
shannon entropy

If X,Y are random variables taking
values in a set of size N,

H(X) = −
∑

x

p(x) log p(x)

H(X|Y)= H(X,Y)− H(Y)

= −
∑
x,y

p(x, y) log p(x|y)

H(X) ≤ log N and H(X|Y) ≤ H(X)

Claude Shannon
(1916–2001)



han’s inequality

Te Sun Han

If X = (X1, . . . ,Xn) and
X(i) = (X1, . . . ,Xi−1,Xi+1, . . . ,Xn), then

n∑
i=1

(
H(X)− H(X(i))

)
≤ H(X)

Proof:

H(X)= H(X(i)) + H(Xi|X(i))

≤ H(X(i)) + H(Xi|X1, . . . ,Xi−1)

Since
∑n

i=1 H(Xi|X1, . . . ,Xi−1) = H(X), summing
the inequality, we get

(n− 1)H(X) ≤
n∑

i=1

H(X(i)) .



edge isoperimetric inequality on the hypercube

Let A ⊂ {−1, 1}n. Let E(A) be the collection of pairs x, x′ ∈ A
such that dH(x, x′) = 1. Then

|E(A)| ≤
|A|
2
× log2 |A| .

Proof: Let X = (X1, . . . ,Xn) be uniformly distributed over A.
Then p(x) = 1x∈A/|A|.
Clearly, H(X) = log |A|. Also,

H(X)− H(X(i)) = H(Xi|X(i)) = −
∑
x∈A

p(x) log p(xi|x(i)) .

For x ∈ A,

p(xi|x(i)) =

{
1/2 if x(i) ∈ A
1 otherwise

where x(i) = (x1, . . . , xi−1,−xi, xi+1, . . . , xn).



H(X)− H(X(i)) =
log 2

|A|
∑
x∈A

1x,x(i)∈A

and therefore

n∑
i=1

(
H(X)− H(X(i))

)
=

log 2

|A|
∑
x∈A

n∑
i=1

1x,x(i)∈A =
|E(A)|
|A|

2 log 2 .

Thus, by Han’s inequality,

|E(A)|
|A|

2 log 2 =
n∑

i=1

(
H(X)− H(X(i))

)
≤ H(X) = log |A| .



This is equivalent to the edge isoperimetric inequality on the
hypercube: if

∂E(A) =
{

(x, x′) : x ∈ A, x′ ∈ Ac, dH(x, x′) = 1
}
.

is the edge boundary of A, then

|∂E(A)| ≥ log2

2n

|A|
× |A|

Equality is achieved for sub-cubes.



combinatorial entropies–an example

Let X1, . . . ,Xn be independent
points in the plane (of arbitrary
distribution!).
Let N be the number of subsets
of points that are in convex
position.
Then

Var(log2 N) ≤ E log2 N .



proof

By Efron-Stein, it suffices to prove that f is self-bounding:

0 ≤ fn(x)− fn−1(x(i)) ≤ 1

and
n∑

i=1

(
fn(x)− fn−1(x(i))

)
≤ fn(x) .

The first property is obvious, only need to prove the second.

This is a deterministic property so fix the points.



proof

Among all sets in convex position, draw one uniformly at random.
Define Yi as the indicator that xi is in the chosen set.

H(Y) = H(Y1, . . . ,Yn) = log2 N = fn(x)

Also,
H(Y(i)) ≤ fn−1(x(i))

so by Han’s inequality,

n∑
i=1

(
fn(x)− fn−1(x(i))

)
≤

n∑
i=1

(
H(Y)− H(Y(i))

)
≤ H(Y) = fn(x)



subadditivity of entropy
The entropy of a random variable Z ≥ 0 is

Ent(Z) = EΦ(Z)− Φ(EZ)

where Φ(x) = x log x. By Jensen’s inequality, Ent(Z) ≥ 0.

Let X1, . . . ,Xn be independent and let Z = f(X1, . . . ,Xn),
where f ≥ 0.

Ent(Z) is the relative entropy between the distribution induced by
Z on X n and the distribution of X = (X1, . . . ,Xn).

