E0|L(X)− 1|2

Since E0L(X) = 1,

E0|L(X)− 1|2 = Var0(L(X)) = E0[L(X)2]− 1 .

However, by definition L(X) = 1
N

∑
S∈C e

µXS−kµ2/2, so we have

E0[L(X)2] =
1
N 2

∑
S,S ′∈C

e−kµ
2
E0e

µ(XS+XS′ ) .

But

E0e
µ(XS+XS′ ) = E0

[
eµ

∑
i∈S\S′ Xieµ

∑
i∈S′\S Xie2µ

∑
i∈S∩S′ Xi

]
=

(
E0e

µX
)2(k−|S∩S ′ |) (

E0e
2µX

)|S∩S ′ |
= eµ

2(k−|S∩S ′ |)+2µ2|S∩S ′ | ,

and the statement follows.

This proposition reduces the problem of obtaining lower bounds to study-
ing a purely combinatorial quantity. By deriving upper bounds for the moment
generating function of the overlap |S ∩ S ′ | between two elements of C drawn in-
dependently and uniformly at random, one obtains lower bounds for the critical
value of µ.

A lower bound for symmetric classes

First we derive a simple corollary of Proposition 2.5 under a general symmetry
condition on the class C. It shows that the universal bound of Proposition 2.4
may be improved by a factor of

√
log(1 +n/k) as soon as the class C is sufficiently

symmetric.
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Proposition 2.6. Let δ ∈ (0,1). Assume that C satisfies the following conditions of
symmetry. Let S,S ′ be drawn independently and uniformly at random from C. Assume
that (i) the conditional distribution of Z = |S ∩ S ′ | given S ′ is identical for all values of
S ′; (ii) for any fixed S0 ∈ C and i ∈ S0, P{i ∈ S} = k/n. Then R∗ ≥ δ for all µ with

µ ≤

√
1
k

log
(
1 +

4n(1− δ)2

k

)
.

Proof. We apply Proposition 2.5. By the first symmetry assumption it suffices
to derive a suitable upper bound for E[eµ

2Z] = E[eµ
2Z |S ′] for an arbitrary S ′ ∈ C.

After a possible relabeling, we may assume that S ′ = {1, . . . , k} so we can write
Z =

∑k
i=11{i∈S}. By Hölder’s inequality,

E[eµ
2Z] = E

 k∏
i=1

eµ
2
1{i∈S}


≤

k∏
i=1

(
E
[
ekµ

2
1{i∈S}

])1/k

= E
[
ekµ

2
1{1∈S}

]
(by assumption (ii))

=
(
eµ

2k − 1
) k
n

+ 1 .

Proposition 2.5 now implies the statement.

The lower bound of Proposition 2.6 is matched, in order of magnitude, by
the scan-statistic test when the class C is “small.” Indeed, if |C| ≤ nα for some
α > 0, then Proposition 2.3 and the fact that E0 maxS∈CXS ≤

√
2k log |C| imply that

R∗ ≤ 1/2 for all µ with

µ ≥
√

2α
k

logn+

√
8log4
k

.

Note that for symmetric classes, Proposition 2.6 implies that R∗ ≥ 1/2 for all µwith

µ ≤
√

1
k

log
(
1 +

n
k

)
.

Negative association

The bound of Proposition 2.6 may be improved significantly under an additional
condition of negative association that is satisfied in several interesting examples.
A collection Y1, . . . ,Yn of random variables is negatively associated if for any pair of
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disjoint sets I, J ⊂ {1, . . . ,n} and (coordinate-wise) non-decreasing functions f and
g,

E
[
f (Yi , i ∈ I)g(Yj , j ∈ J)

]
≤ E [f (Yi , i ∈ I)]E

[
g(Yj , j ∈ J)

]
.

Proposition 2.7. Let δ ∈ (0,1) and assume that the class C satisfies the conditions of
Proposition 2.6. Suppose that the labels are such that S ′ = {1,2, . . . , k} ∈ C. Let S be a
randomly chosen element of C. If the random variables 1{1∈S}, . . . ,1{k∈S} are negatively
associated then R∗ ≥ δ for all µ with

µ ≤

√
log

(
1 +

n log(1 + 4(1− δ)2)
k2

)
.

Proof. We proceed similarly to the proof of Proposition 2.6. We have

E[eµ
2Z] = E

 k∏
i=1

eµ
2
1{i∈S}


≤

k∏
i=1

E
[
eµ

2
1{i∈S}

]
(by negative association)

=
((
eµ

2
− 1

) k
n

+ 1
)k
.

Proposition 2.5 and the upper bound above imply that R∗ is at least δ for all µ such
that

µ ≤

√√√
log

1 +
n
(
(1 + 4(1− δ)2)1/k − 1

)
k

.
The result follows by using ey ≥ 1 + y with y = k−1 log(1 + 4(1− δ)2).

Lower bounds for the maximum of a Gaussian process

We finish this section by pointing out an interesting by-product of our lower bounds.

For any class C of subsets of [n] of size k, Proposition 2.3 implies that R∗ <
1/2 whenever

µ >
E0 maxS∈CXS

k
+ 4

√
1
k
.

On the other hand, Proposition 2.5 implies that R∗ ≥ 1/2 whenever Eexp(µ2Z) ≤ 2.
Combining these two bounds, we see that

E0 max
S∈C

XS ≥ kµC − 4
√
k ,

27



where µC is defined by the equation Eexp(µ2
CZ) = 2.

Thus, lower bounds for E0 maxS∈CXS may be proved by bounding the mo-
ment generating function of Z from above. In particular, Propositions 2.6 and 2.7
imply that, if C is a symmetric class (as defined in Proposition 2.6), then

E0 max
S∈C

XS ≥
√
k log

(
1 +

n
k

)
− 4
√
k .

Moreover, if C has the negative association property of Proposition 2.7, then

E0 max
S∈C

XS ≥ k
√

log
(
1 +

n

k2 log2
)
− 4
√
k .

The behavior of E0 maxS∈CXS is well understood (at least up to a constant fac-
tor) in terms of the geometry of the underlying indexing set C equipped with the
canonical distance

d(S,T ) =
√
E [(XS −XT )2] =

√
2(k − |S ∩ T |) ,

see Talagrand [67, 68]. However, the general characterization is often difficult to
apply in concrete examples. The lower bounds obtained here, though not always
sharp, are often easy to use.

2.4 Examples

Here we list a few concrete examples and work out upper and lower bounds for
the critical range of µ.

2.4.1 k-sets

Consider first the example when C contains all sets S ⊂ {1, . . . ,n} of size k, without
any combinatorial structure. Thus, N =

(n
k

)
.

Let δ ∈ (0,1). It is easy to see that the assumptions of Proposition 2.7 are
satisfied (Exercise 2.3) and therefore R∗ ≥ δ for all

µ ≤

√
log

(
1 +

n log(1 + 4(1− δ)2)
k2

)
.

This simple bound turns out to have the correct order of magnitude both when
n� k2 (in which case it is of the order of

√
log(n/k2)) and when n� k2 (when it is

of the order of
√
n/k2).
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This may be seen by considering the two simple tests described in Section
2.2 in the two different regimes. Since

E0 maxS∈CXS
k

≤

√
2k log

(n
k

)
k

≤
√

2log
(ne
k

)
,

we see from Proposition 2.3 that when k = O
(
n(1−ε)/2

)
for some fixed ε > 0, then

the threshold value is of the order of
√

logn. On the other hand, when k2/n is
bounded away from zero, then the lower bound implied by Proposition 2.7 above
is of the order

√
n/k2 and the averaging test provides a matching upper bound by

Proposition 2.2.

Note that in this example the scan-statistic test is easy to compute since it
suffices to find the k largest values among X1, . . . ,Xn.

2.4.2 Perfect matchings

Let C be the set of all perfect matchings of the complete bipartite graph Km,m.
Thus, we have n = m2 edges and N = m!, and k = m. By Proposition 2.2 (i.e., the
averaging test), for δ ∈ (0,1), one has R(T ) ≤ δ whenever µ ≥

√
8log(2/δ).

To show that this bound has the right order of magnitude, we may apply
Proposition 2.7. The symmetry assumptions hold obviously and the negative as-
sociation property follows from the fact that Z = |S ∩ S ′ | has the same distribution
as the number of fixed points in a random permutation. The proposition implies
that for all m, R∗ ≥ δ whenever

µ ≤
√

log(1 + log(1 + 4(1− δ)2)) .

Note that in this case the optimal test T ∗ can be approximated in a computationally
efficient way. To this end, observe that computing

1
N

∑
S∈C

eµXS =
1
m!

∑
σ

m∏
j=1

eµX(j,σ (j))

(where the summation is over all permutations of {1, . . . ,m}) is equivalent to com-
puting the permanent of an m ×m matrix with non-negative elements. By a deep
result of Jerrum, Sinclair, and Vigoda [43], this may be done by a polynomial-time
randomized approximation.

2.4.3 Spanning trees

Consider again a network of m nodes in which each pair of nodes interact. One
may wish to test if there exists a corrupted connected subgraph containing each
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node. This leads us to considering the class of all spanning trees as follows.

Let 1,2, . . . ,n =
(m

2
)

represent the edges of the complete graph Km and let C be
the set of all spanning trees of Km. Thus, by Cayley’s formula, we have N = mm−2

spanning trees and K = m − 1. By Proposition 2.2, the averaging test has risk
R(T ) ≤ δ whenever µ ≥

√
4log(2/δ).

This bound is indeed of the right order. To see this, we may start with
Proposition 2.5. Even though Proposition 2.7 is not applicable because of the lack
of symmetry in C, negative association still holds. In particular, by a result of
Feder and Mihail [31] (see also Grimmett and Winkler [36] and Benjamini, Lyons,
Peres, and Schramm [11]), if S is a random uniform spanning tree of Km, then the
indicators 1{1∈S}, . . . ,1{n∈S} are negatively associated. This means that, if S and S ′

are independent uniform spanning trees and Z = |S ∩ S ′ |,

E
[
eµ

2Z
]

= EE
[
eµ

2|S∩S ′ ||S ′
]

= EE
[
eµ

2 ∑
i∈S′ 1{i∈S} |S ′

]
≤ E

∏
i∈S ′

E
[
eµ

2
1{i∈S} |S ′

]
(by negative association)

≤ E
∏
i∈S ′

( 2
m
eµ

2
+ 1

)
=

( 2
m
eµ

2
+ 1

)m−1

≤ exp
(
2eµ

2)
.

This, together with Proposition 2.5 shows that for any δ ∈ (0,1), R∗ ≥ δ whenever

µ ≤
√

log
(
1 +

1
2

log(1 + 4(1− δ)2)
)
.

As the bounds above show, the computationally trivial average test has a close-to-
optimal performance. In spite of this, one may wish to use the optimal test T ∗. The
“partition function” (1/N )

∑
S∈C e

µXS may be computed by an algorithm of Propp
and Wilson [61], who introduced a random sampling algorithm that, given a graph
with non-negative weights wi over the edges, samples a random spanning tree
from a distribution such that the probability of any spanning tree S is proportional
to

∏
i∈Swi . The expected running time of the algorithm is bounded by the cover

time of an associated Markov chain that is defined as a random walk over the graph
in which the transition probabilities are proportional to the edge weights. If µ is of
the order of a constant (as in the critical range) then the cover time is easily shown
to be polynomial (with high probability) as all edge weights wi = eµ

2Xi are roughly
of the same order both under the null and under the alternative hypotheses.
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2.4.4 Gaussian hidden clique problem

An interesting example is a “Gaussian” variant of the hidden clique problem dis-
cussed in Chapter 1. Here the random variables X1, . . . ,Xn are associated with the
edges of the complete graph Km such that

(m
2
)

= n and C contains all cliques of size
k. Thus, k =

(k
2
)

and N =
(m
k

)
.

We have the following bounds for the performance of the optimal test. It
shows that when k is at most of the order of

√
m, the critical value of µ is of the

order of
√

(1/k) log(m/k). The proof may be adjusted to handle larger values of k as
well.

Proposition 2.8. Let C represent the class of allN =
(m
k

)
cliques of a complete graph Km

and assume that k ≤
√
m(log2)/e. Then

(i) for all δ ∈ (0,1), R∗ ≤ δ whenever

µ ≥ 2

√
1

k − 1
log

(me
k

)
+ 4

√
log(2/δ)
k(k − 1)

,

(ii) R∗ ≥ 1/2 whenever

µ ≤
√

1
k

log
(m
2k

)
.

Proof. (i) follows simply by a straightforward application of Proposition 2.3 and

the bound E0 maxS∈CXS ≤
√

2k log
(m
k

)
.

To prove the lower bound (ii), by Proposition 2.5, it suffices to show that
if S,S ′ are k-cliques drawn randomly and independently from C and Z denotes
the number of edges in the intersection of S and S ′, then E

[
exp(µ2Z)

]
≤ 2 for the

indicated values of µ.

Because of symmetry, E
[
exp(µ2Z)

]
= E

[
exp(µ2Z)|S ′

]
for all S ′ and therefore

we might as well fix an arbitrary clique S ′. If Y denotes the number of vertices in
the clique S ∩S ′ then Z =

(Y
2
)
. Moreover, the distribution of Y is hypergeometrical

with parameters m and k. If B is a binomial random variable with parameters k
and k/m, then since exp(µ2x2/2) is a convex function of x, Hoeffding’s inequality
for the hypergeometric distribution (see Theorem A.6 in the Appendix) implies
that

E
[
eµ

2Z
]
≤ E

[
eµ

2Y 2/2
]
≤ E

[
eµ

2B2/2
]
.

Thus, it remains to derive an appropriate upper bound for the moment generating
function of the squared binomial. To this end, let c > 1 be a parameter whose value
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will be specified later. Using

B2 ≤ B
(
k1{

B>c k
2
m

} + c
k2

m

)
and the Cauchy–Schwarz inequality, it suffices to show that

E
[
exp

(
µ2c

k2

m
B

)]
·E

[
exp

(
µ2kB1{

B>c k
2
m

})] ≤ 4 . (2.9)

We show that, if µ satisfies the condition of (ii), for an appropriate choice of c, both
terms on the left-hand side are at most 2.

The first term on the left-hand side of (2.9) is

E
[
exp

(
µ2c

k2

m
B

)]
=

(
1 +

k
m

(
exp

(
µ2c

k2

m

)
− 1

))k
which is at most 2 if and only if

k
m

(
exp

(
µ2c

k2

m

)
− 1

)
≤ 21/k − 1 .

Since 21/k − 1 ≥ (log2)/k, this is implied by

µ ≤

√
m

ck2 log
(
1 +

m log2
k2

)
.

To bound the second term on the left-hand side of (2.9), note that

E
[
exp

(
µ2kB1{

B>c k
2
m

})] ≤ 1 +E
[
1
{
B>c k

2
m

} exp
(
µ2kB

)]
≤ 1 +

(
P
{
B > c

k2

m

})1/2 (
E
[
exp

(
µ2kB

)])1/2
,

by the Cauchy–Schwarz inequality, so it suffices to show that

P
{
B > c

k2

m

}
·E

[
exp

(
µ2kB

)]
≤ 1 .

