shannon entropy

If \mathbf{X}, \mathbf{Y} are random variables taking values in a set of size \mathbf{N},

$$
H(X)=-\sum_{x} p(x) \log p(x)
$$

$$
\begin{aligned}
H(X \mid Y) & =H(X, Y)-H(Y) \\
& =-\sum_{x, y} p(x, y) \log p(x \mid y)
\end{aligned}
$$

$H(X) \leq \log N \quad$ and $\quad H(X \mid Y) \leq H(X)$

Claude Shannon
(1916-2001)

han's inequality

$$
\begin{aligned}
& \text { If } \mathbf{X}=\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}\right) \text { and } \\
& \mathbf{X}^{\mathbf{(i)}}=\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{i}-1}, \mathbf{X}_{\mathbf{i}+1}, \ldots, \mathbf{X}_{\mathbf{n}}\right) \text {, then }
\end{aligned}
$$

$$
\sum_{i=1}^{n}\left(H(X)-H\left(X^{(i)}\right)\right) \leq H(X)
$$

Proof:

$$
\begin{aligned}
H(X) & =H\left(X^{(i)}\right)+H\left(X_{i} \mid X^{(i)}\right) \\
& \leq H\left(X^{(i)}\right)+H\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

Te Sun Han
Since $\sum_{i=1}^{n} H\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)=H(X)$, summing the inequality, we get

$$
(n-1) H(X) \leq \sum_{i=1}^{n} H\left(X^{(i)}\right)
$$

edge isoperimetric inequality on the hypercube
Let $\mathbf{A} \subset\{-\mathbf{1}, \mathbf{1}\}^{n}$. Let $\mathbf{E}(\mathbf{A})$ be the collection of pairs $\mathrm{x}, \mathrm{x}^{\prime} \in \mathbf{A}$ such that $\mathbf{d}_{\mathrm{H}}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=1$. Then

$$
|\mathrm{E}(\mathrm{~A})| \leq \frac{|\mathrm{A}|}{2} \times \log _{2}|\mathrm{~A}|
$$

Proof: Let $\mathbf{X}=\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$ be uniformly distributed over \mathbf{A}.
Then $\mathbf{p}(\mathbf{x})=\mathbb{1}_{\mathbf{x} \in \mathbf{A}} /|\mathbf{A}|$.
Clearly, $\mathbf{H}(\mathbf{X})=\log |\mathbf{A}|$. Also,

$$
H(X)-H\left(X^{(i)}\right)=H\left(X_{i} \mid X^{(i)}\right)=-\sum_{x \in A} p(x) \log p\left(x_{i} \mid x^{(i)}\right)
$$

For $\mathbf{x} \in \mathbf{A}$,

$$
p\left(x_{i} \mid x^{(i)}\right)= \begin{cases}1 / 2 & \text { if } \bar{x}^{(i)} \in \mathbf{A} \\ 1 & \text { otherwise }\end{cases}
$$

where $\overline{\mathrm{x}}^{(\mathrm{i})}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{i}-1},-\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$.

$$
H(X)-H\left(X^{(i)}\right)=\frac{\log 2}{|A|} \sum_{X \in A} \mathbb{1}_{x, \bar{X}^{(i)} \in A}
$$

and therefore

$$
\sum_{i=1}^{n}\left(H(X)-H\left(X^{(i)}\right)\right)=\frac{\log 2}{|A|} \sum_{x \in A} \sum_{i=1}^{n} \mathbb{1}_{x, \bar{x}^{(i)} \in A}=\frac{|E(A)|}{|A|} 2 \log 2
$$

Thus, by Han's inequality,

$$
\frac{|E(A)|}{|A|} 2 \log 2=\sum_{i=1}^{n}\left(H(X)-H\left(X^{(i)}\right)\right) \leq H(X)=\log |A| .
$$

This is equivalent to the edge isoperimetric inequality on the hypercube: if

$$
\partial_{\mathrm{E}}(\mathbf{A})=\left\{\left(\mathrm{x}, \mathrm{x}^{\prime}\right): \mathrm{x} \in \mathrm{~A}, \mathrm{x}^{\prime} \in \mathbf{A}^{\mathrm{c}}, \mathrm{~d}_{\mathrm{H}}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=1\right\} .
$$

is the edge boundary of \mathbf{A}, then

$$
\left|\partial_{\mathrm{E}}(\mathbf{A})\right| \geq \log _{2} \frac{2^{\mathrm{n}}}{|\mathbf{A}|} \times|\mathbf{A}|
$$

