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Abstract. Let Tn be a uniformly random tree with vertex set [n] = {1, . . . ,n}, let ΔTn be the
largest vertex degree in Tn , and let 𝜆1 (Tn ), . . . ,𝜆n (Tn ) be the eigenvalues of its adjacency
matrix, arranged in decreasing order. We prove that |𝜆1 (Tn ) −

√︁
ΔTn | → 0 in expectation as

n → ∞, and additionally prove probability tail bounds for |𝜆1 (Tn ) −
√︁
ΔTn |. Writing an for

any median of ΔTn , we also prove that |𝜆k (Tn ) −
√
an | → 0 in expectation, uniformly over

1 ≤ k ≤ e log𝛽 (n ) , for any fixed 𝛽 ∈ (0,1/2).
The proof is based on the trace method and thus on counting closed walks in a random

tree. To this end, we develop novel combinatorial tools for encoding walks in trees that we
expect will find other applications. In order to apply these tools, we show that uniformly
random trees — after appropriate "surgery" — satisfy, with high probability, the properties
required for the combinatorial bounds to be effective.

1. Introduction

In this work, we derive precise information about the largest eigenvalue of the adjacency
matrix of large uniformly random trees. For a finite graph G = (V,E), the adjacency matrix
of G is the V ×V symmetric matrix A = A(G ) whose (u ,v ) entry is 1 if {u ,v } ∈ E and is 0
otherwise. Write ΔG for the largest degree of any vertex in G , and write 𝜆1(G ) ≥ 𝜆2(G ) ≥
· · · ≥ 𝜆n (G ) for the ordered sequence of eigenvalues of the adjacency matrix of G , where
n = |V |. Also, for positive integers n write [n] := {1, . . . ,n}.

Theorem 1.1. For n ≥ 1, let Tn be a uniformly random tree with vertex set [n]. Then

E|𝜆1(Tn) −
√︁
ΔTn | → 0

as n →∞. Moreover, there exists a universal constant L > 0 such that, as n →∞,

P

 |𝜆1(Tn) −
√︁
ΔTn | > L

(
log2 ΔTn√︁

ΔTn

)1/15 ≤ n−0.8+o (1) .

It is natural to ask whether the terms ΔTn in the above theorem can be replaced by de-
terministic values. For the error bars on |𝜆1 −

√︁
ΔTn |, they can. It follows from results of

Moon [19, Theorem 2 and Lemma 4] that ΔTn ·
( log n
log logn

)−1 → 1 in probability and that

P
{
ΔTn < 0.99 log n

log logn

}
< − exp(−(1 + o (1))n0.01), and so the probability bound in the above

theorem also implies that there is a universal constant L > 0 such that

P

 |𝜆1(Tn) −
√︁
ΔTn | > L

(
(log logn)2.5√︁

log n

)1/15 ≤ n−0.8+o (1) .

On the other hand, the upper tail of ΔTn is heavy enough that the probability bound in the

theorem would not be true if |𝜆1(Tn) −
√︁
ΔTn | were replaced by, e.g.,

��𝜆1(Tn) −
√︃

log n
log logn

��, or

indeed by any other fixed sequence. However, the expectation bound does hold with
√︁
ΔTn
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replaced by its median; moreover, we are able to prove the same expectation bound not just
for 𝜆1(Tn) but for 𝜆k (Tn), for k quite large.

Theorem 1.2. For n ≥ 1, let Tn be a uniformly random tree with vertex set [n]. Let an be any
median of ΔTn . Fix any constant 𝛽 ∈ (0,1/2) and let k (n) = ⌈exp((log n)𝛽 )⌉. Then

E|𝜆1(Tn) −
√
an | → 0

and

E|𝜆k (n ) (Tn) −
√
an | → 0.

Together with Theorem 1.1, it follows that also

E|𝜆k (n ) (Tn) −
√︁
ΔTn | → 0,

by the triangle inequality. Moreover, since 𝜆1 ≥ 𝜆 i ≥ 𝜆k (n ) for all i ∈ [k (n)], the same
estimates hold for E|𝜆 i (n ) (Tn)−

√
an | and for E|𝜆 i (n ) (Tn)−

√︁
ΔTn |, for any sequence (i (n),n ≥

1) with 1 ≤ i (n) ≤ k (n). We conjecture that for any 𝛽 ∈ (1/2,1] there is c = c (𝛽 ) > 0 such
that, with ℓ (n) = ⌈exp((log n)𝛽 )⌉, then P

{
𝜆ℓ (n ) (Tn) ≤

√
an − c

}
→ 1; this would imply that

the range of k (n) covered by Theorem 1.2 is essentially optimal.
We expect that the methodology we develop here can also be used for controlling the

top eigenvalues of other random tree models. Informally, in order to be applicable, it re-
quires maximum-degree vertices to be relatively few in number and to be well-separated
from one-another in the tree. (We provide a fairly detailed overview of our proof technique
in Section 1.2.) However, for the moment we do not see a way to formulate a more precise
set of requirements which would allow us to treat many models simultaneously; thus far,
model-specific conditions and calculations seem unavoidable to us.

1.1. Related work. It is known in some generality that the bulk spectral properties of sparse
random graphs are determined locally. In particular, suppose that (Gn ,n ≥ 1) is a sequence
of finite random rooted graphs, where Gn has n vertices, and write

𝜇n =
1
n

n∑︁
i=1

𝛿𝜆 i (Gn )

for the empirical spectral measure ofGn . If the sequence (Gn ,n ≥ 1) converges in distribution
in the local weak sense to a locally finite random rooted graph G , then 𝜇n converges weakly
to a limiting measure 𝜇 = 𝜇G ; see [9], where this is proved under a uniform integrability
condition on the root degree, and [1, 8], which handle the general case. More precise results
about the bulk of the spectrum are available when the local weak limit is a (deterministic or
random) tree [6, 7, 12, 23].

For the edge of the spectrum, fewer general results are available, and indeed one expects
more model-dependence. In the setting of the Erdős-Rényi random graph G (n,p), Krivele-
vich and Frieze showed that for any sequence (pn ,n ≥ 1) of probabilities, 𝜆1(G (n,pn)) =
(1+o (1))max(npn ,

√︁
ΔG (n,pn ) ) in probability as n →∞, where ΔG (n,pn ) denotes the maximum

degree of the graph. The threshold npn ≈
√︁
ΔG (n,pn ) between the regime where npn is larger

and that where
√︁
ΔG (n,pn ) ) is larger occurs around p∗n = (log n)/log(4/e ). Alt, Ducatez and

Knowles [3–5] have shown that p∗n is the boundary between the localized and delocalized
phases for the spectral edge of sparse Erdős-Rényi random graphs, in the sense that for
log logn ≪ pn < (1− o (1))p∗n the eigenvectors corresponding to eigenvalues near the edge of
the spectrum are concentrated on a small number of vertices, whereas for pn > (1 + o (1))p∗n
this is not the case. (We are being slightly informal here, and refer the reader to the papers
cited above for more precise statements.) To see how the value

√︁
ΔG (n,pn ) arises, note that for
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any finite graph G = (V,E), if v is a vertex of G with degree ΔG , then the vector x : V → ℝ

given by

xw =


√
ΔG if w = v

1 if {v ,w} ∈ E
0 otherwise

satisfies that ⟨x ,Ax⟩ ≥
√
ΔG |x |2, so by Rayleigh’s formula x is a witness that 𝜆1(G ) ≥

√
ΔG .