Denoting h(x) = (1 + x) log(1 + x)− x, Chernoff’s bound implies

P
{
B > c

k2

m

}
≤ exp

(
−k

2

m
h(c − 1)

)
.
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On the other hand,

E
[
exp

(
µ2kB

)]
=

(
1 +

k
m

exp
(
µ2k

))k
,

and therefore the second term on the left-hand side of (2.9) is at most 2 whenever

1 +
k
m

exp
(
µ2k

)
≤ exp

(
k
m
h(c − 1)

)
.

Using exp
(
k
mh(c − 1)

)
≥ 1 + k

mh(c − 1), we obtain the sufficient condition

µ ≤
√

1
k

logh(c − 1) .

Summarizing, we have shown that R∗ ≥ 1/2 for all µ satisfying

µ ≤ 2 ·min


√

1
k

logh(c − 1) ,

√
m

ck2 log
(
1 +

m log2
k2

) .
Choosing

c =
m
k

log(m/k)
log(m log2/k2)

(which is greater than 1 for k ≤
√
m(log2)/e), the second term on the right-hand

side is at most
√

(1/k) log(m/k). Now observe that since h(c − 1) = c logc − c + 1 is

convex, for any a > 0, h(c − 1) ≥ c loga − a + 1. Choosing a = log(m/k)
log(m log2/k2) , the first

term is at least √
1
k

log
(
m
k
−

log(m/k)
log(m log2/k2)

)
≥

√
1
k

log
(m
2k

)
where we used the condition thatm log2/k2 ≥ e and that x ≥ 2logx for all x > 0.

The proposition above implies that, if, say, µ = 1, then k needs to be at
least of the order of logm in order to achieve a small risk, and that logm is of
the optimal order. However, the test that achieves this performance is the scan
statistic that needs to compute XS for all clicks S of size k. Similarly to the hidden
clique problem of Chapter 1, there remains a big gap between the performance of
computationally efficient tests and the optimal test. Spectral techniques may be
used here as well, in a completely analogous way to improve on the performance
of the averaging test. When µ = 1, a simple test based on the largest eigenvalue of
the matrix of weights achieves a small risk when k = Ω(

√
m). We leave the details

as an exercise.
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2.5 Bibliographic remarks

The general hypothesis testing problem studied in this chapter was introduced by
Arias-Castro, Candès, Helgason and Zeitouni [7]. In that paper two examples were
studied in detail. In one case C contains all paths between two given vertices in a
two-dimensional grid and in the other C is the set of paths from root to a leaf in
a complete binary tree. In both cases the order of magnitude of the critical value
of µ was determined. Arias-Castro, Candès, and Durand [6] investigate another
class of examples in which elements of C correspond to clusters in a regular grid.
The problem when C contains all subsets of size k has been studied in the rich
literature on multiple testing, see, for example, Ingster [40], Baraud [10], Donoho
and Jin [26] and the references therein.

The study of maxima of Gaussian processes has been a central topic in prob-
ability theory. We refer to Talagrand [68] for the culmination of a long line of
research.

Proposition 2.5 is due to Arias-Castro, Candès, Helgason, and Zeitouni [7].

The material presented in this chapter is mostly based on Addario-Berry,
Broutin, Devroye, and Lugosi [1].

For more on the Gaussian hidden clique problem, in particular, on the
limitation of spectral methods, we refer the reader to Montanari, Reichman, and
Zeitouni [57]. In Section 5.3 we address a related problem introduced by Kannan
and Vempala [47].

A sample of related litarature, includes Sun and Nobel [66], Butucea and
Ingster [19], Balakrishnan, Kolar, Rinaldo, Singh, and Wasserman [8].

An interesting variant is the “sparse principal component detection” prob-
lem in which one tests whether a multivariate vector is isotropic or if it has a
sparse principal component. Berthet and Rigollet [12] study this problem and
show that computationally efficient near-optimal detection is only possible it the
hidden clique problem can be solved in polynomial time—that is considered quite
unlikely.

2.6 Exercises

Exercise 2.1. Prove that for all classes C, the Bayes risk R∗ is a monotone decreasing
function of µ.

Exercise 2.2. Consider a testing problem in which, under the null hypothesis, the ob-
servation X has density f0, while under the alternative, f1. Let L(x) = f1(x)/f0(x) be the
likelihood ratio. Let R∗ = 1− (1/2)E0|L(X)− 1| be the risk of the optimal test and define
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the Bhattacharyya measure of affinity as ρ = (1/2)E0
√
L(X). Prove that

1−
√

1− 4ρ2 ≤ R∗ ≤ 2ρ

(see, e.g., [23, Theorem 3.1]).

Exercise 2.3. Prove that the class C of k-sets satisfies the negative association condition
of Proposition 2.7.

Exercise 2.4. Construct and analyze a spectral test for the Gaussian hidden clique prob-
lem. Proceed in a way analogous to Section 1.7.
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Chapter 3

Detection of correlations and

high-dimensional random geometric graphs

In statistics and signal processing on often faces problems in which one is asked to
detect the presence of a sparse signal in a noisy environment. In this chapter we
discuss a simple stylized model of such detection problems. The model naturally
motivates the study of random geometric graphs in high-dimensional spaces. This
leads to some intriguing mathematical questions that we study in detail.

3.1 Detection of correlations

Consider the following simple hypothesis testing problem. Upon observing ran-
dom vectors X1, . . . ,Xn, each of d independent components, one wishes to test
whether these vectors are independent or, alternatively, if there exists a small
group of vectors that depend on each other. We write X = (X1, . . . ,Xn) for the
d × n matrix of observations. In remote sensing the n vectors represent the signal
captured at n sensors in a noisy environment and one wishes to determine if there
is a subset of the sensors that detect a common weak signal. In financial applica-
tions the n vectors represent the evolution of the price of n assets and one may be
interested in the existence of a small subset that depend on each other in a certain
way.

The simplest way to formalize such a hypothesis testing problem is the fol-
lowing. Under the null hypothesis, all vectors X i are standard normal (i.e., with
mean 0 and unit covariance matrix). Under the alternative hypothesis there is a
small subset of vectors that are more correlated among themselves. This may be
modeled as follows. Under the alternative hypothesis, there exists a set S of in-
dices of a given size |S | = k ≤ n, belonging to a class C of subsets of [n] such that
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X i = (Xi,1, . . . ,Xi,d) where

Xi,t =
{
Yi,t if i < S,t ∈ [d]√
ρ Nt +

√
1− ρ Yi,t if i ∈ S,t ∈ [d]

(3.1)

where (Yi,t)i∈[n],t∈[d], (Nt)t∈[d] are independent standard normal sequences.

The Nt represent a common “signal” present in the vectors X i for i ∈ S.
Clearly, Xi,t is standard normal for all i and t and EXi,tXj,t = 0 if either i or j are
not in S. If i, j ∈ S, then EXi,tXj,t = ρ.

The problem becomes interesting when ρ is so small that calculating simply
the correlation of X i and X j one cannot easily tell whether both i and j are in S
or not. In particular, the largest empirical correlations (X i ,X j) do not necessarily
belong to indices belonging to S. The interesting values of ρ are those for which
the “signal” is covered by “noise”. Clearly, if d is sufficiently large, the problem
becomes easy but in the applications mentioned above it is important to keep the
value of d as small as possible in order to make quick decisions.

Similarly to the previous sections, a test is a binary-valued function T :
Rnd → {0,1} that, upon observing the random matrix X = (X1, . . . ,Xn), accepts the
null hypothesis if and only if T (X) = 0. The risk of a test T is measured by the sum
of tipe I and type II errors

R(T ) = P0{T (X) = 1}+ 1
|C|

∑
S∈C

PS{T (X) = 0} ,

where P0 is the probability distribution under the null hypothesis and PS is the
probability distribution when S is the set of indices of the correlated vectors.

As in the hypothesis testing problems discussed in Chapters 1 and 2, the
test T ∗ minimizing the risk is the likelihood ratio test T ∗ = 1{L(X)>0}, where L is the
likelihood ratio, that is, the ratio of the densities of X under the alternative, and
null hypotheses.

We start by describing a general lower bound for the optimal risk, analogous
to Proposition 2.5 in Chapter 2.

Theorem 3.2. Let N = (N1, . . . ,Nd) be a standard normal vector in Rd . For any a > 0,

R∗ ≥ P {‖N ‖ ≤ a}
(
1− 1

2

√
Eexp(νaZ)− 1

)
,

where νa = ρa2/(1 +ρ)− d2 log(1−ρ2) and Z = |S ∩S ′ |, with S,S ′ drawn independently,
uniformly at random from C. In particular, taking a =

√
d,

R∗ ≥ 1
2
− 1

4

√
Eexp(dνZ)− 1 ,

37



where ν = ρ/(1 + ρ)− 1
2 log(1− ρ2). If ρ ≤ 1/2, we have ν ≤ ρ, and therefore

R∗ ≥ 1
2
− 1

4

√
Eexp(dρZ)− 1 .

The strategy one may try to bound the optimal risk R∗ from below is the one
that we successfully applied in Chapters 1 and 2. There we bounded R∗ using the
Cauchy-Schwarz inequality as

R∗ = 1− 1
2
E0|L(X)− 1| ≥ 1− 1

2

√
E0|L(X)− 1|2 .

However, this strategy fails in the present case as L(X) is not square integrable
under the distribution of the null hypothesis. The proof of the theorem applies a
simple conditioning trick before the Cauchy-Schwarz inequality.

Proof. Fix a value of the “signal” vector N at N = u = (u1, . . . ,ud) ∈ Rd . We consider
now the alternative hypothesis with this value fixed. Let R(T ), L, T ∗ and Ru(T ), Lu,
T ∗u be the risk of a test T , the likelihood ratio, and the optimal test, for the original
and “conditional” hypothesis testing problems. For any u ∈ Rd , Ru(T ∗u) ≤ Ru(T ∗) by
the optimality of T ∗u. Therefore, conditioning on N = u,

R∗ = R(T ∗)
= ENRN (T ∗)
≥ ENRN (T ∗N )

= 1− 1
2
ENE0|LN (X)− 1| .

(EN denotes expectation with respect to N ∼N (0,I ).) Using the fact that E0|Lu(X)−
1| ≤ 2 for all u ∈ Rd , we have (with B(0, a) being the Euclidean ball centered at the
origin and of radius a in Rd),

ENE0|LN (X)− 1| ≤ 2P{‖N ‖ > a}+P{‖N ‖ ≤ a} max
u∈B(0,a)

E0|Lu(X)− 1| ,

and therefore, using the Cauchy-Schwarz inequality,

1− 1
2
ENE0|LN (X)− 1| ≥ P{‖N ‖ ≤ a}

(
1− 1

2
max

u∈B(0,a)
E0|Lu(X)− 1|

)
≥ P{‖N ‖ ≤ a}

(
1− 1

2
max

u∈B(0,a)

√
E0L

2
u(X)− 1

)
.
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Since

Lu(x)

=
1
|C|

∑
S∈C

1
(1− ρ)dk/2

exp

− d∑
t=1

∑
i∈S

(xi,t −
√
ρut)2

2(1− ρ)
−

d∑
t=1

∑
i<S

x2
i,t

2

exp

 d∑
t=1

n∑
i=1

x2
i,t

2


=

1
|C|

∑
S∈C

1
(1− ρ)dk/2

exp

 d∑
t=1

∑
i∈S

x2
i,t

2
−

(xi,t −
√
ρut)2

2(1− ρ)

 ,
we get

E0L
2
u(X)

=
1
|C|2

∑
S,S ′∈C

1
(1− ρ)dk

E0 exp

 d∑
t=1

∑
i∈S∩S ′

X2
i,t −

(Xi,t −
√
ρut)2

1− ρ
+

d∑
t=1

∑
i∈S∆S ′

X2
i,t

2
−

(Xi,t −
√
ρut)2

2(1− ρ)


=

1
|C|2

∑
S,S ′∈C

1
(1− ρ)dk(2π)dn/2

×
∫ +∞

−∞
exp

 d∑
t=1

∑
i∈S∩S ′

x2
i,t

2
−

(xi,t −
√
ρut)2

1− ρ
−

d∑
t=1

∑
i∈S∆S ′

(xi,t −
√
ρut)2

2(1− ρ)
−

d∑
t=1

∑
i<S∪S ′

x2
i,t

2

dx .
It is easy to check that

x2
i,t

2
−

(xi,t −
√
ρut)2

1− ρ
=
ρu2

t

1 + ρ
−

1 + ρ
2(1− ρ)

(
xi,t −

2
√
ρut

1 + ρ

)2

,

which implies

E0L
2
u(X)

=
1
|C|2

∑
S,S ′∈C

exp
(∑d

t=1
ρu2

t
1+ρ |S ∩ S

′ |
)

(1− ρ)dk(2π)dn/2

×
∫ +∞

−∞
exp

− d∑
t=1

∑
i∈S∩S ′

1 + ρ
2(1− ρ)

(
xi,t −

2
√
ρut

1 + ρ

)2

−
d∑
t=1

∑
i∈S∆S ′

(xi,t −
√
ρut)2

2(1− ρ)
−

d∑
t=1

∑
i<S∪S ′

x2
i,t

2

dx
=

1
|C|2

∑
S,S ′∈C

exp
(∑d

t=1
ρu2

t
1+ρ |S ∩ S

′ |
)

(1− ρ)dk

(
1− ρ
1 + ρ

)d|S∩S ′ |/2
(1− ρ)d(k−|S∩S ′ |)

≤ 1
|C|2

∑
S,S ′∈C

exp


 d∑
t=1

ρu2
t

1 + ρ
− d

2
log(1− ρ2)

 |S ∩ S ′ |
 ,

39



concluding the proof of the first statement. Finally, observe that since log(1−ρ2) ≥
−ρ2/(1− ρ2),

ν ≤ ρ
1− ρ/2
1− ρ2 ≤ ρ when ρ ≤ 1/2 .

Interestingly, the moment generating function of the same random variable
Z = |S∩S ′ | appears in the lower bound of Theorem 3.2 as in Proposition 2.5. Thus,
all the work done in Chapter 2 for bounding the moment generating function of
Z in various examples may be re-used in the context of this chapter. In order to
avoid repetitions, here and in the rest of this chapter we only consider the case
when C is the class of all k-sets, that is, all subsets of [n] of cardinality k. As it is
pointed out in Section 2.4, in this case

Eexp(dρZ) ≤
((
edρ − 1

) k
n

+ 1
)k
≤ exp

(((
edρ − 1

) k2

n

))
,

and therefore, for ρ ≤ 1/2, we have

R∗ ≥ 1
2
− 1

4

√
exp

(((
edρ − 1

) k2

n

))
− 1 . (3.3)

One may read off several interesting corollaries from this bound. For example, it
is instructive to set d = (cn/ρ) logn for some cn → 0. In that case we see that it is
impossible to have R∗→ 0 unless k is at least of the order of n1/2−o(1).