Equality is achieved for sub-cubes.

combinatorial entropies-an example

Let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}$ be independent points in the plane (of arbitrary distribution!).
Let \mathbf{N} be the number of subsets of points that are in convex position.
Then

$$
\operatorname{Var}\left(\log _{2} N\right) \leq \mathbb{E} \log _{2} N
$$

proof

By Efron-Stein, it suffices to prove that \mathbf{f} is self-bounding:

$$
0 \leq \mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}_{\mathrm{n}-1}\left(\mathrm{x}^{(\mathrm{i})}\right) \leq \mathbf{1}
$$

and

$$
\sum_{i=1}^{n}\left(f_{n}(x)-f_{n-1}\left(x^{(i)}\right)\right) \leq f_{n}(x)
$$

The first property is obvious, only need to prove the second.
This is a deterministic property so fix the points.

proof

Among all sets in convex position, draw one uniformly at random. Define $\mathbf{Y}_{\mathbf{i}}$ as the indicator that $\mathbf{x}_{\boldsymbol{i}}$ is in the chosen set.

$$
H(Y)=H\left(Y_{1}, \ldots, Y_{n}\right)=\log _{2} N=f_{n}(x)
$$

Also,

$$
H\left(Y^{(i)}\right) \leq f_{n-1}\left(x^{(i)}\right)
$$

so by Han's inequality,
$\sum_{i=1}^{n}\left(f_{n}(x)-f_{n-1}\left(x^{(i)}\right)\right) \leq \sum_{i=1}^{n}\left(H(Y)-H\left(Y^{(i)}\right)\right) \leq H(Y)=f_{n}(x)$

subadditivity of entropy

The entropy of a random variable $\mathbf{Z} \geq \mathbf{0}$ is

$$
\operatorname{Ent}(Z)=\mathbb{E} \Phi(Z)-\Phi(\mathbb{E} Z)
$$

where $\boldsymbol{\Phi}(\mathrm{x})=\mathrm{x} \log \mathrm{x}$. By Jensen's inequality, $\operatorname{Ent}(Z) \geq \mathbf{0}$.
Let $\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}$ be independent and let $\mathbf{Z}=\mathbf{f}\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$, where $\mathbf{f} \geq \mathbf{0}$.
$\operatorname{Ent}(\mathbf{Z})$ is the relative entropy between the distribution induced by \mathbf{Z} on $\mathcal{X}^{\mathbf{n}}$ and the distribution of $\mathbf{X}=\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$.

Denote

$$
\operatorname{Ent}^{(i)}(Z)=\mathbb{E}^{(i)} \Phi(Z)-\Phi\left(\mathbb{E}^{(i)} Z\right)
$$

Then by Han's inequality,

$$
\operatorname{Ent}(Z) \leq \mathbb{E} \sum_{i=1}^{n} \operatorname{Ent}^{(\mathrm{i})}(Z)
$$

a logarithmic sobolev inequality on the hypercube

Let $\mathbf{X}=\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$ be uniformly distributed over $\{-\mathbf{1}, \mathbf{1}\}^{\mathrm{n}}$. If $\mathrm{f}:\{-\mathbf{1}, \mathbf{1}\}^{\mathrm{n}} \rightarrow \mathbb{R}$ and $\mathrm{Z}=\mathrm{f}(\mathrm{X})$,

$$
\operatorname{Ent}\left(Z^{2}\right) \leq \frac{1}{2} \mathbb{E} \sum_{i=1}^{n}\left(Z-Z_{i}^{\prime}\right)^{2}
$$

The proof uses subadditivity of the entropy and calculus for the case $\mathbf{n}=1$.

Implies Efron-Stein.