Moreover, x is very localized, taking nonzero values only on a single vertex and its neigh-
bourhood; so this suggests that if 𝜆1(G ) ≈

√
ΔG then perhaps the extremal eigenvectors are

also localized.
Very recently, Hiesmayr and McKenzie [16] have built on the techniques of [5] to describe

the extremal eigenvalues and eigenvectors of Gn,p in the regime log−1/15 n ≤ np ≤ log1/40 n,
showing that |𝜆1(Gn,p ) −

√︁
ΔGn,p | → 0 in probability, and, more strongly, that with high prob-

ability each of the top e log1/8 n eivenvalues of Gn,p is essentially determined by the graph
structure of the metric ball of radius two around a vertex of near-maximal degree. Hiesmayr
and McKenzie in fact prove quantitative bounds, and also establish localization of the cor-
responding eigenvectors. The case np = Θ(1) of their result in particular answers a question
of Guionnet [15, Section 3.3].

The above results for the spectral edge of Erdős-Rényi random graphs have some similarity
to ours; and indeed, the local structure of an Erdős-Rényi random graph is similar to that
of the random trees whose study we undertake (both are locally described by a Poisson
branching process). We expect that eigenvector localization near the spectral edge also
occurs in many random tree models, including those considered in this paper, but our proof
technique - which we now sketch - only gives access to the extremal eigenvalues, and not to
the associated eigenvectors.

1.2. Proof overview. This section both presents our approach to proving Theorems 1.1
and 1.2 and introduces some concepts and several pieces of notation which are required in
the sequel.

The bulk of the work is in proving the upper bound of the theorem. Our proof of the
upper bound is based on the trace method, which we now recall. Fix a graph G = (V,E)
with |V | = n and write A = A(G ). Then {𝜆 i (Ak ),i ∈ [n]} = {𝜆 i (A)k ,i ∈ [n]} for all k ≥ 1, so

𝜆1(G ) = lim
k→∞

( ∑︁
i ∈[n ]

𝜆 i (A)2k
)1/(2k )

= lim
k→∞

( ∑︁
i ∈[n ]

𝜆 i (A2k )
)1/(2k )

= lim
k→∞

( ∑︁
v ∈V
(A2k )vv

)1/(2k )

= lim
k→∞

(
max
v ∈V
(A2k )vv

)1/(2k )
,

where for the third equality we have used the trace formula. Now, (A2k )vv is nothing but
the number of closed walks of length 2k from v to v in G , by this we mean a sequence of
vertices (w0,w1, . . . ,w2k ) with w0 = w2k = vi such that {wi−1,wi } ∈ E for each i ∈ [2k ].
The preceding displayed identity thus yields an equivalence between estimating 𝜆1(G ) and
estimating the number of long closed walks inG . Writing Nk (v ,G ) for the set of closed walks
of length 2k from v to v in G and Nk (v ,G ) = |Nk (v ,G ) | and Nk (G ) = maxv ∈V Nk (v ,G ), we
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may rewrite the above identity for 𝜆1(G ) as

𝜆1(G ) = lim
k→∞

(
max
v ∈V

Nk (v ,G )
)1/(2k )

= lim
k→∞

Nk (G )1/(2k ) . (1)

We now turn to the setting of trees. For a treeT = (V,E) and a walk w = (w0,w1, . . . ,w j ) in
T , we write D (w) = (d0(w), . . . ,d j (w)) := (distT (w0,wi ),0 ≤ i ≤ j ) for the sequence of graph
distances to w0 in T , along the walk w. If w is a closed walk then j = 2k is even and D (w) is
a Dyck path — a non-negative lattice path with d0(w) = d2k (w) = 0 and |di (w) − di−1(w) | = 1
for all i ∈ [2k ]. We will usually be considering D (w) for closed walks w, and have chosen
the notation accordingly. We may then write

Nk (v ,T ) =
∑︁

d

{w ∈ Nk (v ,T ) : D (w) = d} ,

where the sum is over Dyck paths d of length 2k .
An easy way to bound this expression from above is to note that, whatever d may be,

{w ∈ Nk (v ,T ) : D (w) = d} ≤ ΔkT .

This holds since in any Dyck path D of length 2k there are m increasing steps. An increasing
step in D (w) corresponds to a step of w which increases the distance to v in T ; and, from
any vertex u of T there are at most ΔT choices for such a step. The decreasing steps yield no
additional choices, sinceT is a tree; every vertex u ofT aside from v has a unique neighbour
u ′ with distT (u ′,v ) = distT (u ,v ) − 1. Since the number of Dyck paths of length 2k is 1

k+1
(2k
k

)
,

we deduce that

Nk (T ) = max
v ∈V

Nk (v ,T ) ≤
1

k + 1

(
2k
k

)
Δk ≤ (4Δ)k . (2)

Using (1), this yields the well-known fact that 𝜆1(T ) ≤ limk→∞(maxv Nk (v ,T ))1/2k ≤ 2
√
ΔT .

This bound is tight for general trees for large ΔT ; see, e.g., Godsil [14], Stevanović [24] who
show that for any tree, the largest eigenvalue is at most 2

√
ΔT − 1.1

We next illustrate the basic idea of how we improve this bound under additional conditions
on the tree, but first introduce one required piece of notation: for a treeT = (V,E) and r ∈ ℕ,
let Δ(r )T = maxv ∈V |{w ∈ V : distT (v ,w) = r }| be the largest size of an r ’th neighbourhood
in T .

Note that any Dyck path d = d0d1 . . . d2k either begins with the string 010 or with the string
012. (We shall often write d0d1 . . . d2k instead of (d0, . . . ,d2k ) and 010 instead of (0,1,0), et
cetera, for succinctness.) It is straightforward to see that

|{w ∈ Nm (v ,T ) : d0(w)d1(w)d2(w) = 010}| ≤ ΔTNk−1(v ,T ) ≤ ΔTNk−1(T ),

since a walk counted in the above set is simply the concatenation of a walk of length 2 and
a walk of length 2(k − 1). A walk w ∈ Nk (v ,T ) with d0(w)d1(w)d2(w) = 012 may also be
decomposed: after w2 must appear a closed walk from w2 to w2 which avoids w1, followed
by a closed walk from w1 to w1 which avoids w0, and finally a closed walk from w0 to w0;
each of these may be a walk of length zero. Since there are at most Δ(2)T choices for w2, it
follows that

|{w ∈ Nk (v ,T ) : d0(w)d1(w)d2(w) = 012}| ≤ Δ
(2)
T ·

∑︁
i ,j ,k≥0

i+ j+k=k−2

Ni (T )N j (T )Nk (T ) .

1In fact, we may easily recover the bound 2
√
ΔT − 1 from this argument. To do so, simply note that in (1) we

can replace maxv ∈V Nk (v ,T ) by Nk (w ,T ) for any fixed vertex w . If we fix a vertex w of degree less than ΔT ,
then the number of increasing steps from any vertex is at most ΔT − 1.
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Combining these bounds, we obtain that

Nk (T ) ≤ ΔTNk−1(T ) + Δ(2)T ·
∑︁
i ,j ,k≥0

i+ j+k=k−2

Ni (T )N j (T )Nk (T )

We may then apply this case analysis recursively to bound each of the terms Nk−1(T ), Ni (T ),
N j (T ) and Nk (T ), and hope that something useful comes out of it.

The set of words {010,012} is a prefix code for Dyck paths; any Dyck path has a unique
prefix in this set. For example, another prefix code is {010,0121,0123}. We may generalize
the above case analysis and recursive approach to any set of prefix codes. Our bounds end
up depending crucially on two quantities. First, we require control on the greatest number
of ways that each given code word can appear as a prefix of a Dyck path of a walk in the
graph (for example, our bound on this for the word 012 was Δ(2)T ). Second, when controlling

|{w ∈ Nk (v ,T ) : D (w) = d}|
for a given Dyck path d, our bounds depend on the number of times each code word appears
when recursively decomposing d until no further decomposition is possible.