Denote
Ent(i)(Z) = E(i)Φ(Z)− Φ(E(i)Z)

Then by Han’s inequality,

Ent(Z) ≤ E
n∑

i=1

Ent(i)(Z) .



a logarithmic sobolev inequality on the hypercube

Let X = (X1, . . . ,Xn) be uniformly distributed over {−1, 1}n. If
f : {−1, 1}n → R and Z = f(X),

Ent(Z2) ≤
1

2
E

n∑
i=1

(Z− Z′i )
2

The proof uses subadditivity of the entropy and calculus for the
case n = 1.

Implies Efron-Stein.



Sergei Lvovich Sobolev
(1908–1989)



herbst’s argument: exponential concentration

If f : {−1, 1}n → R, the log-Sobolev inequality may be used with

g(x) = eλf(x)/2 where λ ∈ R .

If F(λ) = EeλZ is the moment generating function of Z = f(X),

Ent(g(X)2)= λE
[
ZeλZ

]
− E

[
eλZ
]

log E
[
ZeλZ

]
= λF′(λ)− F(λ) log F(λ) .

Differential inequalities are obtained for F(λ).



herbst’s argument

As an example, suppose f is such that
∑n

i=1(Z− Z′i )
2
+ ≤ v. Then

by the log-Sobolev inequality,

λF′(λ)− F(λ) log F(λ) ≤
vλ2

4
F(λ)

If G(λ) = log F(λ), this becomes(
G(λ)

λ

)′
≤

v

4
.

This can be integrated: G(λ) ≤ λEZ + λv/4, so

F(λ) ≤ eλEZ−λ2v/4

This implies

P{Z > EZ + t} ≤ e−t2/v

Stronger than the bounded differences inequality!



gaussian log-sobolev inequality

Let X = (X1, . . . ,Xn) be a vector of i.i.d. standard normal If
f : Rn → R and Z = f(X),

Ent(Z2) ≤ 2E
[
‖∇f(X)‖2

]
(Gross, 1975).
Proof sketch: By the subadditivity of entropy, it suffices to prove it
for n = 1.
Approximate Z = f(X) by

f

(
1
√

m

m∑
i=1

εi

)

where the εi are i.i.d. Rademacher random variables.
Use the log-Sobolev inequality of the hypercube and the central
limit theorem.



gaussian concentration inequality

Herbst’t argument may now be repeated:
Suppose f is Lipschitz: for all x, y ∈ Rn,

|f(x)− f(y)| ≤ L‖x− y‖ .

Then, for all t > 0,

P {f(X)− Ef(X) ≥ t} ≤ e−t2/(2L2) .

(Tsirelson, Ibragimov, and Sudakov, 1976).



beyond bernoulli and gaussian: the entropy method

For general distributions, logarithmic Sobolev inequalities are not
available.

Solution: modified logarithmic Sobolev inequalities.
Suppose X1, . . . ,Xn are independent. Let Z = f(X1, . . . ,Xn)
and Zi = fi(X(i)) = fi(X1, . . . ,Xi−1,Xi+1, . . . ,Xn).

Let φ(x) = ex − x− 1. Then for all λ ∈ R,

λE
[
ZeλZ

]
− E

[
eλZ
]

log E
[
eλZ
]

≤
n∑

i=1

E
[
eλZφ (−λ(Z− Zi))

]
.

Michel Ledoux



the entropy method

Define Zi = infx′i
f(X1, . . . , x′i , . . . ,Xn) and suppose

n∑
i=1

(Z− Zi)
2 ≤ v .

Then for all t > 0,

P {Z− EZ > t} ≤ e−t2/(2v) .

This implies the bounded differences inequality and much more.



self-bounding functions

Suppose Z satisfies

0 ≤ Z− Zi ≤ 1 and
n∑

i=1

(Z− Zi) ≤ Z .

Recall that Var(Z) ≤ EZ. We have much more:

P{Z > EZ + t} ≤ e−t2/(2EZ+2t/3)

and
P{Z < EZ− t} ≤ e−t2/(2EZ)



exponential efron-stein inequality
Define

V+ =
n∑

i=1

E′
[
(Z− Z′i )

2
+

]
and

V− =
n∑

i=1

E′
[
(Z− Z′i )

2
−

]
.

By Efron-Stein,

Var(Z) ≤ EV+ and Var(Z) ≤ EV− .