Sergei Lvovich Sobolev (1908-1989)

herbst's argument: exponential concentration

If $\mathbf{f}:\{-\mathbf{1}, \mathbf{1}\}^{\mathbf{n}} \rightarrow \mathbb{R}$, the log-Sobolev inequality may be used with

$$
\mathrm{g}(\mathrm{x})=\mathrm{e}^{\lambda \mathrm{f}(\mathrm{x}) / 2} \quad \text { where } \quad \lambda \in \mathbb{R}
$$

If $F(\lambda)=\mathbb{E} \mathbf{e}^{\lambda Z}$ is the moment generating function of $Z=f(X)$,

$$
\begin{aligned}
\operatorname{Ent}\left(g(X)^{2}\right) & =\lambda \mathbb{E}\left[Z e^{\lambda z}\right]-\mathbb{E}\left[e^{\lambda z}\right] \log \mathbb{E}\left[Z e^{\lambda z}\right] \\
& =\lambda F^{\prime}(\lambda)-F(\lambda) \log F(\lambda)
\end{aligned}
$$

Differential inequalities are obtained for $F(\lambda)$.

herbst's argument

As an example, suppose \mathbf{f} is such that $\sum_{i=1}^{n}\left(\mathbf{Z}-\mathbf{Z}_{\mathbf{i}}^{\prime}\right)_{+}^{2} \leq \mathbf{v}$. Then by the log-Sobolev inequality,

$$
\lambda F^{\prime}(\lambda)-F(\lambda) \log F(\lambda) \leq \frac{v \lambda^{2}}{4} F(\lambda)
$$

If $G(\lambda)=\log F(\lambda)$, this becomes

$$
\left(\frac{\mathrm{G}(\lambda)}{\lambda}\right)^{\prime} \leq \frac{\mathrm{v}}{4}
$$

This can be integrated: $\mathbf{G}(\lambda) \leq \lambda \mathbb{E} \mathbf{Z}+\lambda \mathbf{v} / 4$, so

$$
\mathrm{F}(\lambda) \leq \mathrm{e}^{\lambda \mathbb{E} Z-\lambda^{2} v / 4}
$$

This implies

$$
\mathbb{P}\{\mathbf{Z}>\mathbb{E} \mathbf{Z}+\mathrm{t}\} \leq \mathrm{e}^{-\mathrm{t}^{2} / \mathrm{v}}
$$

Stronger than the bounded differences inequality!

gaussian log-sobolev inequality

Let $\mathbf{X}=\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$ be a vector of i.i.d. standard normal If $\mathbf{f}: \mathbb{R}^{\mathbf{n}} \rightarrow \mathbb{R}$ and $\mathbf{Z}=\mathbf{f}(\mathbf{X})$,

$$
\operatorname{Ent}\left(Z^{2}\right) \leq 2 \mathbb{E}\left[\|\nabla f(X)\|^{2}\right]
$$

(Gross, 1975).
Proof sketch: By the subadditivity of entropy, it suffices to prove it for $\mathbf{n}=1$.
Approximate $\mathbf{Z}=\mathbf{f}(\mathbf{X})$ by

$$
f\left(\frac{1}{\sqrt{m}} \sum_{i=1}^{m} \varepsilon_{i}\right)
$$

where the ε_{i} are i.i.d. Rademacher random variables.
Use the log-Sobolev inequality of the hypercube and the central limit theorem.

gaussian concentration inequality

Herbst't argument may now be repeated:
Suppose \mathbf{f} is Lipschitz: for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{\mathbf{n}}$,

$$
|f(x)-f(y)| \leq L\|x-y\|
$$

Then, for all $\mathbf{t}>\mathbf{0}$,

$$
\mathbb{P}\{\mathrm{f}(\mathrm{X})-\mathbb{E} \mathbf{f}(\mathrm{X}) \geq \mathrm{t}\} \leq \mathrm{e}^{-\mathrm{t}^{2} /\left(2 \mathrm{~L}^{2}\right)}
$$

(Tsirelson, Ibragimov, and Sudakov, 1976).

beyond bernoulli and gaussian: the entropy method

For general distributions, logarithmic Sobolev inequalities are not available.

Solution: modified logarithmic Sobolev inequalities. Suppose $\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}$ are independent. Let $\mathbf{Z}=\mathbf{f}\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$ and $\mathbf{Z}_{\mathbf{i}}=\mathbf{f}_{\mathbf{i}}\left(\mathbf{X}^{(\mathbf{i})}\right)=\mathrm{f}_{\mathrm{i}}\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{i}-1}, \mathbf{X}_{\mathbf{i + 1}}, \ldots, \mathbf{X}_{\mathrm{n}}\right)$.