In order to explain more precisely, a little combinatorics is unavoidable. Say that a se-
quence c = (ci ,0 ≤ i ≤ j ) is a meander if c0 = 0, ci ≥ 0 for all 0 ≤ i ≤ j , and |ci − ci−1 | = 1
for all i ∈ [ j ]; it is an excursion if additionally c j = 0. The final value of c is f (c) := c j ; its
length is len(c) = j . A finite set C of meanders is a prefix code (or just code, for short) if for
any Dyck path d of positive length there is a unique meander c ∈ C such that c is a prefix of
d. The unique code C with 01 ∈ C is C = {01}; we call this code trivial. Observe that if C is
nontrivial then 010 ∈ C .

For a prefix code C = (c(1) , . . . ,c(a ) ), to any Dyck path d = (d0,d1, . . . ,d2k ) we associate
the vector

®t (C ,d) = (tb (C ,d),1 ≤ b ≤ a),
where tb (C ,d) is the number of times the code word c(b ) is used when decomposing d using
the code C . Formally, let p = p (d,c) ∈ [a] be the unique index for which c(p ) is a prefix of
d. Let 𝜂0, . . . ,𝜂 f (c(p ) )+1 be the unique increasing sequence of integers with 𝜂0 = len(c(p ) ) and
𝜂 f (c(p ) )+1 = 2k such that for all 0 ≤ j ≤ f (c(p ) ),

d( j ) := (d𝜂 j +i − ( f (c(p ) ) − j ),0 ≤ i ≤ 𝜂 j+1 − 𝜂 j )
is a Dyck path. Then for 1 ≤ b ≤ a inductively define

tb (C ,d) = 1[b=p ] +
f (cp )∑︁
j=0

tb (C ,d( j ) ) .

Note that the length of d is the sum of len(c(p ) ), f (c(p ) ), and the lengths of d(0) , . . . ,d( f (c
(p ) ) ) ,

so by induction we have

2k =
∑︁
b∈[a ]

tb (C ,d) (len(c(b ) ) + f (c(b ) )).

With a slight abuse of notation, given a closed walk w in a tree T we also define

®t (C ,w) = ®t (C ,D (w)) .
For a meander c of length j we let

ΔT (c) = max
v ∈V
|{walks w = (w0, . . . ,w j ) in T : w0 = v ,D (w) = c}| .

For example, if c = 012 . . . h then ΔT (c) = Δ
(h )
T ; for another example, if c = 01212 then

ΔT (c) ≤ Δ
(2)
T · (ΔT − 1), since for any v ∈ V , a walk w = w0w1w2w3w4 with w0 = v and with
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D (w) = 01212 is uniquely determined by choosing w2 with distT (w0,w2) = 2 and w4 ≠ w0
with distT (w1,w4) = 1.

The following proposition gives an idea of how decomposing walks by prefix codes allows
us to bound the number of closed walks in a tree. Given a prefix code C = (c(1) , . . . ,c(a ) )
and a vector ®t = (t1, . . . ,ta) of non-negative integers, for a vertex v in a tree T we denote by
NC ,®t (v ) the number of closed walks w from v to v in T with tb (C ,w) = tb for all 1 ≤ b ≤ a;
the tree T in question will always be clear from context. Note that the length of any such
walk is 2k = 2k (®t ) :=

∑a
b=1 tb (len(c(b ) ) + f (c(b ) )).

Proposition 1.3. Fix a treeT , a codeC = {c(b ) ,1 ≤ b ≤ a} and a vector of non-negative integers ®t =
(t1, . . . ,ta). Let q = q (®t ) = ∑a

b=1 tb · (1 + f (c(b ) )) and k = k (®t ) = ∑a
b=1 tb (len(c(b ) ) + f (c(b ) ))/2.

Then for any Δ > 0, setting

gb =
(
(1 ∨ 2e f (c(b ) ))) · ΔT (c(b ) )

Δ(len(c(b ) )+f (c(b ) ) )/2

)1/(1+f (c(b ) ) )
,

for any vertex v of T we have

NC ,®t (v ) ≤ eq 1/2Δk
( a∑︁
b=1

gb
)q

.

The proposition is proved by a careful analysis of the number of ways that a Dyck path can
be partitioned by a given code, together with an application of a convexity bound (specifically,
the non-negativity of the Kullback-Liebler divergence).

To get a feeling for how one can exploit such a bound, we consider what it yields for
a couple of simple codes. First, consider the trivial code C ∗ = {01}. Then len(c(1) ) = 1,
f (1) := f (c(1) ) = 1, and therefore if len(w) = 2k then q (®t ) = 2k = 2t1. In this case the vector
®t has only one component t1 and the only possible value is ®t = (k ). Thus, the numberNk (v ,T )
of closed walks from v to v inT of length 2k equals NC ,®t (v ) and q (®t ) = 2k (®t ). Taking Δ = ΔT ,
then g1 = 2e , and hence the bound of Proposition 1.3 becomes Nk (v ,T ) ≤ ek1/2(4e 2ΔT )k .

Next consider the code C ∗ = {c(1) ,c(2) ,c(3) } = {010,0121,0123}. For this code we have
f (1) = 0, f (2) = 1, f (3) = 3 and len(c(1) ) = 2, len(c(2) ) = 3, len(c(3) ) = 3. For any closed walk
w = (w0, . . . ,w2k ) in T , writing ti = ti (C ∗,w), we have

2k = 2t1 + 4t2 + 6t3,

and q = q (®t (C ∗,w)) = t1 + 2t2 + 4t3 = k + t3. For any tree T we have ΔT (c(b ) ) = Δ
(b )
T for

b = 1,2,3, since in each case an embedding of a code word c(b ) is uniquely specified by
the choice of its initial vertex and the unique vertex at distance b . We thus have g1 = 1,
g2 = (2eΔ(2)/Δ2

T ), and g3 = (6eΔ(3)/Δ3
T )

1/4; it follows by Proposition 1.3, again applied with
Δ = ΔT that for any vertex v ,

NC ,®t (v ) ≤ eq 1/2ΔkT
©«1 +

√√
2eΔ(2)T
Δ2
T

+ 4

√√
6eΔ(3)T
Δ3
T

ª®¬
q

≤ e (2k )1/2ΔkT
©«1 +

√√
2eΔ(2)T
Δ2
T

+ 4

√√
6eΔ(3)T
Δ3
T

ª®¬
2k

,

where we have used that q = k + t3 ≤ 2k . Thus, the number Nk (v ,T ) of closed walks from v
to v in T of length 2k may be bounded as

Nk (v ,T ) ≤ e (2k )1/2ΔkT ·
∑︁

t1+2t2+3t3=k

©«1 +
√√

2eΔ(2)T
Δ2
T

+ 4

√√
6eΔ(3)T
Δ3
T

ª®¬
2k

≤ e (2k )1/2ΔkT k
3 ©«1 +

√√
2eΔ(2)T
Δ2
T

+ 4

√√
6eΔ(3)T
Δ3
T

ª®¬
2k

.
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Taking 2k ’th roots on both sides, letting k →∞ and applying (1) this yields that

𝜆1(T ) ≤ Δ
1/2
T

©«1 +
√√

2eΔ(2)T
Δ2
T

+ 4

√√
6eΔ(3)T
Δ3
T

ª®¬ . (3)

This bound is useful if one can control the ratios Δ
(2)
T /Δ

2
T and Δ

(3)
T /Δ

3
T in a meaningful

manner, which is the case for the random trees considered in this paper. Indeed, it follows
from the structural properties shown later2 that, with high probability, for all vertices v in
the random tree Tn , the number of vertices within distance three from v is O (ΔTn log3 ΔTn ),
and therefore (Δ(2)Tn

/Δ2
Tn
)1/2 = O

(
Δ
−1/2
Tn

log3/2 ΔTn

)
and (Δ(3)Tn

/Δ3
Tn
)1/4 = O

(
log1/4 ΔTn/Δ

1/2
Tn

)
.