The following exponential versions hold for all λ, θ > 0 with
λθ < 1:

log Eeλ(Z−EZ) ≤
λθ

1− λθ
log EeλV+/θ .

If also Z′i − Z ≤ 1 for every i, then for all λ ∈ (0, 1/2),

log Eeλ(Z−EZ) ≤
2λ

1− 2λ
log EeλV− .



weakly self-bounding functions

f : X n → [0,∞) is weakly (a, b)-self-bounding if there exist
fi : X n−1 → [0,∞) such that for all x ∈ X n,

n∑
i=1

(
f(x)− fi(x(i))

)2
≤ af(x) + b .

Then

P {Z ≥ EZ + t} ≤ exp

(
−

t2

2 (aEZ + b + at/2)

)
.

If, in addition, f(x)− fi(x(i)) ≤ 1, then for 0 < t ≤ EZ,

P {Z ≤ EZ− t} ≤ exp

(
−

t2

2 (aEZ + b + c−t)

)
.

where c = (3a− 1)/6.



the isoperimetric view

Let X = (X1, . . . ,Xn) have independent
components, taking values in X n. Let
A ⊂ X n.
The Hamming distance of X to A is

d(X,A) = min
y∈A

d(X, y) = min
y∈A

n∑
i=1

1Xi 6=yi .

Michel Talagrand

P

{
d(X,A) ≥ t +

√
n

2
log

1

P[A]

}
≤ e−2t2/n .



the isoperimetric view

Proof: By the bounded differences inequality,

P{Ed(X,A)− d(X,A) ≥ t} ≤ e−2t2/n.

Taking t = Ed(X,A), we get

Ed(X,A) ≤

√
n

2
log

1

P{A}
.

By the bounded differences inequality again,

P

{
d(X,A) ≥ t +

√
n

2
log

1

P{A}

}
≤ e−2t2/n



talagrand’s convex distance

The weighted Hamming distance is

dα(x,A) = inf
y∈A

dα(x, y) = inf
y∈A

∑
i:xi 6=yi

|αi|

where α = (α1, . . . , αn). The same argument as before gives

P

{
dα(X,A) ≥ t +

√
‖α‖2

2
log

1

P{A}

}
≤ e−2t2/‖α‖2

,

This implies

sup
α:‖α‖=1

min (P{A}, P {dα(X,A) ≥ t}) ≤ e−t2/2 .



convex distance inequality

convex distance:

dT(x,A) = sup
α∈[0,∞)n:‖α‖=1

dα(x,A) .

Talagrand’s convex distance inequality:

P{A}P {dT(X,A) ≥ t} ≤ e−t2/4 .

Follows from the fact that dT(X,A)2 is (4, 0) weakly self
bounding (by a saddle point representation of dT).

Talagrand’s original proof was different.

It can also be recovered from Marton’s transportation inequality.



convex lipschitz functions
For A ⊂ [0, 1]n and x ∈ [0, 1]n, define

D(x,A) = inf
y∈A
‖x− y‖ .

If A is convex, then

D(x,A) ≤ dT(x,A) .

Proof:

D(x,A)= inf
ν∈M(A)

‖x− EνY‖ (since A is convex)

≤ inf
ν∈M(A)

√√√√ n∑
j=1

(
Eν1xj 6=Yj

)2
(since xj,Yj ∈ [0, 1])

= inf
ν∈M(A)

sup
α:‖α‖≤1

n∑
j=1

αjEν1xj 6=Yj (by Cauchy-Schwarz)

= dT(x,A) (by minimax theorem) .



convex lipschitz functions
Let X = (X1, . . . ,Xn) have independent components taking
values in [0, 1]. Let f : [0, 1]n → R be quasi-convex such that
|f(x)− f(y)| ≤ ‖x− y‖. Then

P{f(X) > Mf(X) + t} ≤ 2e−t2/4

and
P{f(X) < Mf(X)− t} ≤ 2e−t2/4 .

Proof: Let As = {x : f(x) ≤ s} ⊂ [0, 1]n. As is convex. Since f
is Lipschitz,

f(x) ≤ s + D(x,As) ≤ s + dT(x,As) ,

By the convex distance inequality,

P{f(X) ≥ s + t}P{f(X) ≤ s} ≤ e−t2/4 .