Let $\phi(\mathrm{x})=\mathrm{e}^{\mathrm{x}}-\mathrm{x}-\mathbf{1}$. Then for all $\boldsymbol{\lambda} \in \mathbb{R}$,

$$
\begin{aligned}
& \lambda \mathbb{E}\left[\mathrm{Ze}^{\lambda \mathrm{Z}}\right]-\mathbb{E}\left[\mathrm{e}^{\lambda \mathrm{Z}}\right] \log \mathbb{E}\left[\mathrm{e}^{\lambda \mathrm{z}}\right] \\
& \leq \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathbb{E}\left[\mathrm{e}^{\lambda \mathrm{Z}} \phi\left(-\lambda\left(\mathrm{Z}-\mathrm{Z}_{\mathrm{i}}\right)\right)\right] .
\end{aligned}
$$

Michel Ledoux

the entropy method

Define $\mathbf{Z}_{\mathbf{i}}=\inf _{\mathbf{x}_{\mathbf{i}}^{\prime}} \mathbf{f}\left(\mathbf{X}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{i}}^{\prime}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$ and suppose

$$
\sum_{i=1}^{n}\left(Z-Z_{i}\right)^{2} \leq v
$$

Then for all $\mathbf{t}>\mathbf{0}$,

$$
\mathbb{P}\{Z-\mathbb{E} Z>\mathrm{t}\} \leq \mathrm{e}^{-\mathrm{t}^{2} /(2 \mathrm{v})}
$$

This implies the bounded differences inequality and much more.

self-bounding functions

Suppose \mathbf{Z} satisfies

$$
\mathbf{0} \leq \mathbf{Z}-\mathbf{Z}_{\mathbf{i}} \leq \mathbf{1} \quad \text { and } \quad \sum_{\mathbf{i}=1}^{n}\left(\mathbf{Z}-\mathbf{Z}_{\mathbf{i}}\right) \leq \mathbf{Z}
$$

Recall that $\operatorname{Var}(\mathbf{Z}) \leq \mathbb{E} \mathbf{Z}$. We have much more:

$$
\mathbb{P}\{\mathbf{Z}>\mathbb{E} \mathbf{Z}+\mathrm{t}\} \leq \mathrm{e}^{-\mathrm{t}^{2} /(2 \mathbb{E} \mathbf{Z}+2 \mathrm{t} / 3)}
$$

and

$$
\mathbb{P}\{\mathbf{Z}<\mathbb{E} \mathbf{Z}-\mathrm{t}\} \leq \mathrm{e}^{-\mathrm{t}^{2} /(2 \mathbb{E} \mathbf{Z})}
$$

exponential efron-stein inequality

Define

$$
\mathbf{V}^{+}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathbb{E}^{\prime}\left[\left(\mathbf{Z}-\mathbf{Z}_{\mathrm{i}}^{\prime}\right)_{+}^{2}\right]
$$

and

$$
\mathbf{V}^{-}=\sum_{i=1}^{n} \mathbb{E}^{\prime}\left[\left(\mathbf{Z}-\mathbf{Z}_{\mathrm{i}}^{\prime}\right)_{-}^{2}\right]
$$

By Efron-Stein,

$$
\operatorname{Var}(\mathbf{Z}) \leq \mathbb{E} \mathbf{V}^{+} \quad \text { and } \quad \operatorname{Var}(\mathbf{Z}) \leq \mathbb{E} \mathbf{V}^{-}
$$

The following exponential versions hold for all $\boldsymbol{\lambda}, \boldsymbol{\theta}>\mathbf{0}$ with $\lambda \theta<1$:

$$
\log \mathbb{E} \mathrm{e}^{\lambda(\mathrm{Z}-\mathbb{E} \mathrm{Z})} \leq \frac{\lambda \theta}{1-\lambda \theta} \log \mathbb{E} \mathrm{e}^{\lambda \mathrm{V}^{+} / \theta}
$$

If also $\mathbf{Z}_{\mathbf{i}}^{\prime}-\mathbf{Z} \leq \mathbf{1}$ for every \mathbf{i}, then for all $\boldsymbol{\lambda} \in(\mathbf{0}, \mathbf{1} / \mathbf{2})$,

$$
\log \mathbb{E} \mathrm{e}^{\lambda(Z-\mathbb{E} Z)} \leq \frac{2 \lambda}{1-2 \lambda} \log \mathbb{E} \mathrm{e}^{\lambda \mathrm{V}^{-}}
$$

weakly self-bounding functions

$\mathbf{f}: \mathcal{X}^{\mathbf{n}} \rightarrow[0, \infty)$ is weakly (\mathbf{a}, \mathbf{b})-self-bounding if there exist $\mathrm{f}_{\mathrm{i}}: \mathcal{X}^{\mathrm{n}-1} \rightarrow[0, \infty)$ such that for all $\mathrm{x} \in \mathcal{X}^{\mathrm{n}}$,

$$
\sum_{i=1}^{n}\left(f(x)-f_{i}\left(x^{(i)}\right)\right)^{2} \leq a f(x)+b
$$