The situation dramatically changes for just slightly larger values of d. In
fact, if d ≥ (9/ρ) logn, then a simple scan-statistic test has a risk converging to zero
as soon as k > 8/ρ+ 1. This test is based on the test statistic

max
S∈C

∑
i,j∈S:i,j

〈
X i ,X j

〉
. (3.4)

Observe that, under the null hypothesis, for all S ∈ C, E0
∑
i,j∈S:i,j

〈
X i ,X j

〉
= 0,

while under the alternative hypothesis ES
∑
i,j∈S:i,j

〈
X i ,X j

〉
= dk(k − 1)ρ/2. Thus,

it is natural to define a test that accepts the null hypothesis if and only if the
scan statistic define above is less than dk(k − 1)ρ/4. One may analyze this test
by establishing concentration inequalities for random quadratic forms of the type∑
i,j∈S:i,j

〈
X i ,X j

〉
. The details are left as an exercise.
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3.2 A high-dimensional random geometric graph

A natural approach of constructing tests for the correlation-detection problem de-
fined in the previous section is based on the simple observation that, while under
the null hypothesis, we have E0

〈
X i ,X j

〉
= 0, under the alternative hypothesis, the

empirical correlations
〈
X i ,X j

〉
tend to be larger if both i and j are in the “con-

taminated” set S. Thus, one may construct a graph on the vertex set [n] in which
vertices i and j are connected by an edge if and only if their empirical correla-
tions are large. In such a graph one expects that a large clique appears under the
alternative hypothesis.

One way of formalizing this idea is by considering the random geometric
graph defined by the normalized vectors Z i = X i/‖X i‖. Fix some p ∈ (0,1/2) and
define the random geometric graph based on the points Z 1, . . . ,Z n, connecting ver-
tex i and vertex j if and only if

〈
Z i ,Z j

〉
≥ tp,d , where tp,d is a threshold value chosen

such that, under the null hypothesis (i.e., when the X i are independent standard
normal vectors),

P
{〈
Z i ,Z j

〉
≥ tp,d

}
= p .

In other words, vertices i and j are connected if and only if the empirical correla-
tion

〈
Z i ,Z j

〉
of the observed vectors X i and X j exceeds the threshold tp,d .

A possible test is based on computing the clique number of the obtained
graph. One expects that, under the alternative hypothesis, for sufficiently large
values of ρ, vertices belonging to S form a clique.

In order to understand the behavior of such a test, we need to examine the
behavior of the clique number of the random graph just defined. In the remainder
of this chapter we consider the null hypothesis.

Recall that the unit sphere in Rd is denoted by Sd−1 = {x ∈ Rd : ‖x‖ = 1}
where ‖ · ‖ stands for the Euclidean norm. Under the null hypothesis, Z 1, . . . ,Z n
are independent random vectors, uniformly distributed in Sd−1. We denote the
components of Z i by (Zi,1, . . . ,Zi,d).

For a given value of p ∈ (0,1) (possibly depending on n and d) the random
geometric graph G(n,d,p) is defined on the vertex set [n] as above: vertex i and
vertex j are connected by an edge if an only if〈

Z i ,Z j

〉
≥ tp,d .

Equivalently, vertex i and vertex j are connected if and only if ‖Z i−Z j‖ ≤
√

2(1− tp,d).

For example, for p = 1/2, tp,d = 0. To understand the behavior of tp,d as a
function of p, we introduce some notation. Let µd−1 denote the uniform probability

41



t u
1− t

Cd−1(u, t)

Figure 3.1: A spherical cap of height 1− t.

measure over Sd−1. For a unit vector u ∈ Sd−1 and real number 0 ≤ t ≤ 1, let
Cd−1(u, t) = {x ∈ Rd : x ∈ Sd−1, (x,u) ≥ t} denote a spherical cap of height 1−t around
u (see Figure 3.1). The angle of a spherical cap Cd−1(u, t) is defined by arccos(t).

Then p = µd−1(Cd−1(1, tp,d)) is the normalized surface area of a spherical cap
of height 1− tp,d centered at (say) the first standard basis vector 1 = (1,0,0, . . . ,0).

Often it is useful to think about random points on Sd−1 as projections of
Gaussian vectors on the unit sphere. In particular, if X1, . . . ,Xn are independent
standard normal vectors, then the vectors

Z i =
X i

‖X i‖
, i ∈ [n]

are independent and uniformly distributed on Sd−1. This representation may be
used to determine the asymptotic value of tp,d . Let X = (X1, . . . ,Xd) be a standard
Gaussian vector and let Z = X/‖X‖ = (Z1, . . . ,Zd). Observe that E‖X‖2 = d. Also,
by the law of large numbers, ‖X‖/

√
d → 1 in probability. This implies that Z1

√
d

converges, in distribution, to a standard normal random variable. In fact, for any
fixed k, the joint distribution of

√
d(Z1, . . . ,Zk) is asymptotically standard normal.

One consequence of this is that for any s > 0,

µd−1(Cd−1(1, s/
√
d)) = P{Z1 > s/

√
d} = P{X1/‖X‖ > s/

√
d} → 1−Φ(s)

as d→∞ where Φ(x) = (2π)−1/2
∫ x
−∞ e

−t2/2dt. This implies that tp,d satisfies, for any
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fixed p ∈ (0,1),
lim
d→∞

tp,d
√
d = Φ−1(1− p) . (3.5)

Thus, if p < 1/2 is fixed and d is large, tp,d is of the order of 1/
√
d.

Of course, this asymptotic result may be sharpened. For example, we have,
for
√

2/d ≤ tp,d ≤ 1,

1

6tp,d
√
d

(1− t2p,d)
d−1

2 ≤ p ≤ 1

2tp,d
√
d

(1− t2p,d)
d−1

2 (3.6)

(see Brieden et al. [15]).

To simplify the presentation, from now on we fix p = 1/2. In this case,
tp,d = 0.

3.3 The clique number

In this section we study the clique number ω(n,d) of the d-dimensional random
geometric graph G(n,d,1/2). In particular, we are interested in the dependence of
ω(n,d) on the dimension d.

If d is fixed as we let n grow, the largest clique has linear size. This follows
from observing that if k points fall in any spherical cap C of height 1− 1/

√
2, then

they are mutually connected and therefore form a clique. The expected number of
points that fall in any such fixed cap C is nµd−1(C) which, by (3.6) is at least

n
6

√
2
d

2−
d−1

2 . (3.7)

On the other hand, when n is fixed and d grows, the clique number is logarithmic
in n. Indeed, one may show that, when n and p are fixed, then the d-dimensional
random geometric graph G(n,d,p) converges, in distribution, to the Erdős-Rényi
random graph G(n,p), as d→∞. This may be seen, for example, by using the fact
that, by the multivariate central limit theorem,(

1
√
d

〈
X i ,X j

〉)
1≤i<j≤n

=⇒N (0,I(n2)) as d→∞, in distribution.

(The details are left to the reader. We prove a qualitative version of this statement
in Chapter 4.)

As a consequence of this, we have that ω(n,d) converges, in distribution,
to the clique number of an Erdős-Rényi random graph G(n,1/2). Recall from Sec-
tion 1.2 that this clique number is sharply concentrated around ωn = 2log2n −
2log2 log2n− 1 + 2log2 e.
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Thus, as d grows, from a constant value to infinity, the clique numberω(n,d)
decreases from Ω(n) to roughly 2log2n.

A natural question—in particular, having the correlation detection problem
in mind—is how the clique number behaves when d grows as a function of n. In
what follows we present an upper bound and a lower bound. The upper bound
implies that, when d� log3n, then the clique number is ω(n,d) = (2 +op(1)) log2n,
that is, it is essentially at its asymptotic value. On the other hand, we prove that if
d ≥ 2log((4log2)n), then, with probability at least 1/2,

ω(n,d) ≥ (1/32)exp
(
log2(n)/(5d)

)
,

and therefore, if d is proportional to logn, the clique number is at least some pos-
itive power of n and for d ∼ log2−εn, the clique number is still much larger than
any power of logn. Note also that, when d = o(logn), then (3.7) implies that the
expected clique number is n1−o(1), that is, it grows almost linearly in n.

The proof of the upper bound is based on the first-moment method. All we
need is a good upper bound for the expected number of cliques of size k.

Denote the number of cliques of size k in G(n,d,1/2) by Nk =Nk(n,d). Since

ENk =
(
n
k

)
P{Z 1, . . . ,Z k form a clique} ,

it suffices to study the probability that k points are all connected with each other.
Let pk = P{Z 1, . . . ,Z k form a clique} denote this probability.

The heart of the argument is the following lemma.

Lemma 3.8. Let k ≥ 2 be a positive integer, let δn > 0, and assume

d ≥
8(k + 1)2 log2

δ2
n

(
k log8 + log

k − 1
2

)
.

Then
pk ≤ e ·Φ(δn)(

k
2) .

Recall that in a G(n,1/2) Erdős-Rényi graph, the probability that k vertices

form a clique equals 2−(
k
2). Since Φ(0) = 1/2, the lemma shows that, when δn is

small, pk takes a similar form.

Proof. Fix a ` ≤ k. We use the Gaussian representation of the Z i , writing Z i =
X i/‖X i‖ where X1, . . . ,Xn are independent standard normal vectors in Rd . First we
perform Gram-Schmidt orthogonalization for X`−1

1 = X1, . . . ,X`−1. In other words,
let

v1 =
X1

‖X1‖
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and define r1 = 0 (the d-dimensional zero vector). For j = 2, . . . , ` − 1, introduce,
recursively,

rj =
j−1∑
i=1

〈
X j ,vi

〉
vi and vj =

X j − rj
‖X j − rj‖

.

Then v1, . . . ,v`−1 are orthonormal vectors, depending on X`−1
1 only.

Introduce the “bad” event

B`−1 =
{
∃j ≤ ` − 1 : ‖rj‖2 > 2(` + 1)2 log2 or ∃j ≤ ` − 1 : ‖X j − rj‖2 <

d
2

}
.

and write

p` ≤ P{Z 1, . . . ,Z ` form a clique,Bc`−1}+P{B`−1}
= E

[
P
{〈
X`,X j

〉
≥ 0 for all j ≤ ` − 1

∣∣∣X`−1
1

}
1{Z 1,...,Z `−1 form a clique}1{Bc`−1}

]
+ P{Bk−1} . (3.9)

Now fix X`−1
1 such that Z 1, . . . ,Z `−1 form a clique and B`−1 does not occur. Then,

using X j = vj‖X j − rj‖+ rj and the union bound, we have, for any δn > 0,

P
{〈
X`,X j

〉
≥ 0 for all j ≤ ` − 1

∣∣∣X`−1
1

}
≤ P

{〈
X`,vj

〉
≥ −δn for all j ≤ ` − 1

∣∣∣X`−1
1

}
+
`−1∑
j=1

P
{〈

X`,
rj

‖X j − rj‖

〉
> δn

∣∣∣X`−1
1

}
.

Since on Bc`−1, we have ‖X j − rj‖ ≥
√
d/2, for any 1 ≤ j ≤ `−1, on this event we have

P
{〈

X`,
rj

‖X j − rj‖

〉
> δn

∣∣∣X`−1
1

}
≤ P

{〈
X`,rj

〉
> δn
√
d/2

∣∣∣X`−1
1

}
≤ 1

2
e
− δ2

nd

4‖rj ‖2 ≤ 1
2
e
− δ2

nd

8(`+1)2 log2 , (3.10)

where we used the fact that, conditionally on X`−1
1 ,

〈
X`,rj

〉
has centered normal

distribution with variance ‖rj‖2 ≤ 2(` + 1)2 log2. Furthermore,

P
{〈
X`,vj

〉
≥ −δn for all j ≤ ` − 1

∣∣∣X`−1
1

}
= Φ (δn)`−1 ,

where we used the fact that by rotational invariance of the multivariate standard
normal distribution, the (X`,v1), . . . , (X`,v`−1) are independent standard normal
random variables. Therefore, the first term in (3.9) may be bounded as

E
[
P
{〈
X`,X j

〉
≥ 0 for all j ≤ ` − 1

∣∣∣X`−1
1

}
1{Z 1,...,Z `−1 form a clique }1{Bc`−1}

]
≤ p`−1

Φ (δn)`−1 +
` − 1

2
e
− δ2

nd

8(`+1)2 log2

 . (3.11)
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The last term within the parentheses above may be bounded by 8−k using

δ2
n ≥

8(k + 1)2 log2
d

(
k log8 + log

k − 1
2

)
.

Thus, (3.11) is bounded from above by

p`−1

(
Φ (δn)`−1 + 8−k

)
≤ p`−1

(
1 + 2−3k+`

)
Φ (δn)`−1 . (3.12)

To bound the probability of the “bad” event B`−1, note that, since rj is a
projection of X j onto the subspace spanned by v1, . . . ,vj−1, ‖X j − rj‖ ≤ ‖X j‖, and
therefore

P{B`−1} ≤ P
{
∃j ≤ ` − 1 : ‖rj‖2 > 2(` + 1)2 log2

}
+P

{
∃j ≤ ` − 1 : ‖Z j‖2 <

d
2

}
≤ (` − 1)P

{
χ2
`−1 > 2(` + 1)2 log2

}
+ (` − 1)P

{
χ2
d <

d
2

}
,

where χ2
d denotes a random variable with χ2 distribution with d degrees of free-

dom. Both terms may be bounded by standard tail bounds for the χ2 distribution,
see Theorem A.7 in the Appendix. In particular, for the second term we obtain
P{χ2

d < d/2} ≤ e
−d/16. The first term can be bounded as

P{χ2
`−1 > 2(` + 1)2 log2} ≤ e−2(`+1)2(log2)/4 = 2−(`+1)2/2 .

Thus
P{B`−1} ≤ (` − 1)

(
2−(`+1)2/2 + e−d/16

)
.

Since by assumption d ≥ 8(` + 1)2 log2, we obtain

P{B`−1} ≤ 2(` − 1)2−(`+1)2/2 ,

and so, summarizing, we have

p` ≤ p`−1

(
1 + 2−3k+`

)
Φ (δn))`−1 + 2(` − 1)−(`+1)2/2 . (3.13)

From this, we deduce, by induction, that

p` ≤ Φ (δn)(
`
2)
`−1∏
j=1

(1 + 2−j−1/2) . (3.14)

This concludes the proof since
∏`
j=1(1 + 2−j−1/2) ≤ e

∑`
j=1 2−j−1/2

< e.
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To prove (3.14), note first that it trivially holds for ` = 1. Assuming it holds
for ` − 1 for some ` ≥ 2, from (3.13) we obtain

p` ≤ Φ (δn)(
`−1

2 )

 `−2∏
j=1

(1 + 2−j−1/2)

(1 + 2−3k+`
)
Φ (δn)`−1 + 2(` − 1)2−(`+1)2/2

≤ Φ (δn)(
`
2)

 `−2∏
j=1

(1 + 2−j−1/2)

(1 + 2−3k+` + 2(` − 1)2−
3`+1

2

)

≤ Φ (δn)(
`
2)
`−1∏
j=1

(1 + 2−j−1/2)

where we used 2−3k+` + 2(` −1)2−
3`+1

2 < 2−`+1/2 for k ≥ 2 since 2(` −1)2−`/2 ≤ 3/2 for
all `. This completes the proof of (3.14).

