shannon entropy

If X, Y are random variables taking
values in a set of size N,

H(X) = — ) p(x) log p(x)

H(X[Y)=H(X,Y) — H(Y)
== p(x,y)logp(x]y)

X,y

H(X) < logN and H(X|Y) < H(X)

Claude Shannon
(1916-2001)



han's inequality
If X = (X1,...,Xp) and
X0 = (X1,...,Xi—1, Xis1,- -+, Xn), then

- _ 0]
> (HX) = H(XO) ) < H(X)

Proof:

H(X)= H(X®) 4+ H(X;|x®)
< H(XO) + H(Xi[ Xy, . . ., Xi—1)

Since Y ity H(Xi|X1, ..., Xi—1) = H(X), summing
the inequality, we get

Te Sun Han

(n — DH(X) < iH(X‘”) :
i=1



edge isoperimetric inequality on the hypercube

Let A C {—1,1}". Let E(A) be the collection of pairs x,x” € A
such that dy(x,x’) = 1. Then

Al
E(A)] < 1 x log, |A

Proof: Let X = (Xi1,...,Xyn) be uniformly distributed over A.
Then p(x) = Luca/|A|
Clearly, H(X) = log |A|. Also,

H(X) — H(X®) = H(Xi|XD) = = " p(x) log p(xi|x"") .

xEA

For x € A, 0
ey 1/2 ifx e A
p(xi[x") = { 1 otherwise

where x() = (X1y e ey Xim1y —Xis Xit1s e« + 3 Xn)-



. log 2
H(X) — H(X®) = 1,
(X) = HXO) = = % xx0eA

and therefore

n . log 2 E(A
Z(H(X)—H(X('))> - Til ZZ xea = | l(A|)|2Iog2.

i=1 x€A i=1

Thus, by Han's inequality,

|E|f:|)|2log2 = Zn: (H(X) - H(X(i))) < H(X) = log [A] .
i=1




This is equivalent to the edge isoperimetric inequality on the
hypercube: if

Oe(A) = {(x,x") : x € A,x" € A%, dy(x,x) =1} .

is the edge boundary of A, then

2"
|Oe(A)| > log, W X |A

Equality is achieved for sub-cubes.



combinatorial entropies—an example

Let X1,..., X, be independent
points in the plane (of arbitrary
distribution!).

Let N be the number of subsets
of points that are in convex
position.

Then

Var(log, N) < Elog, N .



proof

By Efron-Stein, it suffices to prove that f is self-bounding:

0 < fo(x) — fa_1(x®) < 1

and
n

S (1) = fac1 () < fa(x) -

i=1
The first property is obvious, only need to prove the second.

This is a deterministic property so fix the points.



proof

Among all sets in convex position, draw one uniformly at random.
Define Y; as the indicator that x; is in the chosen set.

H(Y) = H(Yl, . ,Yn) = |0g2 N = fn(X)
Also, . _
H(YO) < £ (x)
so by Han's inequality,

n n

> (fa(x) = a1 (x@)) < D7 (H(Y) = HOY®) ) <H(Y) = fa(x)

i=1 i=1



subadditivity of entropy
The entropy of a random variable Z > 0 is

Ent(Z) = E®(Z) — ®(EZ)

where ®(x) = xlog x. By Jensen's inequality, Ent(Z) > 0.

Let Xi,..., X, be independent and let Z = f(Xy,...,X,),
where f > 0.

Ent(Z) is the relative entropy between the distribution induced by
Z on X" and the distribution of X = (Xy,...,X;).

Denote _ _ _
Ent?(2) = EVe(2) — o(EDZ)

Then by Han's inequality,

Ent(Z) < Ezn:Ent(i)(Z) :
i=1



a logarithmic sobolev inequality on the hypercube

Let X = (X1,...,Xy) be uniformly distributed over {—1,1}". If
f:{-1,1}" — R and Z = f(X),

1 n
Ent(Z?) < —E Z —Z7')?
nt( )_2;( )

The proof uses subadditivity of the entropy and calculus for the
case n = 1.

Implies Efron-Stein.



Sergei Lvovich Sobolev
(1908-1989)




herbst’s argument: exponential concentration

If f:{—1,1}" — R, the log-Sobolev inequality may be used with
g(x) = eMM/2 where A €R.
If F(A) = Ee*? is the moment generating function of Z = f(X),
Ent(g(X)?)= AE {Ze)‘z} —E [e)‘z} logE [Ze)‘z]
= AF'(A) — F(A) log F(\) .