Then

$$
\mathbb{P}\{Z \geq \mathbb{E} Z+t\} \leq \exp \left(-\frac{t^{2}}{2(a \mathbb{E} Z+b+a t / 2)}\right)
$$

If, in addition, $\mathbf{f}(\mathbf{x})-\mathbf{f}_{\mathbf{i}}\left(\mathbf{x}^{(\mathrm{i})}\right) \leq \mathbf{1}$, then for $\mathbf{0}<\mathbf{t} \leq \mathbb{E} \mathbf{Z}$,

$$
\mathbb{P}\{Z \leq \mathbb{E} Z-\mathrm{t}\} \leq \exp \left(-\frac{\mathrm{t}^{2}}{2\left(\mathrm{a} \mathbb{E} Z+\mathrm{b}+\mathrm{c}_{-} \mathrm{t}\right)}\right)
$$

where $c=(3 a-1) / 6$.

the isoperimetric view

Let $\mathbf{X}=\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$ have independent components, taking values in \mathcal{X}^{n}. Let $\mathrm{A} \subset \mathcal{X}^{\mathrm{n}}$.
The Hamming distance of \mathbf{X} to \mathbf{A} is

$$
d(X, A)=\min _{y \in A} d(X, y)=\min _{y \in A} \sum_{i=1}^{n} \mathbb{1}_{x_{i} \neq y_{i}}
$$

Michel Talagrand

$$
\mathbb{P}\left\{d(X, A) \geq t+\sqrt{\frac{n}{2} \log \frac{1}{\mathbb{P}[A]}}\right\} \leq e^{-2 t^{2} / n}
$$

the isoperimetric view

Proof: By the bounded differences inequality,

$$
\mathbb{P}\{\mathbb{E} \mathbf{d}(\mathbf{X}, \mathbf{A})-\mathbf{d}(\mathbf{X}, \mathbf{A}) \geq \mathrm{t}\} \leq \mathrm{e}^{-2 \mathbf{t}^{2} / \mathrm{n}}
$$

Taking $\mathbf{t}=\mathbb{E} \mathbf{d}(\mathbf{X}, \mathbf{A})$, we get

$$
\mathbb{E} d(X, A) \leq \sqrt{\frac{n}{2} \log \frac{1}{\mathbb{P}\{A\}}}
$$

By the bounded differences inequality again,

$$
\mathbb{P}\left\{d(X, A) \geq t+\sqrt{\frac{n}{2} \log \frac{1}{\mathbb{P}\{A\}}}\right\} \leq e^{-2 t^{2} / n}
$$

talagrand's convex distance

The weighted Hamming distance is

$$
d_{\alpha}(x, A)=\inf _{y \in A} d_{\alpha}(x, y)=\inf _{y \in A} \sum_{i: x_{i} \neq y_{i}}\left|\alpha_{i}\right|
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\mathrm{n}}\right)$. The same argument as before gives

$$
\mathbb{P}\left\{\mathrm{d}_{\alpha}(\mathrm{X}, \mathrm{~A}) \geq \mathrm{t}+\sqrt{\frac{\|\alpha\|^{2}}{2} \log \frac{1}{\mathbb{P}\{\mathrm{~A}\}}}\right\} \leq \mathrm{e}^{-2 \mathrm{t}^{2} /\|\alpha\|^{2}}
$$

This implies

$$
\sup _{\alpha:\|\alpha\|=1} \min \left(\mathbb{P}\{\mathbf{A}\}, \mathbb{P}\left\{\mathbf{d}_{\alpha}(\mathbf{X}, \mathbf{A}) \geq \mathrm{t}\right\}\right) \leq \mathrm{e}^{-\mathrm{t}^{2} / 2}
$$

convex distance inequality

convex distance:

$$
\mathrm{d}_{\mathrm{T}}(\mathrm{x}, \mathrm{~A})=\sup _{\alpha \in[0, \infty)^{\mathrm{n}}:\|\alpha\|=1} \mathrm{~d}_{\alpha}(\mathrm{x}, \mathrm{~A})
$$

Talagrand's convex distance inequality:

$$
\mathbb{P}\{\mathbf{A}\} \mathbb{P}\left\{\mathrm{d}_{\mathrm{T}}(\mathrm{X}, \mathrm{~A}) \geq \mathrm{t}\right\} \leq \mathrm{e}^{-\mathrm{t}^{2} / 4}
$$

Follows from the fact that $d_{T}(X, A)^{2}$ is $(4,0)$ weakly self bounding (by a saddle point representation of \mathbf{d}_{T}).