Now it is easy to deduce upper bounds for the clique number by a simple
application of the first-moment method. As expected, as the dimension grows, the
clique number behaves more and more like in the case of the Erdős-Rényi graph.
When d ∼ log5n, the difference by the clique numbers is bounded by a constant,
with high probability.

Theorem 3.15. The following statements hold with high probability.

If d ≥ 12500log3n, then ω(n,d) ≤ 5log2n+ 1 ;
if d/ log3n→∞, then ω(n,d) ≤ (2 + o(1)) log2n+ 1 ;
if liminfd/ log5n > 0, then ω(n,d) ≤ 2log2n− 2log2 log2n+O(1) .

Proof. Denote the (random) number of cliques of size k by Nk. Then

P{ω(n,d) ≥ k} = P{Nk ≥ 1} ≤ ENk .

Now we may use Lemma 3.8.

For example, if δn = 1/2, the the lemma implies that for d ≥ 100k3,

ENk ≤ e ·
(
n
k

)
Φ(1/2)(

k
2) ≤ e ·

(
n
k

)
(7/10)(

k
2) ≤ e ·

n( 7
10

) k−1
2
k ,

which converges to zero when k > 2log10/7n+ 1 ≤ 5logn+ 1.

The second and third statements follow from the same inequality. We leave
the calculations as an exercise.
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Finally, we derive a lower bound for the clique number. The rough idea is
the following. If the clique number of G(n,d,1/2) was small, then we could con-
struct a test in the correlation detection problem of Section 3.1 based on computing
the clique number. Since under the alternative hypothesis, large cliques are likely
to appear, this would lead to a test with a small risk. However, we may contradict
this by invoking the lower bound of Theorem 3.2 for the risk on any test.

To formalize these ideas, first we show that, under the alternative hypothe-
sis (i.e., when there is a set S of k indices such that the pairwise correlations within
the set equal to ESXi,t,Xj,t = ρ for all i, j ∈ S, i , j and t ∈ [d]), then a clique of size
k is likely to appear in the random geometric graph when ρ is sufficiently large.
Recall the definition of (3.1).

Lemma 3.16. Let δ ∈ (0,1) and consider the random geometric graph with p = 1/2
defined by the points Z i = X i/‖X i‖, i = 1, . . . ,n. Suppose 0 < ρ ≤ 1/2. Under the
alternative hypothesis, with probability at least 1−δ, the graph contains a clique of size
k whenever (

k
2

)
≤ δexp

(
dσ4

10

)
,

where σ2 = ρ/(1− ρ).

Proof. It suffices to show that, if i and j both belong to S then

P
{〈
X i ,X j

〉
< 0

}
≤ e−dσ

4/10 . (3.17)

The lemma then follows by the union bound applied for the
(k
2
)

pairs or vertices of
S. Since

P
{〈
X i ,X j

〉
< 0

}
= P

1
d

d∑
t=1

(Yi,t + σNt)(Yj,t + σNt) < 0


= P

1
d

d∑
t=1

(
(Yi,t + σNt)(Yj,t + σNt)−E(Yi,t + σNt)(Yj,t + σYt)

)
< −σ2

 ,

the problem boils down to finding appropriate left-tail bounds for independent
sums of products of correlated normal random variables.

To this end, we proceed by the Chernoff bound. By a general formula for
the cumulant generating function of the product of dependent normal random
variables (Exercise 3.3), we have

F(λ) def.= lnE
[
exp(λ(Yi,t + σNt)(Yj,t + σNt))

]
=

1
2

ln
1− ρ2

1− (ρ+ (1 + ρ)λ)2

48



for all λ such that |ρ+(1+ρ)λ| < 1. Since we are interested in lower tail probabilities,
we consider negative values of λ. Then F(λ) is well defined for λ ∈ (−1,0]. By
Taylor’s theorem, for every such λ there exists y ∈ (λ,0) such that

F(λ) = F(0) +λF′(0) +
λ2

2
F′′(y) .

By straightforward calculation, F(0) = 0, F′(0) = σ2, and

F′′(y) = (1 + ρ)2 1 + (ρ+ (1 + ρ)y)2(
1− (ρ+ (1 + ρ)y)2

)2

which is monotone increasing for y ∈ (−ρ/(1 + ρ),0] and therefore

F(λ) ≤ λσ2 +
λ2

2
F′′(0) = λσ2 +

λ2

2
1 + ρ2

(1− ρ)2 for all λ ∈ (−ρ/(1 + ρ),0] .

Thus, by the Chernoff bound (Section A.1 in the Appendix), for all λ ∈ (−ρ/(1 +
ρ),0],

P
{〈
X i ,X j

〉
< 0

}
≤ exp(dF(λ)) ≤ exp

(
dλσ2 +

dλ2

2
1 + ρ2

(1− ρ)2

)
.

The upper bound is minimized for λ = −σ2(1− ρ)2/(1 + ρ2) which is a legal choice
since σ2(1− ρ)2/(1 + ρ2) < ρ/(1 + ρ). The upper bound becomes

P
{〈
X i ,X j

〉
< 0

}
≤ exp

(
−
dσ4(1− ρ)2

2(1 + ρ2)

)
.

Since σ2 ≤ 1, we have ρ ≤ 1/2 and we obtain (3.17).

Now we are ready to state the lower bound for the clique number of G(n,d,1/2).

Theorem 3.18. There exist universal constants c1, c2, c3, c4 > 0 such that for all n,d
such that d ≥ c1 log(c2n), the median of the clique numberω(n,d) of G(n,d,1/2) satisfies

Mω(n,d) ≥ c3 exp
(
c4 log2 (c2n)

d

)
.

One may take c1 = 2, c2 = 4log2, c3 = 1/32, and c4 = 1/5. In particular,

d ≤ c4 log2−εn implies Mω(n,d) = Ω(exp(logεn)) .
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Proof. Let ω0 = Mω(n,d) be the median of the clique number. Consider the hy-
pothesis testing problem of Section 3.1 with k = 16ω0. Define the random geomet-
ric graph on the vertex set [n], connecting vertices i and j whenever

〈
Z i ,Z j

〉
≥ 0.

The test statistic we consider is the clique number of the resulting graph, denoted
byω. In particular, consider the test Tn that accepts the null hypothesis if and only
if ω < k.

Under the null hypothesis, the Z i ’s are i.i.d. uniform on the sphere Sd−1 and,
consequently, ω has the same distribution as ω(n,d). By Lemma 3.16, under the
alternative hypothesis, with probability at least 7/8, the graph contains a clique of
size k whenever (

k
2

)
< (1/8)edρ

2/10 .

When this is the case, the type II error is bounded as P1{Tn = 0} ≤ 1/8. To bound
the probability of type I error of Tn, we first prove that E0ω < 2ω0 for any d and n
sufficiently large. We start with

E0ω ≥ 2ω0 ⇔ E0ω −ω0 ≥
1
2
E0ω ⇒ 1

2
E0ω ≤ E0ω −ω0 ≤

√
Var(ω) ,

where in the last step we used the well-known fact that the difference between
the mean and the median of any random variable is bounded by its standard de-
viation. Now observe that ω, as a function of the independent random variables
Z 1, . . . ,Z n, is a self-bounding function which implies, by the Efron-Stein inequal-
ity, that Var(ω) ≤ E0ω, (see Theorem A.9 in the Appendix). We arrive at

E0ω ≥ 2ω0 ⇒ 1
2
E0ω ≤

√
E0ω ⇔ E0ω ≤ 4 .

However, it is a simple matter to show that E0ω > 4 for all d if n is sufficiently
large. (To see this it suffices to show that the probability that 5 random points
form a clique is bounded away from zero.) We then bound the probability of type
I error as follows

P0{ω ≥ k} = P0{ω ≥ 16ω0} ≤ P0{ω ≥ 8E0ω} ≤
1
8
,

where we used Markov’s inequality in the last line.

Combining the bounds on the probabilities of type I and type II errors, we
conclude that R∗ ≤ 1/4. Put it another way,

R∗ > 1/4 =⇒
(
16ω0

2

)
≥ (1/8)edρ

2/10 .

Now, by Theorem 3.2—and in particular by (3.3)—, we see that

(16ω0)2 < e−ρdn ln2 =⇒ R∗ > 1/4 .
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We conclude that, for any ρ ∈ (0,1),

(16ω0)2 < e−ρdn ln2 =⇒ (16ω0)2 ≥ (1/4)edρ
2/10 .

Therefore, if ρ is such that e−ρdn ln2 > (1/4)edρ
2/10, then (16ω0)2 ≥ (1/4)edρ

2/10.
Choosing ρ = (1/d) log((4log2)n)—which is possible since d ≥ 2log((4log2)n)—
clearly satisfies the required inequality and this choice gives rise to the announced
lower bound.

3.4 Bibliographic notes

Various variants of the correlation-detection problem discussed in this chapter has
been discussed in the literature. Our general framework is based on Arias-Castro,
Bubeck, and Lugosi [4, 5]. The lower bound of Theorem 3.2 appears in [5].

The high-dimensional random geometric graph model was introduced in
Devroye, György, Lugosi, and Udina [24] where the dependence of the clique num-
ber on the dimension is investigated, see also [5]. We refer to these papers for
further bounds for the clique number.

The study of random geometric graphs (on the plane) was initiated by Gilbert
[35]. Penrose [60] is a standard text for asymptotic properties of random geometric
graphs in fixed dimensions.

3.5 Exercises

Exercise 3.1. Consider the test hypothesis testing problem defined in Section 3.1 with
C being the class of all subsets of [n] of size k. Define a test Tn that accepts the null
hypothesis if and only if the scan-statistic defined in (3.4) does not exceed dk(k −1)ρ/4.
Prove that

if k > 8/ρ+ 1 and d ≥ (9/ρ) logn, then R(Tn)→ 0

if k ≤ 8/ρ+ 1 and d ≥ 9
√

(logn)/(d(k − 1)), then R(Tn)→ 0 .

Exercise 3.2. Finish the calculations for the proof of the second and third statements of
Theorem 3.15.

Exercise 3.3. Suppose that (ξ,ζ) are jointly normal zero-mean random variables with
variances s2ξ and s2ζ , respectively, and correlation r = E[ξζ]/(sξsζ). Prove that the cu-
mulant generating function of their product equals

lnE [exp(λξζ)] =
1
2

ln
1− r2

1−
(
r + (1− r2)sξsζλ

)2
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for all λ such that
∣∣∣r + (1− r2)sξsζλ

∣∣∣ < 1.
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Chapter 4

Dimension estimation of random geometric

graphs

4.1 Detecting underlying geometry in random graphs

In this section we set up and address some basic questions about inferring the ge-
ometric structure underlying certain observed graphs. In particular, we consider
a hypothesis testing problem in which one observes a graph on n vertices. Under
the null hypothesis, the observed graph is a realization of a G(n,1/2) Erdős-Rényi
graph. Under the alternative hypothesis, the graph is a G(n,d,1/2) random geo-
metric graph for a certain (known) value of d.

Recall from Chapter 3 that a G(n,d,1/2) random graph is obtained by draw-
ing n independent random vectors Z 1, . . . ,Z n, uniformly distributed on the unit
sphere Sd−1. Vertices i and j are connected by an edge if and only if

〈
Z i ,Z j

〉
≥ 0.

We are interested in the behavior of the risk R∗ of the optimal test. As men-
tioned in Chapter 3, it follows from the multivariate central limit theorem that,
for fixed n, as d →∞, the random geometric graph G(n,d,1/2) converges, in dis-
tribution, to G(n,1/2). This implies that R∗→ 1 when n is fixed and d→∞. Thus,
for large values of d, G(n,d,1/2) and G(n,1/2) become essentially indistinguishable
and “geometry disappears”. On the other hand, when d is fixed and n→∞, then
clearly R∗→ 0 (e.g., by comparing clique numbers, as seen in Section 1.2).

Thus, it is of interest to determine for what values of d the optimal risk
becomes large—as a function of n. Recall from Chapter 1 that R∗ equals 1 minus
the total variation distance between the distributions of G(n,d,1/2) and G(n,1/2).

The following theorem shows that the “critical” dimension is about d ∼ n3.

Theorem 4.1. Let R∗ be the risk of the optimal test in the hypothesis testing problem
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G(n,1/2) vs. G(n,d,1/2) described above. Then, as n→∞,

R∗→ 0 if d
n3 → 0

R∗→ 1 if d
n3 →∞ .

To prove the first half of the theorem, it suffices to exhibit a test with van-
ishing risk for d = o(n3). The proof of the second statement follows from an
upper bound for the total variation distance between the distribution of a ran-
dom Wishard matrix and a Gaussian Orthogonal Ensemble. These arguments are
sketched below.

4.1.1 The triangle test

Faced with the problem of testing whether an observed graph is a geometric graph,
a natural idea is to count triangles (i.e., cliques of size 3) in the graph. The intuition
is that, while under the null hypothesis each triangle is present with probability
1/8—and hence the expected number of triangles in G(n,1/2) is

(n
3
)
/8—, the proba-

bility that three points form a triangle is larger in the geometric model G(n,d,1/2).
This is because, conditionally on the event that two vertices are connected by an
edge, the probability that a third vertex is connected to both is larger than 1/4
since, given that it is close to one of them, it is more likely to be close to the other
one as well.

To quantify this statement, one may prove that, if Z 1,Z 2,Z 3 are indepen-
dent random vectors uniformly distributed on Sd−1, then

P1 {〈Z 1,Z 2〉 ≥ 0,〈Z 1,Z 3〉 ≥ 0,〈Z 2,Z 3〉 ≥ 0} ≥ 2−3
(
1 +

C
√
d

)
(4.2)

for some constant C > 0, and therefore, under the alternative hypothesis, the num-
ber N of triangles satisfies

E1N ≥
(
n
3

)
2−3

(
1 +

C
√
d

)
.