Differential inequalities are obtained for F().



herbst’s argument

As an example, suppose f is such that i ;(Z — Z./)i < v. Then
by the log-Sobolev inequality,

AF (M) — F(A)log F(\) < vi\zF()\)

If G(A) = log F(), this becomes
G /
( (>\)> < ¥
A — 4
This can be integrated: G(A) < AEZ 4+ Av/4, so

F(}\) S eAEZ—}\ZV/4

This implies
P{Z >EZ +t} < et/

Stronger than the bounded differences inequality!



gaussian log-sobolev inequality

Let X = (X1,...,X,) be a vector of i.i.d. standard normal If
f:R" — Rand Z = f(X),

Ent(22) < 2E || VF(X)|?]

(Gross, 1975).

Proof sketch: By the subadditivity of entropy, it suffices to prove it
forn=1.

Approximate Z = f(X) by

1 m
fl — Ei
where the g; are i.i.d. Rademacher random variables.

Use the log-Sobolev inequality of the hypercube and the central
limit theorem.



gaussian concentration inequality

Herbst't argument may now be repeated:
Suppose f is Lipschitz: for all x,y € R",

f(x) — f(y)| < Llx—yll .
Then, for all t > 0,
P {f(X) — Ef(X) > t} < et/

(Tsirelson, lbragimov, and Sudakov, 1976).



beyond bernoulli and gaussian: the entropy method

For general distributions, logarithmic Sobolev inequalities are not
available.

Solution: modified logarithmic Sobolev inequalities.
Suppose Xi,..., X, are independent. Let Z = f(Xy,...,X,)
and Z; = fi(XD) = fi(Xq, ..., Xi—1, Xig1y -« - » Xn).

Let ¢(x) = e* —x — 1. Then for all A € R,

AE [Ze)‘z} —E [e“} log E [e“}

< ZE [e*zqs (=XMZ - zi))} :

i=1

Michel Ledoux



the entropy method

Define Z; = inf,/ f(X1,...,x/,...,Xy,) and suppose

n

Y(Z-zZ)P<v.
i=1
Then for all t > 0,
P{Z—FEZ >t} <e ¥/@),

This implies the bounded differences inequality and much more.



self-bounding functions

Suppose Z satisfies

0<Z-%Z<1 and > (Z—-Z)<Z.
i=1
Recall that Var(Z) < EZ. We have much more:
P{Z > EZ + t} < e t/(EZ+2/3)

and ,
P{Z < EZ — t} < e v/(2E2)



exponential efron-stein inequality
Define

W S —
and -

V- = ZH:IE' [(z - zi’)z_} .
i=1
By Efron-Stein,

Var(Z) < EVt and Var(Z) <EV~.

The following exponential versions hold for all A, 8 > 0 with
A0 < 1.

AZ-EZ) AVH/0

0
log Ee 10 log Ee

If also Z{ — Z < 1 for every i, then for all A € (0,1/2),

A -
log EeMZ—F2) < 1 2x log Ee?V™ .



weakly self-bounding functions

f: X" — [0, 00) is weakly (a, b)-self-bounding if there exist
fi : "1 — [0, 00) such that for all x € &™,

Zn: (f(x) — fi(x(i)))2 < af(x)+b.

i=1

Then

t2
P{Z>EZ+1t} < - .
{z=EZ+ }—exp< 2(aEZ+b+at/2))

If, in addition, f(x) — f;(x)) < 1, then for 0 < t < EZ,

t2
P{Z<EZ—t}<exp|— .
s }—eXp< 2(aEZ+b+c_t)>

where ¢ = (3a — 1)/6.



the isoperimetric view

Let X = (X1,...,X,) have independent E
components, taking values in X". Let |3
AC X"

The Hamming distance of X to A is

n
d(X,A) = mind(X,y) = min Ly 2y -
( ) yEIA (X,y) yEIAZ; Xi#yi

Michel Talagrand

n 1 2
P{d(X,A) >t —log —— b < e~ 2/n
O o



the isoperimetric view

Proof: By the bounded differences inequality,
P{Ed(X,A) — d(X,A) >t} < e~2¢/",
Taking t = Ed(X, A), we get

n 1
Ed(X,A) < /= log

By the bounded differences inequality again,

n 1 2
P{d(X,A) >t —1 < @ 2t%/n
{(, ) > +1/20gP{A}}_e




talagrand’s convex distance

The weighted Hamming distance is

da(x,A) = ;25\ da(x,y) = ;gglé;y |l

where a = (a1, ..., ap). The same argument as before gives

[|ex]|?
Prda(X,A) 2 t+ /7" log

This implies

_2t2 2
< e 2/l

IP’{A}} B

sup min (P{A},P{da(X,A) > t}) < e t/2.

aiflaf|=1



convex distance inequality

convex distance:

dr(x,A) = sup da(x,A) .
a€[0,00)":[|a||=1

Talagrand’s convex distance inequality:
P{A}P {dr(X,A) >t} <e /4.

Follows from the fact that dr(X, A)? is (4, 0) weakly self
bounding (by a saddle point representation of dr).