This implies that, with high probability, the largest eigenvalue of Tn is at most√︁
ΔTn +O

(
log3/2 ΔTn

)
.

Unfortunately, Proposition 1.3 is not powerful enough to prove Theorem 1.1. Actually,
in order to get strong enough bounds on the number of long closed walks in Tn , we end
up additionally needing to keep track of the degrees of vertices we visit along the walk.
This makes our codes more complicated, since they need to also encode this information.
We partition the nodes of a tree T into three types: high-degree nodes, with degree at least
0.95ΔT ; medium-degree nodes, with degree between Δ

1/5
T and 0.95ΔT ; and low-degree nodes,

which are all the rest. We then augment the Dyck path encoding the distance of a closed path
from its starting location with a sequence of vertex types along the sequence. For example,
an augmented Dyck path may read

((0,h), (1,h), (2,l ), (1,h), (2,m), (1,h), (0,h)),

corresponding to a walk which moved from a high-degree node v to a neighbouring high-
degree node w , then made two “zig-zag” steps, visiting a low-degree and a medium-degree
neighbour of w in turn, each time returning to w , and finally returned to v .

Recall that a star tree with central vertex of degree Δ has maximum eigenvalue
√
Δ, and

the only possible closed walks on such a star (starting from the central vertex) consist of a
sequence of “zigzag” steps from a high-degree vertex to low-degree vertices and back again.
Given that we aim to prove that E|𝜆1(Tn) −

√︁
ΔTn | = o (1), this suggests that for large k the

dominant contribution to Nk (v ,Tn) should consist of zigzag steps from a high-degree vertex
to its low or medium-degree neighbours. It turns out to be useful to bound the contribution
coming from such steps separately. Thus, we prove bounds on Nk (v ,T ) by first bounding the
number of walks of length 2 j ≤ 2k which make no “zigzags from high-degree vertices”, then
estimating how many ways such walks can be decorated with zigzags to form a walk of length
2k . (For technical reasons we also need to initially count walks which make no “zigzags
of height two”, of the form ((0,m/h), (1,l ), (2,l ), (1,l ), (0,m/h)), and then also control the
number of ways such height-two zigzags can be added.) The bound we end up using appears
as Proposition 2.6, in Section 2.2. We apply it with a code consisting of 50 words, which
appears in Figure 4 in Section 5; the need to track vertex types as well as distance is the
reason we need so many code words.

It turns out that to apply Proposition 2.6 to the tree Tn in order to bound E|𝜆1(Tn) −√︁
ΔTn |, it would suffice to show that Tn satisfied the following set of structural properties

with sufficiently high probability. For a tree T = (V,E) and v ∈ V , write degT (v ) for the
degree of v in T , and write CT (v ) for the set of all vertices w ∈ V such that the unique path
from v tow does not contain two consecutive vertices with degree < (log n)1/5; we call CT (v )

2Specifically, the upper bound on third neighbourhood sizes from Corollary 3.7, together with the lower bound
on ΔTn coming from Lemma 4.5.
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the cluster of v in T . Then the properties we end up requiring of a tree T = (V,E) with n
vertices, in order for our combinatorial bounds to be strong enough, are the following.

N1 The maximum degree of T is ΔT ≥ 0.99 (log n/log logn).
N2 For all x ∈ V ,

∑
y∈CT (v ) degT (y)1[degT (y )≥ (log n )1/5 ] ≤ 3 logn.

N3 There are no adjacent nodes that both have degree ≥ 0.9 logn/log logn.
N4 For all x ∈ V , CT (x) contains < 9 log log n vertices of degree ≥ (log n)1/5.

We prove that a random tree Tn satisfies N1 −N3 with high probability by instead ana-
lyzing the probability that these properties hold for the family tree of a Poisson(1) branching
process conditioned to have total size n, then using the fact that the graph structure of Tn

is equivalent to that of such a conditioned branching process. However, we were unable to
thereby establish that Tn satisfies property N4 with high probability, and we do not in fact
believe it to be true. What saves the proof, and allows us to make the above approach work,
is a rewiring lemma, which permits us to “clean up” our tree to obtain one with the requisite
properties, without decreasing 𝜆1. This rewiring lemma seems like a potentially valuable
general tool, and its proof is quite simple, so we close the sketch of the upper bound by
stating it and immediately providing its proof.

Given a finite tree T = (V,E) and distinct vertices v ,w ∈ V , the (v ,w)-rewiring of T ,
denoted byTv ,w , is the graph obtained fromT as follows: let Γ(v ,T ) denote the neighborhood
of v in T , and u ∈ Γ(v ,T ) be the unique neighbor of v on the path connecting v to w in T .
Then the rewired tree Tv ,w = (V,Ev ,w ) has the same vertex set as T and edge set

Ev ,w := E ∪ {sw : s ∈ Γ(v ,T ) − {u}} − {sv : s ∈ Γ(v ,T ) − {u}}.
In words, Tv ,w is obtained from T by replacing each edge sv such that s ≠ u by the edge sw .
The following fact is immediate.

Fact 1.4. Tv ,w is still a tree, and the unique path connecting v to w in Tv ,w is the same as in T .
Moreover, the degrees degTv ,w (x), for x ∈ V , satisfy:

degTv ,w (x) =


1, x = v ;
degT (v ) + degT (w) − 1, x = w ;
degT (x), x ∈ V \{v ,w}.

(4)

Lemma 1.5 (Rewiring lemma). With the above notation, max{𝜆1(Tv ,w ),𝜆1(Tw ,v )} ≥ 𝜆1(T ).

Proof. AssumeV = [n] for simplicity and let A denote the adjacency matrix of T . By Perron-
Frobenius, its largest eigenvalue is achieved by a vector x ∈ ℝn with |x | = 1 and non-negative
entries, so that:

⟨x ,Ax⟩ = 2
∑︁
{i ,j }∈E

xix j = 𝜆1(T ) ≥ 0.

Assume without loss of generality that xv ≤ xw , and let B denote the adjacency matrix of
Tv ,w . We will show that 𝜆1(Tv ,w ) ≥ 𝜆1(T ). In fact, since

⟨x ,Bx⟩ ≤ 𝜆1(Tv ,w ) |x |2 = 𝜆1(Tv ,w ),
it suffices to argue that ⟨x ,Bx⟩ ≥ ⟨x ,Ax⟩. To do this, let u ∈ ΓT (v ) be as in the definition of
Tv ,w . Then

⟨x ,Bx⟩ − ⟨x ,Ax⟩ = 2
∑︁

s ∈ΓT (v )\{u }
(xw − xv ) xs ≥ 0,

because xs ≥ 0 for all s ∈ [n] and xw ≥ xv by assumption. □

We conclude the overview by briefly sketching the proof of Theorem 1.2, which is rather
straightforward once Theorem 1.1 is at hand. Since 𝜆k ≤ 𝜆1 for all k ≥ 1, to prove the
theorem it suffices to prove that E𝜆1(Tn) ≤

√
an +o (1) and that E𝜆k (Tn) ≥

√
an−o (1), for an

as in the theorem. We accomplish this via a straightforward but useful fact about trees: ifT is
a rooted tree, andT has 2s nodes with at least c children, then 𝜆 s (T ) ≥

√
c . This is proved by
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first constructing a set (x (1) , . . . ,x (s ) ) of orthogonal vectors such that ⟨x (i ) ,Ax (i )⟩ ≥
√
c |x (i ) |2

for 1 ≤ i ≤ s , then using the Rayleigh quotient principle (see Lemma 5.2, below). The lemma
allows us to bound E𝜆k (Tn) from below by showing that with high probability Tn contains
many vertices of near-maximal degree, which we accomplish using the fact that the graph
structure of Tn is the same as that of a Poisson branching process conditioned to have total
progeny n. The latter fact also allows us to show that E

√
Δn is within o (1) of

√
an , which,

together with Theorem 1.1, yields the required upper bound on E𝜆1(Tn).