Showing (4.2) is somewhat technical. We only sketch here the basic intuition be-
hind the proof. First note that

P1 {vertices 1,2,3 form a triangle}
= P {〈Z 1,Z 2〉 ≥ 0,〈Z 1,Z 3〉 ≥ 0,〈Z 2,Z 3〉 ≥ 0}
= P

{
〈Z 2,Z 3〉 ≥ 0

∣∣∣〈Z 1,Z 2〉 ≥ 0,〈Z 1,Z 3〉 ≥ 0
}
P1 {〈Z 1,Z 2〉 ≥ 0,〈Z 1,Z 3〉 ≥ 0}

=
1
4
P
{
〈Z 2,Z 3〉 ≥ 0

∣∣∣〈Z 1,Z 2〉 ≥ 0,〈Z 1,Z 3〉 ≥ 0
}
,
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since the events 〈Z 1,Z 2〉 ≥ 0 and 〈Z 1,Z 3〉 ≥ 0 are independent. To show that the
latter conditional probability is at least 1/2 + C/

√
d, we need to understand the

typical angle is between Z 1 and Z 2. By rotational invariance we may assume that
Z 1 = (1,0,0, . . . ,0), and therefore 〈Z 1,Z 2〉 = Z2,1, the first component of the vector
Z 2. By the argument outlined in Section 3.2,

√
dZ2,1 is approximately standard

normal when d is large. Thus, conditioned on the event Z2,1 ≥ 0, Z2,1 this gives the
boost in the conditional probability that we see.

Thus, the expected number of triangles under the alternative hypothesis is
larger by at least Θ

(
n3/
√
d
)

than under the null hypothesis:

E1N −E0N ≥
(
n
3

)
C
√
d

for some positive constant C. Hence, the test T that accepts the null hypothesis
if and only if N < E0N +

(n
3
)
(C/2)d−1/2 has a risk tending to zero if the standard

deviation of N is o(n3d−1/2).

One may show that Var0(N ) =
(n

3
)
(7/64) +

(n
4
)(4

2
)
(1/32) and Var1(N ) ≤ n4 (Ex-

ercis 4.2). Thus, the standard deviations are of the order of n2 which is o(n3/
√
d)

whenever d = o(n2). This falls short of proving the first half of Theorem 4.1.

To prove that one may obtain a small risk for d = o(n3), one may construct
a similar test statistic that has a smaller variance. The trick is to count, instead of
triangles, signed triangles. Let Ai,j = 1{i∼j} be the indicator that vertices i and j are
connected by an edge. Consider the test statistic

N± =
∑

1≤i<j<k≤n

(
Ai,j −

1
2

)(
Aj,k −

1
2

)(
Ak,i −

1
2

)
.

A simple calculation shows that E0N± = 0 and

Var0(N±) =
1

64

(
n
3

)
.

On the other hand, a similar argument as in the case of the triangle count shows
that there exists a positive constant c such that

E1N± ≥
cn3
√
d

and Var1(N±) ≤ n3 +
3n4

d
,

which implies that the test that accepts the null hypothesis if and only if N± ≤
cn3/(2

√
d) has a regret converging to zero whenever n3/

√
d = o

(√
n3 +n4/d

)
. This

happens if and only if d = o(n3).
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4.1.2 Geometry disappears in high dimensions

Here we sketch the proof of the second statement of Theorem 4.1. We need to
prove that when the dimension d is much larger than n3 then there is no test that
is able to distinguish the random geometric graph G(n,d,1/2) from the Erdős-Rényi
random graph G(n,1/2). This is equivalent to saying that the total variation distance
between the two distributions satisfies

D(G(n,d,1/2),G(n,1/2))→ 0 when d3/n→∞ .

The total variation distance between the two random graph distributions is diffi-
cult to handle analytically. In order to circumvent this difficulty, we represent both
random objects as functions of certain random matrices that are more manageable.

In the case of the random geometric graph, it is natural to represent it as
a function of the Wishart matrix defined by the symmetric square matrix W =
(Wi,j)n×n whose entries are

Wi,j =
〈
X i ,X j

〉
, i, j ∈ [n] .

Recall that the X i are independent standard normal vectors in Rd . Indeed, the
adjacency matrix A = (Ai,j)n×n of G(n,d,1/2) may be defined by

Ai,j =
{
1{Wi,j≥0} if i , j
0 otherwise.

One may similarly represent an Erdős-Rényi random graph. To this end, let Ni,j
be independent standard normal random variables for 1 ≤ i ≤ j ≤ n. The random
graph in which vertices i and j are connected by an edge if and only if Ni,j ≥ 0 is
clearly G(n,1/2). Thus, the adjacency matrix A of a G(n,1/2) may be generated as
a function of the Ni,j . In order to make it comparable to the Wishart matrix W ,
we rescale theNi,j and add appropriate diagonal entries (that are irrelevant for the
definition of the random graph) and write

Ai,j =
{
1{Vi,j≥0} if i , j
0 otherwise,

where the entries of the symmetric random matrix V are defined by

Vi,j =


√
dNi,j if i < j

Vj,i if i > j
d +
√

2dNi,i otherwise.

Having written the random graphs as functions of the random matrices W and V ,
by Exercise 4.3 it suffices to prove that the total variation distance D(W ,V )→ 0
whenever d3/n→∞.
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The matrix d−1/2(V − dI ) is called a Gaussian orthogonal ensemble and it is
a well-studied random matrix. In particular, the densities of both W and V are
explicitly known over the cone C ⊂ Rn2

of symmetric positive semidefinite matrices
(with respect to the Lebesgue measure). In particular, the density of the Wishart
matrix W is

fW (M) :=
(det(M))

1
2 (d−n−1) exp

(
−1

2Tr(M)
)

2
1
2dnπ

1
4n(n−1)∏n

i=1 Γ
(

1
2 (d + 1− i)

) , M ∈ C ,

where Tr(M) denotes the trace of the matrix M . Similarly, from the known formula
of the density of a Gaussian orthogonal ensemble, the density of V may be derived:

fV (M) :=
exp

(
− 1

4dTr
(
(M − dI )2

))
(2πd)

1
4n(n+1) 2

n
2

, M ∈ C .

Since the total variation distance of W and V equals

D(W ,V ) =
1
2

∫
C
|fW (M)− fV (M)|dM ,

the explicit formulas of the densities may be used to estimate D(W ,V ). In partic-
ular, one may show the following result.

Theorem 4.3. If d/n3→∞, then D(W ,V )→ 0.

This theorem allows us to complete the proof of Theorem 4.1.

4.2 Bibliographic notes

The material of Section 4.1 is based on Bubeck, Ding, Eldan, and Rácz [17]. The
full proofs of the results may be found there. In particular, our presentation was
largely inspired by Rácz and Bubeck [62].

Theorem 4.3 was proven independently by Bubeck, Ding, Eldan, and Rácz
[17] and Jiang and Li [45]. This theorem has been extended to Wishart matrices
with distributions more general than Gaussian by Bubeck and Ganguly [18].

4.3 Exercises

Exercise 4.1. Extend Theorem 4.1 to the problem of testing G(n,p) versus G(n,d,p) for
a fixed p ∈ (0,1).
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Exercise 4.2. Show that if N is the number of triangles in G(n,p), then

Var(N ) =
(
n
3

)(
p3 − p6

)
+
(
n
4

)(
4
2

)(
p5 − p6

)
and that if N is the number of triangles in G(n,d,p), then Var(N ) ≤ n4.

Exercise 4.3. Let X,Y be random variables taking values in some measurable space X .
Let f ,g : X →Y be measurable functions taking values in a set Y . Prove that

D(X,Y ) ≥D(f (X), g(Y )) ,

where D(X,Y ) = supA |P{X ∈ A} −P{Y ∈ A}| is the total variation distance between the
distributions of X and Y . (The supremum is taken over all measurable subsets of X .)
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Chapter 5

Mean estimation

In this chapter we examine the classical problem of estimating the mean of a
random variable. Let X1, . . . ,Xn be independent, identically distributed real ran-
dom variables with mean µ = EX1. Upon observing these random variables, one
would like to estimate µ. An estimator µ̂n = µ̂n(X1, . . . ,Xn) is simply a function of
X1, . . . ,Xn.

The quality of an estimator may be measured in various different ways. We
are interested in the smallest possible value a = a(n,δ) such that

P
{∣∣∣µ̂n −µ∣∣∣ > a} ≤ δ .

We emphasize the non-asymptotic nature of this requirement.

The most natural choice of a mean estimator is the standard empirical mean

µn =
1
n

n∑
i=1

Xi .

The behavior of the empirical mean is well understood. For example, if the Xi
have a finite second moment, then the central limit theorem guarantees that this
estimator has Gaussian tails, asymptotically, when n→∞. Indeed,

P
{∣∣∣µn −µ∣∣∣ > σΦ−1(1− δ/2)

√
n

}
→ δ ,

where σ2 > 0 is the variance of the Xi and Φ(x) = P{N ≤ x} is the cumulative
distribution function of a standard normal random variable N . By the Chernoff
bound (see Appendix), for all x ≥ 0,

1−Φ(x) ≤ e−x
2/2 .
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This implies that Φ−1(1− δ/2) ≤
√

2log(2/δ), and the central limit theorem asserts
that

lim
n→∞

P

∣∣∣µn −µ∣∣∣ > σ
√

2log(2/δ)
√
n

 ≤ δ .
However, the asymptotic nature of this property limits the usefulness of this per-
formance bound. We seek non-asymptotic performance bounds of the same form.
In particular, we say that a mean estimator µ̂n is sub-Gaussian if for some constant
L > 0, for all sample sizes n, with probability at least 1− δ,∣∣∣µ̂n −µ∣∣∣ ≤ Lσ√log(2/δ)

√
n

. (5.1)

It is easy to see that, under certain conditions on the distribution of the Xi , the
empirical mean has the desired performance. Indeed, suppose that the Xi have a
sub-Gaussian distribution in the sense that, for all λ > 0,

Eeλ(Xi−µ) ≤ eσ
2λ2/2 .

Then, by the Chernoff bound, µ̂n is sub-Gaussian for all δ ∈ (0,1) with L =
√

2.
However, the sub-Gaussian assumption is quite restrictive and imposes a strong
condition on the decay of the tail probabilities of the Xi . If one only assumes that
σ exists (i.e., the variance of the Xi is finite), then one still has, by Chebyshev’s
inequality, that, with probability at least 1− δ,∣∣∣µn −µ∣∣∣ ≤ σ

√
1
nδ

.

While the bound decays at the optimal O(n−1/2) rate as a function of the sample
size, the dependence on the confidence parameter δ is exponentially worse than in
(5.1).

Perhaps surprisingly, there exist mean estimators that achieve a sub-Gaussian
performance for all distributions with a finite variance. A simple such estimator is
presented and analyzed in the next section.

5.1 The median-of-means estimator

Roughly speaking, the median-of-means estimator partitions the data into k groups
of roughly equal size, computes the empirical mean in each group, and finally
takes the median of the obtained values.

Formally, recall that the median of m real numbers x1, . . . ,xm ∈ R is defined
as M(x1, . . . ,xm) = xi where xi is such that∣∣∣{j ∈ [m] : xj ≤ xi}

∣∣∣ ≥ m
2

and
∣∣∣{j ∈ [m] : xj ≥ xi}

∣∣∣ ≥ m
2
.
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(If several i fit the above description, we take the smallest one.)

Now let 1 ≤ k ≤ n and partition [n] = {1, . . . ,n} into k blocks B1, . . . ,Bk, each
of size |Bi | ≥ bn/kc ≥ 2.

Given X1, . . . ,Xn, compute the sample mean in each block

Yj =
1
|Bj |

∑
i∈Bj

Xi

and define the median-of-means estimator by µ̂n =M(Y1, . . . ,Ym).

The performance of the estimator is established next. For simplicity, assume
that n is divisible by k so that each block has m = n/k elements.

Theorem 5.2. Let X1, . . . ,Xn be independent, identically distributed random variables
with mean µ and variance σ2. Let m,k be positive integers assume that n = mk. Then
the median-of-means estimator with k blocks satisfies

P
{∣∣∣µ̂n −µ∣∣∣ > σ√4/m

}
≤ e−k/8 .

In particular, for any δ ∈ (0,1), if k =
⌈
8log(1/δ)

⌉
, then

P

∣∣∣µ̂n −µ∣∣∣ > σ
√

32log(1/δ)
n

 ≤ δ ,
Proof. By Chebyshev’s inequality, for each j = 1, . . . , k, with probability at least 3/4,

∣∣∣Yj −µ∣∣∣ ≤ σ√ 4
m
.

Thus,
∣∣∣µ̂n −µ∣∣∣ > σ√4/m implies that at least k/2 of the means Yj are such that∣∣∣Yj −µ∣∣∣ > σ√4/m. Hence,

P
{∣∣∣µ̂n −µ∣∣∣ > σ√4/m

}
≤ P

{
Bin(k,1/4) ≥ k

2

}
(where Bin(k,1/4) is a binomial (k,1/4) random variable)

= P
{

Bin(k,1/4)−EBin(k,1/4) ≥ k
4

}
≤ e−k/8 (by Hoeffding’s inequality–Theorem A.4)
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The theorem shows that the median-of-means estimator has a sub-Gaussian
performance with L = 8. It is remarkable that this is possible for all distributions
with a finite variance. On the negative side, it is important to point out that the
estimator µ̂n depends on the confidence level δ as the number of blocks k is chosen
as a function of δ.

Next we show that no estimator can have a significantly better performance.

Theorem 5.3. Let n > 5 be a positive integer. Let µ ∈ R, σ > 0 and δ ∈ (2e−n/4,1/2).
Then for any mean estimator µ̂n, there exists a distribution with mean µ and variance
σ2 such that

P

∣∣∣µ̂n −µ∣∣∣ > σ
√

log(1/δ)
n

 ≥ δ .
Proof. To derive the announced “minimax” lower bound, it suffices to consider two
distributions, P+, P−, both concentrated on two points, defined by

P+({0}) = P−({0}) = 1− p , P+({c}) = P−({−c}) = p ,

where p ∈ [0,1] and c > 0. Note that the means of the two distributions are µP+
= pc

and µP− = −pc and both have variance σ2 = c2p(1− p).

For i = 1, . . . ,n, let (Xi ,Yi) be independent pairs of real-valued random vari-
ables such that

P{Xi = Yi = 0} = 1− p and P{Xi = c,Yi = −c} = p .

Note that Xi is distributed as P+ and Yi is distributed as P−. Let δ ∈ (0,1/2). If
δ ≥ 2e−n/4 and p = (1/(2n)) log(2/δ), then (using 1− p ≥ exp(−p/(1− p))),

P{Xn1 = Y n1 } = (1− p)n ≥ 2δ .

Let µ̂n be any mean estimator, possibly depending on δ. Then

max
(
P
{∣∣∣µ̂n(Xn1 )−µP+

∣∣∣ > cp} ,P {∣∣∣µ̂n(Y n1 )−µP−
∣∣∣ > cp})

≥ 1
2
P
{∣∣∣µ̂n(X1, . . . ,Xn)−µP+

∣∣∣ > cp or
∣∣∣µ̂n(Y1, . . . ,Yn)−µP−

∣∣∣ > cp}
≥ 1

2
P{µ̂n(X1, . . . ,Xn) = µ̂n(Y1, . . . ,Yn)}

≥ 1
2
P{X1, . . . ,Xn = Y1, . . . ,Yn} ≥ δ .