Talagrand’s original proof was different.

It can also be recovered from Marton's transportation inequality.



convex lipschitz functions
For A C [0,1]" and x € [0, 1]", define

D(x,A) = inf [lx —y]| -

If A is convex, then
D(x,A) < dt(x,A) .
Proof:

D(x,A)= uem/\/tf(A) |[x —E,Y]|| (since A is convex)

n

. 2 .
< f Ey 1y.£y: is Yi 0,1
< g | 2 (Boan)” (e ¥s € [0,1)

n
= inf sup o;E, Ly 2y, (by Cauchy-Schwarz
VEM(A)a:HaHSl; Lz )

= dt(x,A) (by minimax theorem) .



convex lipschitz functions

Let X = (X1,...,X;,) have independent components taking
values in [0, 1]. Let f : [0,1]" — R be quasi-convex such that
f(x) — fF(Y)| < lIx — yl|. Then

P{f(X) > Mf(X) + t} < 2e~*"/

and
P{f(X) < MF(X) — t} < 2e~%/4 .

Proof: Let Ag = {x : f(x) < s} C [0,1]". A is convex. Since f
is Lipschitz,

f(x) < s+ D(x, As) < s+ dr(x, As)
By the convex distance inequality,
P{f(X) > s + t}P{f(X) < s} < e /%,

Take s = Mf(X) for the upper tail and s = Mf(X) — t for the
lower tail.



influences

IfAC{—1,1}" and X = (Xy,...,X;) is uniform, the influence
of the i-th variable is

i(A) =P {lxea # Lxoea}

where X0 = (Xq,...,Xi—1,1 — Xi, Xiz1, - - - » Xn)-

The total influence is

n

I(A) =) K(A) .

i=1

Note that
I(A) =201 |gg(A)] .



influences: examples

dictatorship: A = {x:x; = 1}. I(A) = 1.
parity: A = {x:) ;1y=1 iseven}. I(A) = n.

majority: A = {x:> .x > 0}. I(A) = \/2n/7.

by Efron-Stein, P(A)(1 — P(A)) < ( )

so dictatorship has smallest total influence (if P(A) = 1/2).



improved efron-stein on the hypercube

Recall that for any f : {—1,1}" — R under the uniform

distribution,
Ent(f?) < 2£(f)

where Ent(f?) = E [f2log(f?)| — E [f?] log E [f?] and

n

E(F) = iE [Z (f(X) - f(X(i)))zl

i=1
This implies, for any non-negative f : {—1,1}" — [0, c0),
E [f2
E |f|log —— < 2&(f) .
2] tog e < 20



improved efron-stein on the hypercube

Recall the Doob-martingale representation f(X) — Ef = 1" ; A

One easily sees that
n
E(f) =) ().

i=1

But then, by the previous lemma,
" R
E(f) > E(l4;)) = = E |Af|log——
(f) > ; (I ,|)_2§ a?] 5 Ea )

N 2
= - Var(f)ZVaErA(Jf}) g(EI[A’li

>y (ElAy)?
Var(f)

Y

1
—EVar(f) log



improved efron-stein on the hypercube

We obtained that for any f : {—1,1}" — R,
Var(f

_ Vel ey

2_j=1 (E[Aj])

(Falik and Samorodnitsky, 2007; Rossignol, 2006).
“Slightly” better than Efron-Stein.

Use this for f(x) = 1xea for A C {—1,1}™

Var(f) log

P(A)(1 — P(A)) log 4P(A)(1 — P(R)) _ 1(A)

ShA)E T4



kahn, kalai, linial

Corollary: (Kahn, Kalai, Linial, 1988).

P(A)(1 — P(A))logn

max l;(A) >
If the influences are equal,
I(A) > P(A)(1 — P(A))logn

Another corollary: (Friedgut, 1998).
If 1(A) < c, A (basically) depends on a bounded number of
variables. A is a “junta.”



threshold phenomena

Let A C {—1,1}" be a monotone set and let X = (Xi,...,Xp)
be such that

P{Xi=1}=p P{Xi=—-1}=1—p
P,(A) = z pII><II(1 — p)" I
xEA
is an increasing function of p € [0, 1].
Let pa be such that P, (A) = a.
Critical value = py >

Threshold width: p1—¢ — pe



two (extreme) examples

dictatorship majority (with n = 101)
threshold width =1 — 2¢ < y/log(1/e)/(2n)

In what cases do we have a quick transition?



russo’s lemma

If A is monotone,
dPy(A)

dp
The Kahn, Kalai, Linial result, generalized for p # 1/2, implies

that
if A is such that I = 1P) = ... =1 then

Iogl
P1—c — Pe = 0] < s)
logn

On the other hand, if p3/4 — p1/4 > c then A is (basically) a
junta.

= 1P)(A)
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