1.3. Overview of the remainder of the paper. The rest of the paper is structured as fol-
lows. In Section 2 we establish the combinatorial tools that we use for counting walks in trees,
culminating in Corollary 2.7 that gives a general upper bound in terms of certain properties
of the tree and the code used for encoding walks. In Section 3 we prove some structural
properties of random labeled trees that hold with high probability. These properties are
required to effectively use the combinatorial bound of Corollary 2.7. As mentioned above,
these “typicality” properties are not quite sufficient to derive the desired bound for the largest
eigenvalue. In Section 4 we show how random trees can be "safely rewired" using Lemma 1.5
so that they become amenable to using our combinatorial tools, without decreasing their top
eigenvalue. Finally, in Section 5 we put all ingredients of the proof together and describe a
code that is sufficiently detailed, allowing us to conclude the proofs of Theorems 1.1 and 1.2.

2. Combinatorial bounds

2.1. Decompositions of Dyck paths and the proof of Proposition 1.3. In this section
we elaborate on our method for bounding Nk (T ) via decompositions of Dyck paths. Fix a
prefix code C = (c(1) , . . . ,c(a ) ) and a Dyck path d = (d0,d1, . . . ,d2k ).

We begin by defining a partition P = P (C ,d) of [2k ] which encodes “what codeword each
step belongs to”; this is quite similar to how we defined ®t (C ,d) in Section 1.2.

First, if there is 0 < i < 2k such that di = 0 then, recursively, Dyck paths (d0, . . . ,di ) and
(di , . . . ,d2k ) induce partitions P1 and P2 of {1, . . . ,i } and {i + 1, . . . ,2k }; in this case we set
P = P1 ∪ P2.

We may now assume that di ≠ 0 for all 0 < i < 2k . Let 𝜎(0) be minimal so that (di ,0 ≤
i ≤ 𝜎(0)) is an element of C , and write h = d𝜎 (0) .

If h = 0 then necessarily 𝜎(0) = 2k ; in this case we set P = {[2k ]}. Otherwise, for
1 ≤ i ≤ h, let 𝜎(i ) = min{m ≥ 𝜎(i − 1) : dm = h − i }, and set

P0 =
{
{1, . . . ,𝜎(0) − 1,𝜎(0),𝜎(1), . . . ,𝜎(h)}

}
.

Note that we necessarily have 𝜎(h) = 2k . Also, for each 0 ≤ i < h, we have d𝜎 (i+1) = d𝜎 (i ) −1.
It follows that if 𝜎(i + 1) > 𝜎(i ) + 1 then

(d j − (h − i ); 𝜎(i ) ≤ j ≤ 𝜎(i + 1) − 1)
is an excursion (and thus a Dyck path) so, recursively, it induces a partition Pi of {𝜎(i ) +
1, . . . ,𝜎(i + 1) − 1}. (For convenience, if 𝜎(i + 1) = 𝜎(i ) + 1 then we take Pi = ∅.) Now set
P (C ,d) = ⋃

0≤i<h Pi .
Figure 1 contains a graphical representation of the partition of the Dyck path

0121210123232121210

by the code C ∗ = {c(1) ,c(2) ,c(3) } = {010,0121,0123}. The corresponding partition is

P (C ∗,d) = {𝜋1, 𝜋2, 𝜋3, 𝜋4, 𝜋5}
=

{
{1,2,3,6}, {4,5}, {7,8,9,10,13,18}, {11,12}, {14,15}, {16,17}

}
. (5)

For the trivial code {01}, the partition would instead be

P ({01},d) =
{
{1,6}, {2,3}, {4,5}, {7,18}, {8,13}, {9,10}, {11,12}, {14,15}, {16,17}

}
;
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Figure 1. Top: a Dyck path of length 18. Bottom: a graphical depiction of
the partition induced by the code C ∗ = {c(1) ,c(2) ,c(3) } = {010,0121,0123}.

For a closed walk w in a tree T , we will also write P (C ,w) := P (C ,D (w)). It is immediate
that if two walks w,w′ have D (w) = D (w′), then P (C ,w) = P (C ,w′). This implies that for
any treeT , any vertex v ofT , and any code C , we may rewrite Nk (v ,T ), the number of walks
from v to v of length 2k , as∑︁

{partitions P of [2k ] }

∑︁
{Dyck paths d:P (C ,d)=P }

#{walks w in T : w0 = w2k = v ,D (w) = d} .

An easy way to bound this expression from above is to note that whatever d may be, the
inner summand is at most ΔkT ; this yields the bound (2) from Section 1.2. To improve this
bound, we need to control how much information required to recover D (w) from P (C ,w)
and to recover w from D (w), and we now turn to this.

Fix a Dyck path d and a code C = {c(b ) ,1 ≤ b ≤ a}, and let P = P (C ,d). Fix any part 𝜋 of
P , list the elements of 𝜋 in increasing order as 𝜋(1), . . . , 𝜋(s ), and let 𝜋(0) = 𝜋(1) − 1. Then
we write c(𝜋) = c(𝜋,C ,d) for the unique meander c ∈ C which is a prefix of

(d𝜋 (t ) − d𝜋 (0) ,0 ≤ t ≤ s ) .
For example, for the Dyck path in Figure 1, and the partition given in (5), we have

(c (𝜋1),c (𝜋2),c (𝜋3),c (𝜋4),c (𝜋5),c (𝜋6)) = (0121,010,0123,010,010,010)
= (c(2) ,c(1) ,c(3) ,c(1) ,c(1) ,c(1) ). (6)

Lemma 2.1. For any code C , any Dyck path d is recoverable from the set {(𝜋,c(𝜋)), 𝜋 ∈ P (C ,w)}.

Proof. Write 𝜋1 for the part of P (C ,d) containing 1 and c(𝜋) = c1c2 . . . ck . Then listing the
elements of 𝜋1 in increasing order as i1, . . . ,ik , by construction we have di j = c j for 1 ≤ j ≤ k .
The result then follows by induction on the length of d, since what remains is to reconstruct
f (c(𝜋)) +1 sub-paths of d which are themselves shifted Dyck paths of length strictly less than
that of d. □

In fact, d can be recovered from somewhat less data than what is used in Lemma 2.1, since
a part of 𝜋 corresponding to a codeword c always begins with len(c) consecutive integers.
More precisely, for any part 𝜋 of P (C ,d), if c(𝜋) = c ∈ C then, writing 𝜋min = min(k : k ∈ 𝜋),
necessarily

{𝜋min, 𝜋min + 1, . . . , 𝜋min + len(c) − 1} ⊂ 𝜋, (7)
by the construction of P (C ,d). For example, for the Dyck path d in Figure 1, the third part
of the partition P (C ∗,d) is 𝜋3 = {7,8,9,10,13,18}. Given the information that c(𝜋3) = 0123,
if we additionally know that min(k : k ∈ 𝜋3) = 7 then necessarily also {8,9} ⊂ 𝜋3, so we may
construct 𝜋3 from the set 𝜋′3 = {7,10,13,18} and the information that c(𝜋3) = 0123. Applying
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this to all of the parts, we see that 𝜋 may be reconstructed from the data in (6) together with
the sets