From σ2 = c2p(1− p) and p ≤ 1/2 we have that cp ≥ σ
√
p/2, and therefore

max

P
∣∣∣µ̂n(X1, . . . ,Xn)−µP+

∣∣∣ > σ
√

log 2
δ

n

 ,P

∣∣∣µ̂n(Y1, . . . ,Yn)−µP−
∣∣∣ > σ

√
log 2

δ

n


 ≥ δ .

Theorem 5.3 follows.
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The median-of-means estimator may also used even if the distribution of
the Xi has an infinite variance but has a finite moment of order 1 + α for some
α ∈ (0,1). The rate of convergence of the estimator deteriorates—the error is of the
order of n−α/(1+α) but the median-of-means estimator exhibits a similar optimality
property as in the case of finite variance. The following result summarizes this
extension. We leave the proof as an exercise.

Theorem 5.4. Let α ∈ (0,1]. X1, . . . ,Xn be independent, identically distributed random
variables with mean µ and (1 + α)-th central moment M = E

[
|Xi −µ|1+α

]
. Let m,k

be positive integers assume that n = mk. Then the median-of-means estimator with
k =

⌈
8log(2/δ)

⌉
blocks satisfies

P

∣∣∣µ̂n −µ∣∣∣ > 8
(

12M1/α log(1/δ)
n

)α/(1+α)
 ≤ δ .

Moreover, for any mean estimator µ̂n, there exists a distribution with mean µ and (1+α)-
th central moment M such that

P

∣∣∣µ̂n −µ∣∣∣ >
(
M1/α log(2/δ)

n

)α/(1+α)
 ≥ δ .

5.2 Estimating the mean of a random vector

In this section we discuss extensions of the mean estimation problem to the multi-
variate setting, that is, when one is interested in estimating the mean of a random
vector.

Let X be a random vector taking values in Rd . Assume that the mean vector
µ = EX and covariance matrix Σ = E(X − µ)(X − µ)T exist. Given n independent,
identically distributed samples X1, . . . ,Xn drawn from the distribution of X, one
wishes to estimate the mean vector.

Just like in the univariate case, a natural choice is the sample mean (1/n)
∑n
i=1Xi .

The sample mean has a near-optimal behavior whenever the distribution is suffi-
ciently light tailed. However, whenever heavy tails are a concern, the sample mean
is to be avoided as it may have a sub-optimal performance.

5.2.1 Sub-Gaussian property

In the previous section, for the univariate problem, we constructed an mean esti-
mator with a sub-Gaussian performance. In order to properly set up our goal for
the d-dimensional case, first we need to understand what “sub-Gaussian perfor-
mance” means.
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If X has a multivariate normal distribution with mean vector µ and covari-
ance matrix Σ, then µn is also multivariate normal with mean µ and covariance
matrix (1/n)Σ. Thus, for all t > 0,

P
{
‖µn −µ‖ ≥ E‖µn −µ‖+ t

}
= P

{
‖X‖ −E‖X‖ ≥ t

√
n
}
,

whereX be a Gaussian vector in Rd with zero mean and covariance matrix Σ. A key
property of Gaussian vectors is that X has the same distribution as Σ1/2Y where Y
is a standard normal vector (i.e., with zero-mean and identity covariance matrix)
and Σ1/2 is the positive semidefinite square root of Σ. Also, observe that for all
y,y′ ∈ Rd , ∣∣∣‖Σ1/2y‖ − ‖Σ1/2y′‖

∣∣∣ ≤ ‖Σ1/2(y − y′)‖ ≤ ‖Σ1/2‖ · ‖y − y′‖ ,

where ‖Σ1/2‖ is the spectral norm of Σ1/2. Thus, Σ1/2y is a Lipschitz function of
y ∈ Rd with Lipschitz constant ‖Σ1/2‖ =

√
λmax, with λmax = λmax(Σ) denoting the

largest eigenvalue of the covariance matrix Σ. Now it follows from the Gaussian
concentration inequality (Theorem A.11 in the Appendix) that

P
{
‖X‖ −E‖X‖ ≥ t

√
n
}
≤ e−nt

2/(2λmax) .

Noting that

E‖X‖ ≤
√
E‖X‖2 =

√
Tr(Σ) ,

the trace of the covariance matrix Σ, we have that, for δ ∈ (0,1), with probability at
least 1− δ,

‖µn −µ‖ ≤
√

Tr(Σ)
n

+

√
2λmax log(1/δ)

n
. (5.5)

5.2.2 Multivariate median-of-means

For non-Gaussian and possibly heavy-tailed distributions, one cannot expect a
sub-Gaussian behavior of the sample mean similar to (5.5).

One may try to extend the median-of-means estimator to the multivariate
case. To this end, just like in the univariate case, we partition [n] = {1, . . . ,n} into k
blocks B1, . . . ,Bk, each of size |Bi | ≥ bn/kc ≥ 2. Here k is a parameter of the estimator
to be chosen later. For simplicity, we assume that km = n for some positive integer
m. Just like before, we compute the sample mean of the random vectors within
each block: for j = 1, . . . , k, let

Yj =
1
m

∑
i∈Bj

Xi .
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Since E‖Yj − µ‖2 = Tr(Σ)/m, by Chebyshev’s inequality, ‖Yj − µ‖ ≤ r
def.= 2

√
Tr(Σ)/m

with probability at least 3/4. Thus, by choosing k =
⌈
8log(1/δ)

⌉
, we have that, with

probability at least 1− δ, more than half of the points Yj satisfy

‖Yj −µ‖ ≤ r .

Denote this event by E. (Thus, P{E} ≥ 1− δ.) Now choose µ̂n to be the point in Rd
with the property that the Euclidean ball centered at µ̂n that contains more than
k/2 of the points Yj has minimal radius. On the event E, this radius is at most r.
Hence, at least one of the Yj is within distance r to both µ and µ̂n. Thus, by the
triangle inequality, ‖µ̂n −µ‖ ≤ 2r. We have obtained the following proposition.

Proposition 5.6. Let X1, . . . ,Xn be i.i.d. random vectors in Rd with mean µ and co-
variance matrix Σ. Let δ ∈ (0,1) and let µ̂n be the estimator defined above with k =⌈
8log(1/δ)

⌉
. Then, with probability at least 1− δ,∥∥∥µ̂n −µ∥∥∥ ≤ 4

√
Tr(Σ)(8log(1/δ) + 1)

n
.

Given n points x1, . . . ,xn ∈ Rd , the center of the smallest ball that contains
at least half of the points may be considered as a notion of a multivariate median.
Computing such a median is a nontrivial problem. One may replace it by the
so-called geometric median defined as

m = argmin
y∈Rd

n∑
i=1

‖xi − y‖ .

The multivariate median-of-means estimator may be defined as the geometric me-
dian of the sample means Y1, . . . ,Yk of the k blocks. This estimator has a similar
performance, see Exercise 5.3.

While the bound is quite remarkable–note that no assumption other than
the existence of the covariance matrix is made–, it does not quite achieve a sub-
Gaussian performance bound that resembles (5.5).

An instructive example is when all eigenvalues are identical and equal to
λmax. If the dimension d is large, (5.5) is of the order of

√
(λmax/n)(d + log(δ−1))

while the bound above only gives the order
√

(λmax/n)(d log(δ−1)).

In order to achieve a truly sub-Gaussian performance, we need to define a
new estimator.

5.2.3 Median of means tournament

Here we introduce a mean estimator with a sub-Gaussian performance for all dis-
tributions whose covariance matrix exists.
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Recall that we are given an i.i.d. sample X1, . . . ,Xn of random vectors in Rd .
As in the case of the median-of-means estimator, we start by partitioning the set

{1, . . . ,n} into k blocks B1, . . . ,Bk, each of size |Bj | ≥ m
def.= bn/kc, where k is a pa-

rameter of the estimator whose value depends on the desired confidence level, as
specified below. In order to simplify the presentation, we assume that n is divisible
by k and therefore |Bj | =m for all j = 1, . . . , k.

Define the sample mean within each block by

Yj =
1
m

∑
i∈Bj

Xi .

For each a ∈ Rd , let

Ta =
{
x ∈ Rd : ∃J ⊂ [k] : |J | ≥ k/2 such that for all j ∈ J, ‖Yj − x‖ ≤ ‖Yj − a‖

}
(5.7)

and define the mean estimator by

µ̂n ∈ argmin
a∈Rd

diam(Ta) .

Thus, µ̂n is chosen to minimize, over all a ∈ Rd , the diameter of the set Ta defined
as the set of points x ∈ Rd for which ‖Yj−x‖ ≤ ‖Yj−a‖ for the majority of the blocks.
(If there are several minimizers, one may pick any one of them.)

Note that the minimum is always achieved. This follows from the fact that
diam(Ta) is a continuous function of a (since, for each a, Ta is the intersection of
a finite union of closed balls, and the centers and radii of the closed balls are
continuous in a).

One may interpret argmina∈Rd diam(Ta) as a multivariate notion of the me-
dian of Y1, . . . ,Yk. Indeed, when d = 1, it is a particular choice of the median and
the estimator coincides with the median-of-means estimator.

The following performance bound shows that the estimator has the desired
sub-Gaussian performance.

Theorem 5.8. Let δ ∈ (0,1) and consider the mean estimator µ̂n with parameter k =
d200log(2/δ)e. If X1, . . . ,Xn are i.i.d. random vectors in Rd with mean µ ∈ Rd and
covariance matrix Σ, then for all n, with probability at least 1− δ,

∥∥∥µ̂n −µ∥∥∥ ≤ 2max

800

√
Tr(Σ)
n

,240

√
λmax log(2/δ)

n

 .
Just like, the performance bound of Proposition 5.6, Theorem 5.8 is “infinite-

dimensional” in the sense that the bound does not depend on the dimension d
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explicitly. Indeed, the same estimator may be defined for Hilbert-space valued
random vectors and Theorem 5.8 remains valid as long as Tr(Σ) = E‖X − µ‖2 is
finite.

Theorem 5.8 is an outcome of the following observation.

Theorem 5.9. Using the same notation as above and setting

r = max

800

√
Tr(Σ)
n

,240

√
λmax log(2/δ)

n

 ,
with probability at least 1 − δ, for any a ∈ Rd such that ‖a − µ‖ ≥ r, one has ‖Yj − a‖ >
‖Yj −µ‖ for more than k/2 indices j.

Theorem 5.9 implies that for a ‘typical’ collection X1, . . . ,Xn, µ is closer to
a majority of the Yj ’s when compared to any a ∈ Rd that is sufficiently far from µ.
Obviously, for an arbitrary collection x1, . . . ,xn ⊂ Rd such a point need not exist,
and it is surprising that for a typical i.i.d. configuration, this property is satisfied
by µ.

The fact that Theorem 5.9 implies Theorem 5.8 is straightforward. Indeed,
Theorem 5.9 implies that diam(Tµ) ≤ 2r and that if ‖a− µ‖ ≥ r, then µ ∈ Ta. By the
definition of Ta, one always has a ∈ Ta, and thus if ‖a− µ‖ > 2r then diam(Ta) > 2r.
Therefore, the minimizer µ̂ must satisfy that ‖µ̂−µ‖ ≤ 2r, as required.

The constants appearing in Theorem 5.8 are certainly not optimal. They
were obtained with the goal of making the proof transparent.

The proof of Theorem 5.9 is based on the following idea. The mean µ is
the minimizer of the function f (x) = E‖X − x‖2. A possible approach is to use the
available data to guess, for any pair a,b ∈ Rd , whether f (a) < f (b). To this end, we
may set up a “tournament” as follows.

Recall that [n] is partitioned into k disjoint blocks B1, . . . ,Bk of size m = n/k.
For a,b ∈ Rd , we say that a defeats b if

1
m

∑
i∈Bj

(
‖Xi − b‖2 − ‖Xi − a‖2

)
> 0

on more than k/2 blocks Bj . The main technical lemma is the following.

Lemma 5.10. Let δ ∈ (0,1), k = d200log(2/δ)e, and define

r = max

800

√
Tr(Σ)
n

,240

√
λmax log(2/δ)

n

 .
With probability at least 1− δ, µ defeats all b ∈ Rd such that ‖b −µ‖ ≥ r.
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Proof. Note that

‖Xi − b‖2 − ‖Xi −µ‖2 = ‖Xi −µ+µ− b‖2 − ‖Xi −µ‖2 = −2
〈
Xi −µ,b −µ

〉
+ ‖b −µ‖2 ,

set X = X−µ and put v = b−µ. Thus, for a fixed b that satisfies ‖b−µ‖ ≥ r, µ defeats
b if

− 2
m

∑
i∈Bj

〈
Xi ,v

〉
+ ‖v‖2 > 0

on the majority of blocks Bj .

Therefore, to prove our claim we need that, with probability at least 1 − δ,
for every v ∈ Rd with ‖v‖ ≥ r,

− 2
m

∑
i∈Bj

〈
Xi ,v

〉
+ ‖v‖2 > 0 (5.11)

for more than k/2 blocks Bj . Clearly, it suffices to show that (5.11) holds when
‖v‖ = r.

Consider a fixed v ∈ Rd with ‖v‖ = r. By Chebyshev’s inequality, with prob-
ability at least 9/10,∣∣∣∣∣∣∣∣ 1

m

∑
i∈Bj

〈
Xi ,v

〉∣∣∣∣∣∣∣∣ ≤
√

10

√
E
〈
X,v

〉2

m
≤
√

10‖v‖
√
λmax

m
,

where recall that λmax is the largest eigenvalue of the covariance matrix ofX. Thus,
if

r = ‖v‖ ≥ 4
√

10

√
λmax

m
(5.12)

then with probability at least 9/10,

− 2
m

∑
i∈Bj

〈
Xi ,v

〉
≥ −r

2

2
. (5.13)

Applying a Hoeffding’s inequality (Theorem A.4 in the Appendix), we see that
(5.13) holds for a single v with probability at least 1− exp(−k/50) on at least 8/10
of the blocks Bj .

Now we need to extend the above from a fixed vector v to all vectors with
norm r. In order to show that (5.13) holds simultaneously for all v ∈ r · Sd−1 on at
least 7/10 of the blocks Bj , we first consider a maximal ε-separated set V1 ⊂ r ·Sd−1

with respect to the L2(X) norm. In other words, V1 is a subset of r ·Sd−1 of maximal
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cardinality such that for all v1,v2 ∈ V1, ‖v1−v2‖L2(X) = 〈v1 − v2,Σ(v1 − v2)〉1/2 ≥ ε. We
may estimate this cardinality by the “dual Sudakov” inequality (see [50] and also
[71] for a version with the specified constant) which implies that the cardinality of
V1 is bounded by

log |V1| ≤

E
[
〈G,ΣG〉1/2

]
4ε/r


2

,

where G is a standard normal vector in Rd . Notice that for any a ∈ Rd , EX 〈a,X〉2 =
〈a,Σa〉, and therefore,

E
[
〈G,ΣG〉1/2

]
= EG

[(
EX

[〈
G,X

〉2
])1/2

]
≤

(
EXEG

[〈
G,X

〉2
])1/2

=
(
E
[∥∥∥X∥∥∥2

])1/2
=

√
Tr(Σ) .