Talagrand's original proof was different.
It can also be recovered from Marton's transportation inequality.

convex lipschitz functions

For $\mathbf{A} \subset[0,1]^{\mathrm{n}}$ and $\mathrm{x} \in[0,1]^{\mathrm{n}}$, define

$$
D(x, A)=\inf _{y \in A}\|x-y\| .
$$

If \mathbf{A} is convex, then

$$
\mathrm{D}(\mathrm{x}, \mathrm{~A}) \leq \mathrm{d}_{\mathrm{T}}(\mathrm{x}, \mathrm{~A}) .
$$

Proof:
$\mathrm{D}(\mathrm{x}, \mathrm{A})=\inf _{\nu \in \mathcal{M}(\mathrm{A})}\left\|\mathrm{x}-\mathbb{E}_{\nu} \mathbf{Y}\right\| \quad$ (since \mathbf{A} is convex)

$$
\begin{aligned}
& \leq \inf _{\nu \in \mathcal{M}(\mathrm{A})} \sqrt{\sum_{\mathrm{j}=1}^{\mathrm{n}}\left(\mathbb{E}_{\nu} \mathbb{1}_{\mathrm{x}_{\mathrm{j}} \neq \mathrm{Y}_{\mathrm{j}}}\right)^{2}} \quad\left(\text { since } \mathrm{x}_{\mathrm{j}}, \mathrm{Y}_{\mathrm{j}} \in[0,1]\right) \\
& =\inf _{\nu \in \mathcal{M}(\mathrm{A})} \sup _{\alpha:\|\alpha\| \leq 1} \sum_{\mathrm{j}=1}^{\mathrm{n}} \alpha_{\mathrm{j}} \mathbb{E}_{\nu} \mathbb{1}_{\mathrm{x}_{\mathrm{j}} \neq \mathrm{Y}_{\mathrm{j}}} \quad \text { (by Cauchy-Schwarz) } \\
& =\mathrm{d}_{\mathrm{T}}(\mathrm{x}, \mathrm{~A}) \quad \text { (by minimax theorem) } .
\end{aligned}
$$

convex lipschitz functions

Let $\mathbf{X}=\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$ have independent components taking values in $[\mathbf{0}, \mathbf{1}]$. Let $\mathbf{f}:[\mathbf{0}, \mathbf{1}]^{\mathbf{n}} \rightarrow \mathbb{R}$ be quasi-convex such that $|f(x)-f(y)| \leq\|x-y\|$. Then

$$
\mathbb{P}\{f(X)>\mathbb{M} f(X)+t\} \leq 2 e^{-t^{2} / 4}
$$

and

$$
\mathbb{P}\{f(X)<\mathbb{M} f(X)-t\} \leq 2 e^{-t^{2} / 4}
$$

Proof: Let $\mathbf{A}_{\mathbf{s}}=\{\mathbf{x}: \mathbf{f}(\mathbf{x}) \leq \mathbf{s}\} \subset[\mathbf{0}, \mathbf{1}]^{\mathbf{n}}$. $\mathbf{A}_{\mathbf{s}}$ is convex. Since \mathbf{f} is Lipschitz,

$$
\mathbf{f}(\mathrm{x}) \leq \mathrm{s}+\mathrm{D}\left(\mathrm{x}, \mathrm{~A}_{\mathrm{s}}\right) \leq \mathrm{s}+\mathrm{d}_{\mathrm{T}}\left(\mathrm{x}, \mathrm{~A}_{\mathrm{s}}\right)
$$

By the convex distance inequality,

$$
\mathbb{P}\{\mathbf{f}(\mathbf{X}) \geq \mathrm{s}+\mathrm{t}\} \mathbb{P}\{\mathbf{f}(\mathbf{X}) \leq \mathrm{s}\} \leq \mathrm{e}^{-\mathrm{t}^{2} / 4}
$$

