1. Random walks on graphs

We call a simple random walk on a graph the Markov chain with state space the vertices of a graph and transition probability defined as:

\[P_{x,y} = \begin{cases} \frac{1}{\deg(x)}, & \text{if } (x,y) \in E \\ 0, & \text{otherwise} \end{cases} \]

The chain is irreducible and aperiodic if and only if the graph is connected and non-bipartite. We can check that in this case the stationary distribution is \(\pi(v) = \frac{\deg(v)}{2m} \) for every \(v \in V \) and that the chain is reversible.

The cover time of a graph \(C(G) \) is the expected time to reach all vertices (the worst case over the starting vertex). Recall that for two vertices \(u, v \), the hitting time \(E_u(\tau_v) \) is the expected time to get from \(u \) to \(v \).

Theorem 1. For any \((u, v) \in E \), \(E_u(\tau_v) + E_v(\tau_u) \leq 2m \).

Theorem 2. For a connected graph \(C(G) \leq 2m(n-1) \).

Corollary 3. There is a log-space \(O(n^3) \)-time randomized algorithm for st-connectivity.

2. Electric networks

If the graph is interpreted as an electric network, where on each edge there is a resistor of 1 ohm, for two vertices \(u, v \) the effective resistance between these vertices \(R(u \leftrightarrow v) \) (i.e. the voltage difference that has to be applied to \(u \) and \(v \) to get a unit current flow) is related to the escape probability.

Theorem 4.

\[P_u \{ \tau_v < \tau_u^{+} \} = \frac{1}{\deg(u)R(u \leftrightarrow v)} \]

The proof uses the concept of harmonic function. A function \(h : \Omega \to \mathbb{R} \) is harmonic for \(P \) at a vertex \(x \in \Omega \) if \(h(x) = \sum_{y \in \Omega} P(x, y)h(y) \). For example, notice that the hitting time \(h_{x,a} \), from \(x \) to a fixed vertex \(a \in \Omega \) (or to a set \(A \subset \Omega \)), considered as a function of \(x \), is a harmonic function on \(\Omega \backslash \{a\} \) (or \(\Omega \backslash A \)). Another example is the voltage. Suppose a voltage difference of 1 is applied to vertices \(s \) and \(t \), then the resulting voltage on all of the vertices is a harmonic function on \(\Omega \backslash \{s, t\} \).

The important property of harmonic functions that we use is that if we fix the values of a function on a set \(B \subset \Omega \) it has a unique extension which is harmonic on \(\Omega \backslash B \). This is because the harmonicity constraints form a system of equations with \(|\Omega| - |B| \) linear equations and \(|\Omega| - |B| \) unknowns.

We also get an exact relationship between the effective resistance and the commute time.

Theorem 5. \(E_u(\tau_v) + E_v(\tau_u) = 2mR(u \leftrightarrow v) \).
This theorem can be used to give a simpler proof of Theorem 1. It also gives us a tighter bound for the cover time.

Theorem 6. Let \(R(G) = \max_{u,v \in V} R(u \leftrightarrow v) \). Then \(mR(G) \leq C(G) \leq mR(G) \times 2e^3 \ln n + n \).

3. Applications of random walks

We will look at local search algorithms for the 2-SAT and 3-SAT problems. The problem is to find a satisfying assignment for a logical formula in conjunctive normal form with clauses of 2 or 3 literals respectively.

For example,

\[\phi(x_1, \ldots, x_n) = (x_2 \lor x_5) \land (x_1 \lor x_2) \land \ldots \]

Consider the following local search algorithm for 2-SAT. We start with an arbitrary assignment to the variables. If it’s a satisfying assignment, it is output, otherwise we find a clause which is not satisfied and flip the value of one of the variables in the clause uniformly at random. This is a random walk on the space of assignments to the variables which has size \(2^n \).

Theorem 7. The local search algorithm for 2SAT finds a satisfying assignment, if one exists, with probability \(1 - \frac{1}{2^b} \) within \(n^2 b \) steps.

To prove this we just need to consider the evolution of the random variable \(X \) indicating the Hamming distance between the current assignment and some fixed satisfying assignment. This turns out to be a walk on the line of length \(n \) with probability at least \(1/2 \) of going to the left every time. This walk reaches 0 in expected time \(n^2 \) so within \(2n^2 \) steps it reaches with probability at least \(1/2 \) (which can be boosted by going \(bn^2 \) steps).

The same analysis applied to 3-SAT leads to a random walk on the line with probability of \(1/3 \) of going left. This, together with the observation that with high probability the search starts with \(X \) close to \(n/2 \), gives an algorithm running in time \(O((\sqrt{3})^n) \), which is better than the trivial algorithm which takes \(2^n \) steps.

We can improve the algorithm by letting the search run only \(3n \) steps but restarting the search \(\Theta((\frac{4}{3})^n n^{O(1)}) \) times.

Theorem 8. The local search algorithm with restarts finds a satisfying assignment with probability \(1 - \frac{1}{2^b} \) within time \(O((\frac{4}{3})^n n^{O(1)}) \).