Hence, by setting

ε = (5/2)r
(1
k

Tr(Σ)
)1/2

, (5.14)

we have |V1| ≤ ek/100 and thus, by the union bound, with probability at least 1 −
e−k/100 ≥ 1− δ/2, (5.13) holds for all v ∈ V1 on at least 8/10 of the blocks Bj .

Next we check that property (5.11) holds simultaneously for all x with ‖x‖ =
r on at least 7/10 of the blocks Bj .

For every x ∈ r ·Sd−1, let vx be the nearest element to x in V1 with respect to
the L2(X) norm. It suffices to show that, with probability at least 1−exp(−k/200) ≥
1− δ/2,

sup
x∈r·Sd−1

1
k

k∑
j=1

1
{
{|m−1 ∑

i∈Bj 〈Xi ,x−vx〉|≥r2/4}
} ≤ 1

10
. (5.15)

Indeed, on that event it follows that for every x ∈ r · Sd−1, on at least 7/10 of the
coordinate blocks Bj , both

− 2
m

∑
i∈Bj

〈
Xi ,vx

〉
≥ −r

2

2
and 2

∣∣∣∣∣∣∣∣ 1
m

∑
i∈Bj

〈
Xi ,x

〉
− 1
m

∑
i∈Bj

〈
Xi ,vx

〉∣∣∣∣∣∣∣∣ < r
2

2

hold and hence, on those blocks, − 2
m

∑
i∈Bj

〈
Xi ,x

〉
+ r2 > 0 as required.

It remains to prove (5.15). Observe that

1
k

k∑
j=1

1
{
{|m−1 ∑

i∈Bj 〈Xi ,x−vx〉|≥r2/4}
} ≤ 4

r2
1
k

k∑
j=1

∣∣∣∣∣∣∣∣ 1
m

∑
i∈Bj

〈
Xi ,x − vx

〉∣∣∣∣∣∣∣∣ .
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Since ‖x − vx‖L2(X) = (E
〈
X,x − vx

〉2
)1/2 ≤ ε it follows that for every j

E

∣∣∣∣∣∣∣∣ 1
m

∑
i∈Bj

〈
Xi ,x − vx

〉∣∣∣∣∣∣∣∣ ≤
√√

E
[〈
X,x − vx

〉2
]

m
≤ ε
√
m
,

and therefore,

E sup
x∈r·Sd−1

1
k

k∑
j=1

1
{
{|m−1 ∑

i∈Bj 〈Xi ,x−vx〉|≥r2/4}
}

≤ 4
r2E sup

x∈r·Sd−1

1
k

k∑
j=1


∣∣∣∣∣∣∣∣ 1
m

∑
i∈Bj

〈
Xi ,x − vx

〉∣∣∣∣∣∣∣∣−E
∣∣∣∣∣∣∣∣ 1
m

∑
i∈Bj

〈
Xi ,x − vx

〉∣∣∣∣∣∣∣∣
+

4ε
r2
√
m

def.= (A) + (B) .

To bound (B), note that, by (5.14),

4ε
r2
√
m

= 20
(

Tr(Σ)
n

)1/2

· 1
r
≤ 1

40

provided that

r ≥ 800
(

Tr(Σ)
n

)1/2

.

To bound (A), we may use standard techinques of emprical process theory, such as
symmetrization, contraction for Bernoulli processes, and de-symmetrization (see,
e.g., [50]) to show that

(A) ≤ 8
r2E sup

x∈r·Sd−1

∣∣∣∣∣∣∣1n
n∑
i=1

〈
Xi ,x − vx

〉∣∣∣∣∣∣∣ ≤ 16
r
E sup
{t:‖t‖≤1}

∣∣∣∣∣∣∣1n
n∑
i=1

〈
Xi , t

〉∣∣∣∣∣∣∣
≤ 16
r
·
E
∥∥∥X∥∥∥
√
n

=
16
r

(
Tr(Σ)
n

)1/2

≤ 1
40

provided that r ≥ 640
(Tr(Σ)

n

)1/2
.

Thus, for

Z = sup
x∈r·Sd−1

1
k

k∑
j=1

1
{
{|m−1 ∑

i∈Bj 〈Xi ,x−vx〉|≥r2/4}
} ,

we have proved that EZ ≤ 1/20. Finally, in order to prove (5.15), it suffices to
prove that, P{Z > EZ+1/20} ≤ e−k/200, which follows from the bounded differences
inequality (see, Theorem A.10 in the Appendix).
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Proof of Theorem 5.9

Theorem 5.9 is easily derived from Lemma 5.10. Fix a block Bj , and recall that
Yj = 1

m

∑
i∈Bj Xi . Let a,b ∈ Rd . Then

1
m

∑
i∈Bj

(
‖Xi − a‖2 − ‖Xi − b‖2

)
=

1
m

∑
i∈Bj

(
‖Xi − b − (a− b)‖2 − ‖Xi − b‖2

)
= − 2

m

∑
i∈Bj

〈Xi − b,a− b〉+ ‖a− b‖2 = (∗)

Observe that − 2
m

∑
i∈Bj 〈Xi − b,a− b〉 = −2

〈
1
m

∑
i∈Bj Xi − b,a− b

〉
= −2

〈
Yj − b,a− b

〉
,

and thus

(∗) = −2
〈
Yj − b,a− b

〉
+ ‖a− b‖2

= −2
〈
Yj − b,a− b

〉
+ ‖a− b‖2 + ‖Yj − b‖2 − ‖Yj − b‖2

= ‖Yj − b − (a− b)‖2 − ‖Yj − b‖2 = ‖Yj − a‖2 − ‖Yj − b‖2 .

Therefore, (∗) > 0 (i.e., b defeats a on block Bj) if and only if ‖Yj − a‖ > ‖Yj − b‖.
Recall that Lemma 5.10 states that, with probability at least 1−δ, if ‖a−µ‖ ≥ r

then on more than k/2 blocks Bj ,
1
m

∑
i∈Bj

(
‖Xi − a‖2 − ‖Xi −µ‖2

)
> 0, which, by the

above argument, is the same as saying that for at least k/2 indices j, ‖Yj − a‖ >
‖Yj −µ‖.

5.3 The hidden hubs problem

To illustrate the use of the robust mean estimation techniques described in the
previous section, we study a variant of the hidden clique problem. Consider the
hypothesis testing problem in which one observes an n × n matrix X with inde-
pendent entries Xi,j , i, j ∈ [n]. Under the null hypothesis, all entries are standard
normal random variables. Under the alternative hypothesis, there exist k < n rows
of the matrix that have about k entries that are normally distributed with mean 0
and variance σ2 > 1. More precisely, under the alternative hypothesis, there ex-
ists a set S ⊂ [n] with |S | = k such that, for all i ∈ S, Xi,j is standard normal with
probability 1−k/n and normalN (0,σ2) with probability k/n. If i < S, the Xi,j have
the standard normal distribution. To define the null and alternative hypotheses
formally, introduce the notation, for u ∈ R,

φ0(u) =
1
√

2π
e−u

2/2 and φ1(u) =
1

σ
√

2π
e−u

2/(2σ2) .
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Under the null hypothesis, the joint density of X = (Xi,j)n×n is

f0(x) =
∏
i,j∈[n]

φ0(xi,j) for x ∈ Rn
2
,

while under the alternative hypothesis, X has density fS for some set S of size k,
where

fS(x) =
∏
i∈S

n∏
j=1

((
1− k

n

)
φ0(xi,j) +

k
n
φ1(xi,j)

)∏
i<S

n∏
j=1

φ0(xi,j) .

There are various differences between this model and the Gaussian hidden clique
problem discussed in Chapter 2. First, while “typical” entries of the matrix are
standard normal N (0,1) in both models, “atypical” entries are normal N (0,σ ) in-
stead of N (µ,1). Thus, instead of a shifted mean, the variance is increased. Also,
the atypical values are not forced to form a k × k submatrix but rather they are
placed in k rows at arbitrary positions. The fact that the number of atypical en-
tries per row is random ∼ Bin(n,k/n) instead of k is a minor difference assumed
only for convenience.

In this illustrative example we only address the case when σ2 = 2. In a sense
this is a threshold case mostly due to the fact that the expected value ES[φ1(Xi,j)/φ0(Xi,j)]
of the likelihood ratio is infinite for i ∈ S if and only if σ2 ≥ 2. Indeed, Kannan and
Vempala [47] prove that the problem becomes much easier when σ2 ≥ 2. Here we
show a simplified analysis of the test of Kannan and Vempala, made possible by
the robust mean estimation techniques presented in this chapter.

To introduce the proposed test, consider the “likelihood ratio”

L(Xi,j) =
φ1(Xi,j)

φ0(Xi,j)

for each entry Xi,j of the matrix X . Under the null hypothesis, we clearly have

E0L(Xi,j) =
∫
L(u)φ0(u)du = 1 ,

while under the alterative, if i ∈ S,

ESL(Xi,j) =
∫
L(u)φ1(u)du = 1− k

n
+
k
n

∫
L(u)φ1(u)du .

For i < S, ESL(Xi,j) = E0L(Xi,j) = 1. Since∫
L(u)φ1(u)du =

∫
1

σ2
√

2π
e−u

2/4eu
2/2e−u

2/4du =∞ ,
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ESL(Xi,j) =∞ whenever i ∈ S. (Note that the same holds not only when σ2 = 2 but
also whenever σ2 ≥ 2. Thus, it is a natural idea to base a test on estimating the
expected value of L. In order to make sure that the expected value is well defined
and to control the fluctuations of L(Xi,j), we truncate its value appropriately.

Let M be a positive number whose value is chosen below and introduce

Bi,j = exp

min
(
X2
i,j ,M

2
)

4

 .
The proposed test Tn works as follows. For each row i ∈ [n] of the matrix X , com-
pute the median-of-means estimator µ̂i of the values Bi,1, . . . ,Bi,n, with confidence
parameter δ ∈ (0,1). Accept the null hypothesis if and only if less than k/2 rows
have a large estimated mean. More precisely, the test Tn : Rn2 → {0,1} is defined by

Tn(X) = 0 if and only if

∣∣∣∣∣∣∣
i ∈ [n] : µ̂i >

√
2 + 8(2/π)1/4

√
M log(1/δ)

n


∣∣∣∣∣∣∣ < k2 .

The test has two parameters: M is the level of truncation and δ is the confidence
level in the definition of the median-of-means estimator. The next result shows
that in the “critical” case when σ2 = 2, the test is correct with high probability
provided that k is at least cn1/2 log1/4n. We refer to Kannan and Vempala [47] for
a thorough analysis on the entire range of values of σ2.

Theorem 5.16. Consider the test defined above with parameters M =
√

2logn and
δ = 1/n. Then for any S ⊂ [n] of cardinality k,

P0{Tn(X) = 1}+PS{Tn(X) = 0} ≤ 2e−3k/16 ,

whenever k ≥ 32n1/2 log1/4n.

Proof. In order to analyze our test, we first bound the type I error P0{Tn(X) = 1}.
To this end, we first estimate the expectation and variance of Bi,j under both hy-
potheses. Under the null, for all i, j ∈ [n],

E0Bi,j =
∫

1
√

2π
exp

(
min(u2,M2)

4
− u

2

2

)
du ≤

∫
1
√

2π
exp

(
u2

4
− u

2

2

)
du =

√
2 .

Also,

E0Bi,j ≥
∫ M

−M

1
√

2π
exp

(
−u

2

4

)
du

=
√

2
(
1−P{N (0,1) ≥M/

√
2
)
≥
√

2
(
1− e−M

4/4
)

=
√

2
(
1− 1

n

)
.
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On the other hand,

E0B
2
i,j =

∫
1
√

2π
exp

(
min(u2,M2)

2
− u

2

2

)
du

=

√
2
π
M + eM

2/2P{|N (0,1)| >M2} ≤
√

2
π
M + 2 ,

where we used the standard tail estimate of the standard normal distribution
P{N (0,1) >M2} ≤ e−M2/2. (This follows easily from the Chernoff bound.) Hence,

Var0(Bi,j) = E0B
2
i,j −

(
E0Bi,j

)2
≤

√
2
π
M .

Thus, the performance bound Theorem 5.2 of the median-of-means estimator guar-
antees that, for all i ∈ [n], the probability that

µ̂i >
√

2 + 8(2/π)1/4

√
M logn
n

is at most 1/n. Thus, the number of indices i with this property is dominated by
a binomial random variable Bin(n,1/n). Since, by Bernstein’s inequality (Theorem
A.5 in the Appendix)

P
{

Bin(n,1/n) >
k
2

}
≤ P

{
Bin(n,1/n))−EBin(n,1/n) >

k
4

}
≤ e−3k/16 ,

we have
P0{Tn(X) = 1} ≤ e−3k/16 .

It remains to examine the behavior of the test under the alternative hypothesis.

Naturally, for i < S, we have ESBi,j = E0Bi,j and VarS(Bi,j) = Var0(Bi,j) for all
j ∈ [n].

On the other hand, if i ∈ S, then for all j ∈ [n], by a computation similar to
the above,

ESBi,j =
(
1− k

n

)
E0Bi,j +

k
n

∫
1

2
√
π

exp
(

min(u2,M2)
4

− u
2

4

)
du

=
(
1− k

n

)
E0Bi,j +

k
n

(
M
√
π

+ eM
2/4P{|N (0,2)| >M}

)
≥

(
1− k

n

)(
1− 1
√
n

)√
2 +

M
√
π

k
n

≥
√

2 +
M − 3
√
π

k
n
.
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Also,

ESB2
i,j =

(
1− k

n

)
E0B

2
i,j +

k
n

∫
1

2
√
π

exp
(

min(u2,M2)
2

− u
2

4

)
du .

Since ∫
1

2
√
π

exp
(

min(u2,M2)
2

− u
2

4

)
du

=
∫
|u|≤M

1
2
√
π

exp
(
u2

4

)
du + exp

(
M2

2

)∫
|u|≥M

1
2
√
π

exp
(
−u

2

4

)
du

≤ 1
√
π

∫ M

0
exp

(Mu
4

)
du +

1
M
√
π

exp
(
M2

2

)∫ ∞
M
u exp

(
−u

2

4

)
du

≤ 4
M
√
π
eM

2/4 +
1

M
√
π
eM

2/4

=
5

M
√
π
eM

2/4 ,

we have, for all i ∈ S and j ∈ [n],

VarS(Bi,j) ≤
(
1− k

n

)
√

2
π
M + 2

+
k
n

5
M
√
π
eM

2/4 .