Take s = Mf(X) for the upper tail and s = Mf(X)− t for the
lower tail.



influences

If A ⊂ {−1, 1}n and X = (X1, . . . ,Xn) is uniform, the influence
of the i-th variable is

Ii(A) = P
{
1X∈A 6= 1X(i)∈A

}
where X(i) = (X1, . . . ,Xi−1, 1− Xi,Xi+1, . . . ,Xn).

The total influence is

I(A) =
n∑

i=1

Ii(A) .

Note that
I(A) = 2−(n−1)|∂E(A)| .



influences: examples

dictatorship: A = {x : x1 = 1}. I(A) = 1.

parity: A = {x :
∑

i 1xi=1 is even}. I(A) = n.

majority: A = {x :
∑

i xi > 0}. I(A) ≈
√

2n/π.

by Efron-Stein, P(A)(1− P(A)) ≤
I(A)

4

so dictatorship has smallest total influence (if P(A) = 1/2).



improved efron-stein on the hypercube

Recall that for any f : {−1, 1}n → R under the uniform
distribution,

Ent(f2) ≤ 2E(f)

where Ent(f2) = E
[
f2 log(f2)

]
− E

[
f2
]

log E
[
f2
]

and

E(f) =
1

4
E

[
n∑

i=1

(
f(X)− f(X

(i)
)
)2
]

This implies, for any non-negative f : {−1, 1}n → [0,∞),

E
[
f2
]

log
E
[
f2
]

E [f]2
≤ 2E(f) .



improved efron-stein on the hypercube
Recall the Doob-martingale representation f(X)− Ef =

∑n
i=1 ∆i.

One easily sees that

E(f) =
n∑

i=1

E(∆i) .

But then, by the previous lemma,

E(f) ≥
n∑

j=1

E(|∆j|) ≥
1

2

n∑
j=1

E
[
∆2

j

]
log

E
[
∆2

j

]
(E|∆j|)2

= −
1

2
Var(f)

n∑
j=1

E
[
∆2

j

]
Var(f)

log
(E|∆j|)2

E
[
∆2

j

]
≥ −

1

2
Var(f) log

∑n
j=1 (E|∆j|)2

Var(f)



improved efron-stein on the hypercube

We obtained that for any f : {−1, 1}n → R,

Var(f) log
Var(f)∑n

j=1 (E|∆j|)2
≤ 2E(f) .

(Falik and Samorodnitsky, 2007; Rossignol, 2006).
“Slightly” better than Efron-Stein.

Use this for f(x) = 1x∈A for A ⊂ {−1, 1}n:

P(A)(1− P(A)) log
4P(A)(1− P(A))∑

i Ii(A)2
≤

I(A)

4



kahn, kalai, linial

Corollary: (Kahn, Kalai, Linial, 1988).

max
i

Ii(A) ≥
P(A)(1− P(A)) log n

n

If the influences are equal,

I(A) ≥ P(A)(1− P(A)) log n

Another corollary: (Friedgut, 1998).
If I(A) ≤ c, A (basically) depends on a bounded number of
variables. A is a “junta.”



threshold phenomena

Let A ⊂ {−1, 1}n be a monotone set and let X = (X1, . . . ,Xn)
be such that

P{Xi = 1} = p P{Xi = −1} = 1− p

Pp(A) =
∑
x∈A

p‖x‖(1− p)n−‖x‖

is an increasing function of p ∈ [0, 1].

Let pa be such that Ppa(A) = a.

Critical value = p1/2

Threshold width: p1−ε − pε



two (extreme) examples

dictatorship

0 0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72 0.8 0.88 0.96

0.25

0.5

0.75

1

threshold width = 1− 2ε

majority (with n = 101)

0 0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72 0.8 0.88 0.96

0.25

0.5

0.75

1

≤
√

log(1/ε)/(2n)

In what cases do we have a quick transition?



russo’s lemma

If A is monotone,
dPp(A)

dp
= I(p)(A)

The Kahn, Kalai, Linial result, generalized for p 6= 1/2, implies
that
if A is such that I

(p)
1 = I

(p)
2 = · · · = I

(p)
n , then

p1−ε − pε = O

(
log 1

ε

log n

)

On the other hand, if p3/4 − p1/4 ≥ c then A is (basically) a
junta.