{{1,6}, {4}, {7,10,13,18}, {11}, {14}, {16}}. (8)

The example in Figure 2 may be helpful in understanding the coming paragraph. For a
part 𝜋 of P (C ,d), writing

𝜋′ = 𝜋 \ {k ∈ 𝜋 : 𝜋min < k < 𝜋min + len(c(𝜋))},

then in the setting of Lemma 2.1, the inclusion (7) implies that we may recover d from
the data {(𝜋′,c (𝜋)), 𝜋 ∈ P (C ,d)}. However, slightly more is true. We may “compress” the
collection (𝜋′, 𝜋 ∈ P (C ,w)) by removing gaps, to form a partition of a consecutive sequence
of integers, without sacrificing recoverability, as follows. Write Π′ =

⋃
𝜋∈P (C ,w) 𝜋

′, and for
𝜋 ∈ P (C ,w), let

�̂� = {rank(i ,Π′),i ∈ 𝜋′},

where rank(i ,Π′) = #{ j ∈ Π′ : j ≤ i }. For example, if Π′ is the collection of sets in (8), then
(�̂�, 𝜋 ∈ P (C ,w)) is the partition

{{1,3}, {2}, {4,5,7,10}, {6}, {8}, {9}} .

Corollary 2.2. For any code C , any Dyck path d is recoverable from the data {(�̂�,c(𝜋)), 𝜋 ∈
P (C ,d)}.

Proof. For each k ∈ ⋃
𝜋∈P (C ,d) �̂�, let

k ′ = k +
∑︁

{𝜋∈P (C ,d) :�̂�min<k }
(len(c (𝜋)) − 1).

Then for all 𝜋 ∈ P (C ,d), it holds that 𝜋′ = {k ′ : k ∈ �̂�}, so {𝜋′, 𝜋 ∈ P (C ,d)} is recoverable
from {(�̂�,c(𝜋)), 𝜋 ∈ P (C ,d)}. By the observations preceding the corollary and Lemma 2.1,
the result follows. □

This corollary gives us a way of using codes to bound the number of walks in a graph.
Given a code C = {c(b ) ,1 ≤ b ≤ a}, and b ∈ [a], for a Dyck path d write

Pb (C ,d) = {𝜋 ∈ P (C ,d) : c(𝜋) = c(b ) }

for the set of parts of P (C ,w) corresponding to the codeword c(b ) . Then, for 1 ≤ b ≤ a, let

tb = tb (C ,d) = |Pb (C ,d) |

denote the number of times code word c(b ) is used in the partitioning. We then set ®t (C ,d) =
(tb (C ,d),b ∈ [a]); this definition agrees with the one from Section 1.2. If w is a closed
walk in a tree T , we also write P (C ,w) = P (C ,D (w)) and ®t (C ,w) = (tb (C ,w),b ∈ [a]) :=
(tb (C ,D (w)),b ∈ [a]). This allows us to decompose the set of walks w of a certain length
according to number of occurrences tb of each code word in P (C ,w).

In the next proposition we bound the number of closed walks from a vertex to itself with
a given “profile” ®t = (t1, . . . ,ta). Recall from Section 1.2 that for a vertex v in a tree T , we
write NC ,®t (v ) for the number of closed walks w from v to v in T with tb (C ,w) = tb for all
1 ≤ b ≤ a. Note that the length of any such walks is 2k = 2k (®t ) = ∑a

b=1 tb (len(c(b ) ) + f (c(b ) )).
Recall also that for a meander c = (c0, . . . ,c j ), we write

ΔT (c) = max
v ∈V
|{walks w = (w0, . . . ,w j ) in T : w0 = v ,D (w) = c}| .
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(a) The contour walk w of this tree is
abcbde f e ghg edi j idba. The corresponding
Dyck path D (w) is 0121234345432343210.
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(b) Let C = {010,0121,0123}; then P (C ,w)
has parts {1,2,3,18}, {4,5,6,7,12,17},
{8,9,10,11} and {13,14,15,16}.

D (w)r
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(c) A plot of (D (w)r : r + 1 ∈ Π′ ∪ {len(w) + 1}).

2

3

1

1 2 3 4 5 6 7 8 9

4

10

(d) The walk S corresponding to codeword 0121.

Figure 2. For w and C as above, the collection {𝜋′ : 𝜋 ∈ P (C ,w)}
equals {{1,18}, {4,7,12,17}, {8,11}, {13,16}}, and {�̂� : 𝜋 ∈ P (C ,w)} equals
{{1,10}, {2,3,6,9}, {4,5}, {7,8}}. With c(2) = 0121 and c(3) = 0123, then
Π2 = {1,4,5,7,8,10} and Π3 = {2,3,6,9}.

Proposition 2.3. Fix a code C = {c(b ) ,1 ≤ b ≤ a}, and a vector of non-negative integers ®t =

(t1, . . . ,ta), and let q (®t ) = ∑a
b=1 tb · (1 + f (c(b ) )). Then for any tree T and any vertex v of T ,

NC ,®t (v ) ≤
(

q (®t )
tb (1 + f (c(b ) )),1 ≤ b ≤ a

) a∏
b=1

1
tb (1 + f (c(b ) )) + 1

(
tb (1 + f (c(b ) )) + 1

tb

)
· ΔT (c(b ) )tb .

(9)
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Proof. Fix a closed walk w in T and a codeword c ∈ C . If 𝜋 ∈ P (C ,w) and c (𝜋) = c then
|𝜋 | = len(c) + f (c) and |�̂� | = |𝜋 | − (len(c) − 1) = 1 + f (c). It follows that P̂ (C ,w) := (�̂�, 𝜋 ∈
P (C ,w)) is a partition of [q (®t )]. Writing Πb = ∪𝜋∈P (C ,w) :c(𝜋)=c(b ) �̂�, then (Πb ,1 ≤ b ≤ a) is
another, coarser partition of [q (®t )], in which |Πb | = tb (1+ f (c(b ) )). Accordingly, the number
of possibilities for the partition (Πb ,1 ≤ b ≤ a), as w varies over walks with (tb (C ,w),1 ≤
b ≤ a) = ®t , is at most (

q (®t )
tb (1 + f (c(b ) )),1 ≤ b ≤ a

)
. (10)

We next focus our attention on the number of words which could give rise to the partition
(Πb ,1 ≤ b ≤ a). Figure 2 should be useful in understanding the arguments of this paragraph.
Consider a given value of b , write f = f (c(b ) ), and define a sequence S = (S (p),0 ≤ p ≤ |Πb |)
as follows. List the elements of Πb in increasing order as p1, . . . ,p |Πb | . Set S (0) = 0, S (1) = f ,
and for 1 < i ≤ |Πb | let

S (i ) =
{
S (i − 1) + f if pi and pi−1 are in different parts of P̂ (C ,w)
S (i − 1) − 1 if pi and pi−1 are in the same part of P̂ (C ,w) .

For any part 𝜋 of P (C ,w) with c(𝜋) = c(b ) , we have |�̂� | = |𝜋′ | = h+1 by construction; from this
it is immediate that S ( |Πb |) = 0. Moreover, if 𝜎, 𝜌 ∈ P (C ,w) are distinct and 𝜌 j < 𝜎min <

𝜌 j+1, where 𝜌 j and 𝜌 j+1 are consecutive elements of 𝜌, then in fact 𝜎 ⊂ {𝜌 j +1, . . . , 𝜌 j+1−1};
this is an immediate consequence of the definition of P (C ,w). This nesting structure implies
that there is some part 𝜋 ∈ P (C ,w) with c(𝜋) = c(b ) such that if �̂�min = pi , then

{pi ,pi+1, . . . ,pi+f } = �̂�.