Take $\mathbf{s}=\mathbb{M} \mathbf{f}(\mathbf{X})$ for the upper tail and $\mathbf{s}=\mathbb{M} \mathbf{f}(\mathbf{X})-\mathbf{t}$ for the lower tail.

influences

If $\mathbf{A} \subset\{-\mathbf{1}, \mathbf{1}\}^{\mathrm{n}}$ and $\mathbf{X}=\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$ is uniform, the influence of the i-th variable is

$$
\mathbf{I}_{\mathbf{i}}(\mathbf{A})=\mathbb{P}\left\{\mathbb{1}_{\mathbf{X} \in \mathbf{A}} \neq \mathbb{1}_{\mathbf{X}^{(\mathrm{i})} \in \mathbf{A}}\right\}
$$

where $\mathbf{X}^{(\mathbf{i})}=\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{\mathbf{i}-1}, \mathbf{1}-\mathbf{X}_{\mathbf{i}}, \mathbf{X}_{\mathbf{i}+1}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$.
The total influence is

$$
I(A)=\sum_{i=1}^{n} I_{i}(A)
$$

Note that

$$
I(A)=2^{-(n-1)}\left|\partial_{E}(A)\right|
$$

influences: examples

dictatorship: $\mathbf{A}=\left\{x: x_{1}=1\right\} . \quad \mathbf{I}(\mathbf{A})=1$.
parity: $\mathbf{A}=\left\{\mathbf{x}: \sum_{\mathbf{i}} \mathbb{1}_{\mathrm{x}_{\mathrm{i}}=1}\right.$ is even $\} . \mathbf{I}(\mathbf{A})=\mathbf{n}$.
majority: $\mathbf{A}=\left\{\mathrm{x}: \sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}>\mathbf{0}\right\} . \mathbf{I}(\mathbf{A}) \approx \sqrt{\mathbf{2 n} / \pi}$.

$$
\text { by Efron-Stein, } \quad P(A)(1-P(A)) \leq \frac{I(A)}{4}
$$

so dictatorship has smallest total influence (if $\mathbf{P}(\mathbf{A})=1 / 2$).

improved efron-stein on the hypercube

Recall that for any $\mathbf{f}:\{-\mathbf{1}, \mathbf{1}\}^{\boldsymbol{n}} \rightarrow \mathbb{R}$ under the uniform distribution,

$$
\operatorname{Ent}\left(f^{2}\right) \leq 2 \mathcal{E}(f)
$$

where $\operatorname{Ent}\left(\mathbf{f}^{\mathbf{2}}\right)=\mathbf{E}\left[\mathbf{f}^{2} \log \left(\mathbf{f}^{\mathbf{2}}\right)\right]-\mathbf{E}\left[\mathbf{f}^{\mathbf{2}}\right] \log \mathbf{E}\left[\mathbf{f}^{2}\right]$ and

$$
\mathcal{E}(f)=\frac{1}{4} \mathbb{E}\left[\sum_{i=1}^{n}\left(f(X)-f\left(\bar{X}^{(i)}\right)\right)^{2}\right]
$$

This implies, for any non-negative $\mathbf{f}:\{-\mathbf{1}, \mathbf{1}\}^{\mathbf{n}} \rightarrow[\mathbf{0}, \infty)$,

$$
E\left[f^{2}\right] \log \frac{E\left[f^{2}\right]}{E[f]^{2}} \leq 2 \mathcal{E}(f)
$$

improved efron-stein on the hypercube

Recall the Doob-martingale representation $f(X)-E f=\sum_{i=1}^{n} \boldsymbol{\Delta}_{\mathbf{i}}$. One easily sees that

$$
\mathcal{E}(f)=\sum_{i=1}^{n} \mathcal{E}\left(\Delta_{i}\right)
$$

But then, by the previous lemma,

$$
\begin{aligned}
\mathcal{E}(f) & \geq \sum_{j=1}^{n} \mathcal{E}\left(\left|\Delta_{j}\right|\right) \geq \frac{1}{2} \sum_{j=1}^{n} E\left[\Delta_{j}^{2}\right] \log \frac{E\left[\Delta_{j}^{2}\right]}{\left(E\left|\Delta_{j}\right|\right)^{2}} \\
& =-\frac{1}{2} \operatorname{Var}(f) \sum_{j=1}^{n} \frac{E\left[\Delta_{j}^{2}\right]}{\operatorname{Var}(f)} \log \frac{\left(E\left|\Delta_{j}\right|\right)^{2}}{E\left[\Delta_{j}^{2}\right]} \\
& \geq-\frac{1}{2} \operatorname{Var}(f) \log \frac{\sum_{j=1}^{n}\left(E\left|\Delta_{j}\right|\right)^{2}}{\operatorname{Var}(f)}
\end{aligned}
$$