Thus, invoking Theorem 5.2 again, we have that, if i ∈ S, then with probability at
least 1− 1/n,

µ̂i >
√

2 +
M − 3
√
π

k
n
− 8

√
logn
n

√
√

2
π
M + 2

+
k
n

5
M
√
π
eM2/4

The right-hand side of the inequality is grater than

√
2 + 8(2/π)1/4

√
M logn
n

whenever
Mk
n
> 32

√
M
n

logn and
Mk
n
> 36

√
k

Mn2 e
M2/4 logn

(with a generous bounding of the constants for convenience). Both inequalities are
easily seen to hold with M =

√
2logn if k ≥ 32n1/2 log1/4n. Hence, under the alter-

native hypothesis, the number of indices i for which µ̂n >
√

2 + 8(2/π)1/4
√
M logn
n is

at least as large as a binomial Bin(k,1 − 1/n) random variable. Once again, Bern-
stein’s inequality may be invoked to conclude that the probability that this num-
ber is smaller than k/2 is at most e−3k/16, concluding the proof of PS{Tn(X) = 0} ≤
e−3k/16.
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5.4 Bibliographic notes

The median-of-means estimator has been proposed in different forms in various
papers, see Nemirovsky and Yudin [58], Hsu [38], Jerrum, Valiant, and Vazirani
[44], Alon, Matias, and Szegedy [3].

Theorem 5.3 and the lower bound of Theorem 5.4 is from Devroye, Lerasle,
Lugosi, and Oliveira [25] The first inequality of Theorem 5.4 appears in Bubeck,
Cesa-Bianchi, and Lugosi [16].

The problem of constructing estimators with sub-Gaussian performance
that do not depend on the confidence lever δ was studied in Devroye, Lerasle,
Lugosi, and Oliveira [25].

Lerasle and Oliveira [51], Hsu and Sabato [39], and Minsker [56] extend the
median-of-means estimator to more general spaces.

The median-of-means tournament estimator and the Theorem 5.8 appear
in Lugosi and Mendelson [52].

The hidden hubs problem was introduced by Kannan and Vempala [47].
The solution presented here is a simplified version of their techniques.

5.5 Exercises

Exercise 5.1. Prove Theorem 5.4.

Exercise 5.2. Let Y be a standard normal random variable. Show that, for all λ < 1/2,

logEeλY
2

=
1
2

(− log(1− 2λ)) ≤ λ+
λ2

1− 2λ
.

Exercise 5.3. (geometric median-of-means estimator). Let X1, . . . ,Xn be i.i.d. ran-
dom vectors in Rd with mean µ and covariance matrix Σ. Partition [n] = {1, . . . ,n} into
k blocks B1, . . . ,Bk of size |Bi | ≥ bn/kc ≥ 2. For j = 1, . . . , k, let

Yj =
1
m

∑
i∈Bj

Xi .

Let µ̂n be the geometric median of Y1, . . . ,Yk. Show that µ̂n satisfies an inequality similar
to the estimator of Proposition 5.6 (Minsker [56]).
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Appendix A

Probability inequalities

Here we gather some of the probabilistic tools used in the text.

A.1 Chernoff bounds: concentration of sums of independent

random variables

First of all, recall Markov’s inequality: for any nonnegative random variable X, and
t > 0,

P{X ≥ t} ≤ EX
t
.

An easy application of this is Chebyshev’s inequality: if X is an arbitrary random
variable and t > 0, then

P{|X −EX | ≥ t} = P
{
|X −EX |2 ≥ t2

}
≤
E
[
|X −EX |2

]
t2

=
Var(X)
t2

.

One often obtains sharper bounds by a more clever use of Markov’s inequality. The
idea is simple: by Markov’s inequality, if s is an arbitrary positive number, then for
any random variable X, and any t > 0,

P{X ≥ t} = P{esX ≥ est} ≤ EesX

est
.

One may now pick the value of s that yields the sharpest bound. The obtained
inequality is often called the Chernoff bound:

P{X ≥ t} ≤ inf
s>0

EesX

est
.

As an illustration, consider the case when X is a standard normal random variable.
Then EesX = es

2/2 and the Chernoff bound implies that

P{X ≥ t} ≤ inf
s>0
es

2/2−st = e−t
2/2 . (A.1)
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This bound is quite sharp, though it may slightly be improved by noticing that

P{X ≥ t} =
∫ ∞
t

1
√

2π
e−x

2/2dx ≤ 1

t
√

2π

∫ ∞
t
xe−x

2/2dx =
1

t
√

2π

[
−e−x

2/2
]∞
t

=
1

t
√

2π
e−t

2/2 .

The Chernoff bound is especially convenient for obtaining tail bounds for sums of
independent random variables. Define Sn =

∑n
i=1Xi , where X1, . . . ,Xn are indepen-

dent real-valued random variables. Then

P{Sn −ESn ≥ t} ≤ e−stE

exp

s n∑
i=1

(Xi −EXi)




= e−st
n∏
i=1

E
[
es(Xi−EXi )

]
(by independence). (A.2)

Hence, the problem of finding tight tail bounds for Sn boils down to finding good
upper bounds for the moment generating function of the random variables Xi −
EXi . For bounded random variables perhaps the most elegant version is due to
Hoeffding:

Lemma A.3. Let X be a random variable with EX = 0, a ≤ X ≤ b. Then for s > 0,

E
[
esX

]
≤ es

2(b−a)2/8 .

Proof. Note that by convexity of the exponential function

esx ≤ x − a
b − a

esb +
b − x
b − a

esa for a ≤ x ≤ b.

Exploiting EX = 0, and introducing the notation p = −a/(b − a) we get

EesX ≤ b
b − a

esa − a
b − a

esb

=
(
1− p+ pes(b−a)

)
e−ps(b−a)

def.= eφ(u),

where u = s(b− a), and φ(u) = −pu + log(1−p+peu). But by straightforward calcu-
lation it is easy to see that the derivative of φ is

φ′(u) = −p+
p

p+ (1− p)e−u
,

therefore φ(0) = φ′(0) = 0. Moreover,

φ′′(u) =
p(1− p)e−u

(p+ (1− p)e−u)2 ≤
1
4
.
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Thus, by Taylor’s theorem, for some θ ∈ [0,u],

φ(u) = φ(0) +uφ′(0) +
u2

2
φ′′(θ) ≤ u

2

8
=
s2(b − a)2

8
.

Now we may directly plug this lemma into (A.2):

P{Sn −ESn ≥ t}

≤ e−st
n∏
i=1

es
2(bi−ai )2/8 (by Lemma A.3)

= e−stes
2 ∑n

i=1(bi−ai )2/8

= e−2t2/
∑n
i=1(bi−ai )2

(by choosing s = 4t/
∑n
i=1(bi − ai)2) .

The result we have just derived is generally known as Hoeffding’s inequality
([37]):

Theorem A.4. (hoeffding’s inequality). Let X1, . . . ,Xn be independent bounded ran-
dom variables such that Xi falls in the interval [ai ,bi] with probability one. Then for
any t > 0 we have

P{Sn −ESn ≥ t} ≤ e−2t2/
∑n
i=1(bi−ai )2

and
P{Sn −ESn ≤ −t} ≤ e−2t2/

∑n
i=1(bi−ai )2

.

A version that is often useful when the variance of the summands is small
is the following inequality, often called Bernstein’s inequality.

Theorem A.5. (bennett’s inequality.) Let X1, . . . ,Xn be independent random vari-
ables with finite variance such that Xi ≤ b for some b > 0 almost surely for all i ≤ n.
Let

S =
n∑
i=1

(Xi −EXi)

and v =
∑n
i=1E

[
X2
i

]
. Then for all t > 0,

P{S ≥ t} ≤ exp
(
− t2

2(v + bt/3)

)
.

LetN,b, and n be positive integers withN > n andN > b. A random variable
X taking values on the integers 0,1, . . . , b is hypergeometric with parametersN,b and
n, if

P{X = k} =
(b
k

)(N−b
n−k

)(N
n

) , k = 1, . . . , b.
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X models the number of blue balls in a sample of n balls drawn without replace-
ment from an urn containing b blue and N −b red balls. The next tail bound is due
to Hoeffding [37]:

Theorem A.6. Let the set A consist of N numbers a1, . . . , aN . Let Z1, . . . ,Zn denote a
random sample taken without replacement from A, where n ≤N . Denote

m =
1
N

N∑
i=1

ai and c = max
i,j≤N

|ai − aj |.

Then for any ε > 0 we have

P


∣∣∣∣∣∣∣1n

n∑
i=1

Zi −m

∣∣∣∣∣∣∣ ≥ ε
 ≤ 2e−2nε2/c2

.

Specifically, if X is hypergeometrically distributed with parameters N,b, and n, then

P{|X − b| ≥ nε} ≤ 2e−2nε2
.

For more inequalities of this type, see Hoeffding [37] and Serfling [63].

Theorem A.7. Let χ2
d denote a random variable with χ2 distribution with d degrees of

freedom. Then
P{χ2

d < d − 2
√
dt} ≤ e−t

and
P{χ2

d > d + 2
√
dt + 2t} ≤ e−t

(see, e.g., Massart [53]).

A.2 Concentration inequalities for functions of independent

random variables

A.2.1 Efron-Stein inequality

TheoremA.8. (efron-stein inequality.) Suppose X1, . . . ,Xn are independent random
variables taking values in some set X and let f : X n→ R. Denote X = (X1, . . . ,Xn). Let
X ′ = (X ′1, . . . ,X

′
n) be an independent copy ofX. DenotingX(i) = (X1, . . . ,Xi−1,X

′
i ,Xi+1, . . . ,Xn),

Var(f (X)) ≤ 1
2

n∑
i=1

E
[(
f (X)− f (X(i))

)2
]
.
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The theorem is due to Steele [64], building on earlier work of Efron and
Stein [28]. The beautiful proof presented here is due to Sourav Chatterjee.

Proof. Introduce the notation

X[i] = (X ′1, . . . ,X
′
i ,Xi+1, . . . ,Xn) .

In particular, X[0] = X and X[n] = X ′. Let f : X n → R be such that Ef (X) = 0 and
let g : X n→ R. Then

E[g(X)f (X)] = E[g(X)(f (X)− f (X ′))] =
n∑
i=1

E
[
g(X)

(
f (X[i−1])− f (X[i])

)]
Notice that g(X)(f (X[i−1])−f (X[i])) has the same distribution as that of −g(X(i))(f (X[i−1])−
f (X[i])). Thus,

E[g(X)f (X)] =
1
2

n∑
i=1

E
[(
g(X)− g(X(i))

)(
f (X[i−1])− f (X[i])

)]
By taking g = f , we obtain the variance fomula

Var(f (X)) =
1
2

n∑
i=1

E
[(
f (X)− f (X(i))

)(
f (X[i−1])− f (X[i])

)]
.

The theorem now follows from the Cauchy-Schwarz inequality.

A simple but useful corollary is the following upper bound for the vari-
ance of “self-bounding” functions. For more information on such inequalities, see
Boucheron, Lugosi, and Massart [14].

We say that f : X n → [0,∞) is self bounding if there is a function fn−1 :
X n−1→ [0,∞) such that, for all x ∈ X n,

f (x)− fn−1(x(−i)) ∈ [0,1] and
n∑
i=1

(
f (x)− fn−1(x(−i))

)
≤ f (x) ,

where x(−i) = (x1, . . . ,xi−1,xi+1, . . . ,xn).

Theorem A.9. (self-bounding function inequality.) Let X1, . . . ,Xn be independent
random variables taking values in some set X and let f : X n → R be a self-bounding
function. Then

Var(f (X)) ≤ Ef (X) .
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A.2.2 Bounded differences inequality

Let X be a measurable set. We say that a function f : X n → R has the bounded
differences property if for some nonnegative constants c1, . . . , cn,

sup
x1,...,xn,
x′i∈X

|f (x1, . . . ,xn)− f (x1, . . . ,xi−1,x
′
i ,xi+1, . . . ,xn)| ≤ ci , 1 ≤ i ≤ n .

The following inequality is one of the most basic and important concentration
inequalities for functions of independent random variables, see, for example [14,
Theorem 6.2].

Theorem A.10. (bounded differences inequality.) Assume that the function f sat-
isfies the bounded differences assumption with constants c1, . . . , cn and denote

v =
n∑
i=1

c2
i .

LetX1, . . . ,Xn be independent random variables taking values inX and letZ = f (X1, . . . ,Xn).
Then

P {Z −EZ > t} ≤ e−2t2/v .

A.2.3 Gaussian concentration inequality

The following Gaussian concentration inequality is due to by Tsirelson, Ibragimov,
and Sudakov [69] who proved it using arguments based on stochastic calculus. See
Ledoux [49] and Boucheron, Lugosi, and Massart [14] for more information.

Theorem A.11. (gaussian concentration inequality.) Let X = (X1, . . . ,Xn) be a
vector of n independent standard normal random variables. Let L > 0 and let f : Rn→ R
denote an L-Lipschitz function, that is, a f is such that for all x,y ∈ Rn,

|f (x)− f (y)| ≤ L‖x − y‖ .

Then, for all t > 0,
P {f (X)−Ef (X) ≥ t} ≤ e−t

2/(2L2) .
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Appendix B

Empirical process techniques

B.1 Covering numbers

Let (X ,d) be a metric space and let ε > 0. A set A ⊂ X is an ε-net of X if for all
x ∈ X there exists an y ∈ A such that d(x,y) ≤ ε.

If X has a finite ε-net, then one may define the ε-covering number N (X ,ε) of
X as the cardinality ε-net.

A set A ⊂ X is an ε-packing (or ε-separated set) if for all x , y ∈ A, d(x,y) ≥ ε.
The ε-packing numberM(X ,ε) is the number of points in the ε-packing with largest
cardinality.

The next lemma follows immediately from the definitions.

Lemma B.1. For all X and ε > 0,

M(X ,ε/2) ≤N (X ,ε) ≤M(X ,ε) .

Next we estimate the packing numbers of the Euclidean sphere Sd−1 = {x ∈
Rd : ‖x‖ = 1}.

Theorem B.2. For every ε > 0,

M
(
Sd−1,ε

)
≤

(
1 +

2
ε

)d
.

Proof. Let A ⊂ Sd−1 be a maximal ε-packing. Then A is an ε-covering of Sd−1 be-
cause otherwise one could add a point to A while keeping it ε-separated. Then the
balls of radius ε/2, centered at points of A are pairwise disjoint. Since all these
balls are inside the ball centered at the origin, of radius 1 + ε/2, denoting the vol-
ume of the unit ball in Rd by V , we have

M
(
Sd−1,ε

)
·
(ε
2

)d
V ≤

(
1 +

ε
2

)d
V .
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Rearranging, we obtain the announced bound.

B.2 A maximal inequality

We start with a simple maximal inequality for sub-Gaussian random variables.

Theorem B.3. Let X1, . . . ,Xn be random variables such that for all i and s > 0, EesX ≤
es

2/2. Then
E max
i=1,...,n

Xi ≤
√

2logn .

Proof. Let s > 0. Then

esEmaxi=1,...,nXi ≤ Eesmaxi=1,...,nXi ≤
n∑
i=1

EesXi ≤ nes
2/2 .

Taking logarithms of both sides and optimizing the value of s yields the announced
bound.
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