We then have

(S (i ),S (i + 1), . . . ,S (i + f )) = (S (i − 1) + f ,S (i − 1) + f − 1, . . . ,S (i − 1)) .
It follows by induction that S is non-negative. Moreover, the nesting structure likewise implies
that the collection (𝜋 ∈ P (C ,w),c(𝜋) = c(b ) ) can be recovered from Πb and S . The number
of walks S of length |Πb | = tb (1 + f ) with step sizes in {−1, f }, starting and finishing at zero
and staying weakly above zero is precisely 1

t (1+f )+1
(t (1+f )+1

t

)
- see, e.g., [18, Theorem 10.4.1].

We apply the preceding bound to each set Πb . Combined with (10) we see that, having
constrained w to satisfy that (tb (C ,w),1 ≤ b ≤ a) = ®t , the number of possibilities for the
collection

{(�̂�,c(𝜋)), 𝜋 ∈ P (C ,w)}
is at most (

q (®t )
tb (1 + f (c(b ) )),1 ≤ b ≤ a

) a∏
b=1

· 1
tb (1 + f (c(b ) )) + 1

(
tb (1 + f (c(b ) )) + 1

tb

)
. (11)

By Corollary 2.2, it follows that the number of possibilities for the Dyck pathD (w) is bounded
by the expression in (11).

Finally, to recover w from D = D (w), it suffices to embed the subwalks corresponding to
the parts of P (C ,w) into G . For a part 𝜋 of P (C ,w), having specified the location of w𝜋min−1,
by definition there are at most ΔT (c(𝜋)) possibilities for the subwalk (wp ,p ∈ 𝜋). It follows
that the number of walks with D (w) = D is at most

a∏
b=1

ΔT (c(b ) )tb ,

which completes the proof. □

We are now prepared to prove Proposition 1.3.
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Proof of Proposition 1.3. We bound the multinomial coefficient in (9) with the aid of the in-
equalities (n/e )n ≤ n! ≤ e

√
n (n/e )n . We obtain(

q

tb (1 + f (c(b ) )),1 ≤ b ≤ a

)
≤ e√qe −qq q

a∏
b=1

1
(tb (1 + f (c(b ) )))!

= e
√
q

a∏
b=1

(q/e )tb (1+f (c(b ) ) )

(tb (1 + f (c(b ) )))!

≤ e√q
a∏
b=1

(
q

tb (1 + f (c(b ) ))

)tb (1+f (c(b ) ) )
.

We also have

1
tb (1 + f (c(b ) )) + 1

(
tb (1 + f (c(b ) )) + 1

tb

)
≤

(
tb (1 + f (c(b ) ))

tb

)
≤ (1 ∨ 2e f (c(b ) ))tb ,

the second inequality holding since both sides are 1 when f (c(b ) ) = 0, and when f (c(b ) ) ≥ 1
we have (

tb (1 + f (c(b ) ))
tb

)
≤

(
etb (1 + f (c(b ) ))

tb

)tb
= (e (1 + f (c(b ) )))tb ≤ (2e f (c(b ) ))tb .

Using these in the upper bound of Proposition 2.3 yields the bound

NC ,®t (v ) ≤ e
√
q

a∏
b=1

(
(1 ∨ 2e f (c(b ) ))ΔT (c(b ) )

)tb (
q

tb (1 + f (c(b ) ))

)tb (1+f (c(b ) ) )
= e
√
qΔk

a∏
b=1

( (1 ∨ 2e f (c(b ) ))ΔT (c(b ) )
Δ(len(c(b ) )+f (c(b ) ) )/2

)tb (
q

tb (1 + f (c(b ) ))

)tb (1+f (c(b ) ) )
,

where in the second line we have multiplied and divided by Δk = Δ
∑a
b=1 tb (len(c(b ) )+f (c(b ) ) )/2.

Setting 𝜌b = tb (1 + f (c(b ) ))/q for 1 ≤ b ≤ a, we may rewrite the above bound as

e
√
qΔk exp

(
q

a∑︁
b=1

𝜌b log
( gb
𝜌b

) )
Since

∑a
b=1 𝜌b = 1, by the non-negativity of the Kullback-Leibler divergence,

a∑︁
b=1

𝜌b log
( gb
𝜌b

)
≤ log(

a∑︁
b=1

gb ) ,

from which the result follows. □

2.2. Refined bounds via nonbacktracking walks. As discussed in the proof overview, in
order to strengthen the above bounds, we need to refine our decomposition of walks in trees
according to the times when they visit high-degree vertices. This is achieved by classifying
vertices into three types according to their degrees (“high,” “moderate,” and “low” degrees,
defined below) and partitioning walks not only by their distances to the starting vertex but
also by the sequence of types of the vertices. The prefix codes may be easily extended to
encode the type information as well. Part of our strategy will be to separately quantify the
contribution to the number of closed walks arising from “backtracking” subwalks, of type
xyx or xyzyx , where x is a vertex of medium or high degree and y and z are vertices of low
degree. (We shall call these simple and double backtracking steps, respectively.) This will
allow us to exploit finer structural properties of uniformly random trees, which we establish
in Sections 3 and 4.
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Formally, we define an (M ,H )-tree to be a 4-tuple T = (V,E ,M ,H ), where (V,E) is a
tree and M ,H ⊂ V are disjoint sets of vertices; we will eventually take M to be the set of
“moderately high degree vertices” and H to be the set of “very high degree vertices.” Given a
walk w = (wi ,0 ≤ i ≤ j ) in an (M ,H )-tree, we define a type sequence 𝜏 = (𝜏i (T ,w),0 ≤ i ≤ j ),
by setting

𝜏i (T ,w) =


h if wi ∈ H
m if wi ∈ M
ℓ if wi ∈ V \ (M ∪H ) .

(Here h,m, and ℓ stand for "high," "moderate", and "low", indicating the degree type of
the vertex visited at step i of the walk.) We let ET (w) = ((distT (w0,wi ), 𝜏i (T ,w)),0 ≤ i ≤ j ),
and call ET (w) the encoding path corresponding to the walk w. Note that extracting the first
coordinate from each of the pairs in the encoding path yields the Dyck path DT (w).

Given a walk w in T :

• A simple backtracking step is a subwalk (wi ,wi+1,wi+2) of w such that wi+2 = wi ; wi ∈
M ∪H ; wi+1 ∉ M ∪H ; and distT (w0,wi+1) > distT (w0,wi ).
• A double backtracking step is a subwalk (wi ,wi+1,wi+2,wi+3,wi+4) of w such that wi+4 =

wi ; wi ∈ M ∪ H ; wi+1,wi+2 ∉ M ∪ H ; and distT (w0,wi+2) > distT (w0,wi+1) >

distT (w0,wi ).
In fact, the condition that distT (w0,wi+2) > distT (w0,wi+1) may be deduced from the other
conditions in the definition of double backtracking steps, but we find it clearer to write it
explicitly. An (M ,H )-doubly-nonbacktracking walk (or (M ,H )-walk for short) is a walk w in T
that contains no simple or double backtracking steps.

An (M ,H )-meander is a sequence d = ((di , 𝜏i ),0 ≤ i ≤ j ) which is the encoding path of
some (M ,H )-walk; it is an excursion if d j = 0. We define f (d) = d j and call f (d) the final
value of d. An (M ,H )-meander d is an (M ,H )-excursion if f (d) = 0. A set C of (M ,H )-
meanders is an (M ,H )-code if for any (M ,H )-excursion d = ((di , 𝜏i ),0 ≤ i ≤ j ) of positive
length, there is a unique (M ,H )-meander c ∈ C such that c is a prefix of d.

