Problem 1 Consider a set \(A \subseteq \mathbb{R}^n \). Show that the closure of the set obtained by forming all strictly positive convex combinations of any finite subset of \(A \) is the convex hull of \(A \).

Problem 2 Let \(X \) be an arbitrary nonempty set and consider \(d(p, q) = I_{p \neq q} \) defined for \(p, q \in X \). Show that \(d \) is a metric. Determine which sets are open, closed, bounded, and compact.

Problem 3 Let \(C \subseteq \mathbb{R}^n \) be a convex set and let \(\delta > 0 \). Show that if \(x_1, \ldots, x_k \in \mathbb{R}^n \) are such that \(D(C, x_i) < \delta \) for all \(i = 1, \ldots, k \) then any convex combination \(y \) of \(x_1, \ldots, x_k \) satisfies \(D(C, y) < \delta \).

Problem 4 Let \(X, Y \) be metric spaces and let \(f : X \to Y \) be uniformly continuous. Show that if \(\{x_n\} \) is a Cauchy sequence in \(X \) then \(\{f(x_n)\} \) is Cauchy in \(Y \). Does the statement remain true if \(f \) is continuous on \(X \) but not necessarily uniformly?

Problem 5 Show that any closed and convex set \(C \) in \(\mathbb{R}^n \) equals the intersection of all closed halfspaces containing \(C \).

Problem 6 Let \(X \) be a metric space and let \(f : X \to X \) be a function such that for all \(x, y \in X \),

\[d(f(x), f(y)) < d(x, y). \]

Give an example when \(f \) does not have any fixed point. Show that if \(X \) is compact, \(f \) has exactly one fixed point. \textit{Hint:} The function \(d(x, f(x)) \) achieves its minimum on \(X \).

Problem 7 Let \(f \) be a real-valued function defined on an open set \(E \subseteq \mathbb{R}^n \), and assume that the partial derivatives \(D_1 f, \ldots, D_n f \) are bounded in \(E \). Prove that \(f \) is continuous in \(E \).

Problem 8 Prove that there is no continuous one-to-one and onto function \(f \) mapping the interval \([0, 1]\) onto the square \([0, 1] \times [0, 1] \).