improved efron-stein on the hypercube

We obtained that for any $\mathbf{f}:\{-\mathbf{1}, \mathbf{1}\}^{\mathrm{n}} \rightarrow \mathbb{R}$,

$$
\operatorname{Var}(f) \log \frac{\operatorname{Var}(f)}{\sum_{j=1}^{n}\left(E\left|\Delta_{j}\right|\right)^{2}} \leq 2 \mathcal{E}(f)
$$

(Falik and Samorodnitsky, 2007; Rossignol, 2006).
"Slightly" better than Efron-Stein.
Use this for $\mathrm{f}(\mathrm{x})=\mathbb{1}_{\mathrm{x} \in \mathrm{A}}$ for $\mathbf{A} \subset\{-\mathbf{1}, \mathbf{1}\}^{\mathrm{n}}$:

$$
P(A)(1-P(A)) \log \frac{4 P(A)(1-P(A))}{\sum_{i} I_{i}(A)^{2}} \leq \frac{I(A)}{4}
$$

kahn, kalai, linial

Corollary: (Kahn, Kalai, Linial, 1988).

$$
\max _{i} I_{i}(A) \geq \frac{P(A)(1-P(A)) \log n}{n}
$$

If the influences are equal,

$$
I(A) \geq P(A)(1-P(A)) \log n
$$

Another corollary: (Friedgut, 1998).
If $\mathbf{I}(\mathbf{A}) \leq \mathbf{c}, \mathbf{A}$ (basically) depends on a bounded number of variables. A is a "junta."

threshold phenomena

Let $\mathbf{A} \subset\{-\mathbf{1}, \mathbf{1}\}^{\mathbf{n}}$ be a monotone set and let $\mathbf{X}=\left(\mathbf{X}_{\mathbf{1}}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$ be such that

$$
\begin{gathered}
\mathbb{P}\left\{X_{i}=1\right\}=p \quad \mathbb{P}\left\{X_{i}=-1\right\}=1-p \\
P_{p}(A)=\sum_{x \in A} p^{\|x\|}(1-p)^{n-\|x\|}
\end{gathered}
$$

is an increasing function of $\mathbf{p} \in[0,1]$.
Let $\mathbf{p}_{\mathbf{a}}$ be such that $\mathbf{P}_{\mathbf{p}_{\mathbf{a}}}(\mathbf{A})=\mathbf{a}$.
Critical value $=\mathrm{p}_{1 / 2}$
Threshold width: $\mathbf{p}_{1-\varepsilon}-\mathbf{p}_{\boldsymbol{\varepsilon}}$

two (extreme) examples

threshold width $=1-2 \varepsilon$

$$
\text { majority (with } \mathbf{n}=101 \text {) }
$$

$\leq \sqrt{\log (1 / \varepsilon) /(2 n)}$

In what cases do we have a quick transition?

russo's lemma

If \mathbf{A} is monotone,

$$
\frac{d P_{p}(A)}{d p}=I^{(p)}(A)
$$

The Kahn, Kalai, Linial result, generalized for $p \neq 1 / 2$, implies that
if A is such that $\mathrm{I}_{1}^{(\mathrm{p})}=\mathrm{I}_{2}^{(\mathrm{p})}=\cdots=\mathrm{I}_{\mathrm{n}}^{(\mathrm{p})}$, then

$$
\mathbf{p}_{1-\varepsilon}-\mathbf{p}_{\varepsilon}=\mathbf{O}\left(\frac{\log \frac{1}{\varepsilon}}{\log \mathrm{n}}\right)
$$

On the other hand, if $\mathbf{p}_{3 / 4}-\mathbf{p}_{1 / 4} \geq \mathbf{c}$ then \mathbf{A} is (basically) a junta.

Stéphane Boucheron
Gábor Lugosi
Pascal Massart

CONCENTRATION

 INEQUALITIES