The “trivial” (M ,H )-code consists of nine words, each of the form ((0,∗), (1,∗)), where
each entry of “∗” may be replaced by an ℓ ,m, or h. Additionally, using m/h to denote an
entry which can be either an m or an h, the simplest non-trivial (M ,H )-code has eleven words
and is shown in Figure 3. Using the above shorthand, it can be written as

{((0,ℓ ), (1,∗)), ((0,m/h), (1,m/h)), ((0,m/h), (1,ℓ ), (2,m/h))} .

ℓ

∗ ℓ

m/h
((0,ℓ ), (1,∗)) ((0,m/h), (1,m/h)) ((0,m/h), (1,ℓ ), (2,m/h))

m/h

m/h

m/h

Figure 3. The simplest non-trivial (M ,H )-code.

For an (M ,H )-excursion d = ((di , 𝜏i ),0 ≤ i ≤ j ) and an (M ,H )-code C , the partition
P (C ,d) is defined just as in Section 2.1. Fix any part 𝜋 of P (C ,d), list the elements of 𝜋 in
increasing order as 𝜋(1), . . . , 𝜋(s ), and let 𝜋(0) = 𝜋(1) − 1. Then there is a unique (M ,H )-
meander c(𝜋) = c(𝜋,C ,d) ∈ C such that

c(𝜋) = ((d𝜋 (r ) − d𝜋 (0) , 𝜏𝜋 (r ) ),0 ≤ r ≤ s ′) ,
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for some s ′ ≤ s = |𝜋 |. For a closed walk w in an (M ,H )-tree T , we also write P (C ,w) =
P (C ,E (w))). Like in Section 2.1, if walks w,w′ have ET (w) = ET (w′), then P (C ,w) =

P (C ,w′). Thus, for any tree T , any vertex v of T , and any code C , we may rewrite Nk (v ,T ),
the number of walks from v to v of length 2k , as∑︁
{partitions P of [2k ] }

∑︁
{ (M ,H )−excursions d:P (C ,d)=P }

#{walks w in T : w0 = w2k = v ,E (w) = d} .

The definitions just preceding Proposition 2.3 also carry over naturally to the setting of
(M ,H )-trees. For an (M ,H )-tree T , a node v of T , and an (M ,H )-meander c = ((ci , 𝜏i ),0 ≤
i ≤ j ), let

degT (v ,c) = #{(M ,H )-walks w = (w0, . . . ,w j ) in T : w0 = v ,ET (w) = c},

and let ΔT (c) = max{degT (v ,c) : v a node of T }.
Given an (M ,H )-code C = {c(b ) ,1 ≤ b ≤ a} and a codeword c(b ) = ((c (b )i , 𝜏

(b )
i ),0 ≤ i ≤

m) ∈ C , for an (M ,H )-walk w write

Pb (C ,w) = {𝜋 ∈ P (C ,w) : c (𝜋) = c(b ) }

for the set of parts of P (C ,w) corresponding to the (M ,H )-meander c(b ) . Then, for 1 ≤ b ≤ a,
let

tb = tb (C ,w) = |Pb (C ,w) | .

Further recycling the notation of Section 2.1, given an (M ,H )-code C = (c(b ) ,1 ≤ b ≤ a),
for a vector of non-negative integers ®t = (t1, . . . ,ta) and a node v in an (M ,H )-tree T , we
denote by NC ,®t (v ) the number of (M ,H )-walks w from v to v in T with tb (C ,w) = tb for all
1 ≤ b ≤ a. The next proposition bounds the number of such walks from above.

Proposition 2.4. Fix an (M ,H )-tree T = (V,E ,M ,H ) and an (M ,H )-code C = {c(b ) ,1 ≤ b ≤
a}, and write

𝜀 = 𝜀(C ,T ) := (2a)2 max
b∈[a ]

ΔT (c(b ) )
2

len(c(b ) )+f (c(b ) )

ΔT
(12)

Then for any vector ®t = (t1, . . . ,ta) ∈ ℤa≥0, setting k (®t ) :=
∑
b∈[a ] tb (len(c(b ) ) + f (c(b ) ))/2, we

have that

max
v ∈T

NC ,®t (v ) ≤ 2a (𝜀 ΔT )k (®t ) .

Crucially, the upper bound established for NC ,®t (v ) does not depend on v , and only depends
on ®t via k (®t ). The form in which we state the bound may seem curious, since we could cancel
the factor of ΔT with the denominator in (12). We wrote the bound in this way because 𝜀

will show up again later, in an expression where such a cancellation is not possible. Now,
for a given value of k ∈ ℕ, there are at most a2k choices for the type vector ®t with k (®t ) = k .
Therefore, letting N M ,H

k (v ,T ) denote the number of closed (M ,H )-walks of length 2k from
v to v in T and setting N M ,H

k (T ) = maxv ∈V N
M ,H
k (v ,T ), we have the following corollary.

Corollary 2.5. For any (M ,H )-tree T = (V,E ,M ,H ) and (M ,H )-code C = {c(b ) ,1 ≤ b ≤ a},
for any integer k ≥ 0 we have N M ,H

k (T ) ≤ 2a (a2𝜀ΔT )k , where 𝜀 = 𝜀(C ,T ) is as in (12).

When we later apply this bound, we will need the parameter 𝜀 to be much smaller than
Δ
−1/2
T ; it is there that the right choice of code will be crucial.
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Proof of Proposition 2.4. Fix v ∈ V and ®t as above, and define q = q (®t ) = ∑a
b=1 tb · (1+ f (c(b ) )).

Precisely the same proof as for Proposition 2.3 gives the bound

NC ,®t (v )

≤
(

q (®t )
tb (1 + f (c(b ) )),1 ≤ b ≤ a

) a∏
b=1

1
tb (1 + f (c(b ) )) + 1

(
tb (1 + f (c(b ) )) + 1

tb

)
· ΔT (c(b ) )tb .

In order to simplify this bound, note that(
q (®t )

tb (1 + f (c(b ) )),1 ≤ b ≤ a

)
≤ aq (®t ) ≤ a2k (®t ) ,

and that for each b ∈ [a],
1

tb (1 + f (c(b ) )) + 1

(
tb (1 + f (c(b ) )) + 1

tb

)
≤ 2tb (1+f (c

(b ) ) )+1 ,

leading to

NC ,®t (v ) ≤ a2k (®t )2a+2k (®t )
a∏
b=1

ΔT (c(b ) )tb

= Δ
k (®t )
T a2k (®t )2a+2k (®t )

a∏
b=1

©«ΔT (c
(b ) )

2
(len(c(b ) )+f (c(b ) ) )

ΔT

ª®¬
tb (len(c(b ) )+f (c(b ) ) )/2

.

The product is bounded by(
𝜀

(2a)2

)∑a
b=1 tb (len(c(b ) )+f (c(b ) ) )

=

(
𝜀

(2a)2

)k (®t )
.

Plugging this back into the previous display finishes the proof. □

2.3. Bounding the number of walks. In this section we establish the main combinatorial
bound for Nk (v ,T ), which we recall is the total number of closed walks of length 2k from
v to v in T . To this end, first we convert T into an (M ,H )-tree by defining H as the set
of vertices of degree at least 0.95ΔT where ΔT is the maximum degree in T . Moreover, we
define M as the set of vertices of degree less than 0.95ΔT but at least 𝜅 for a threshold 𝜅 > 0
specified later. We say that a vertex is of high degree if v ∈ H , it is of moderate degree if
v ∈ M and it is of low degree otherwise. Recall that Δ(2)T is the greatest size of any second
neighbourhood in T .

Proposition 2.6. Fix any real number 𝜅 > 0. Let T = (V,E ,M ,H ) be an (M ,H )-tree with H
the set of vertices of degree at least 0.95ΔT and M the set of vertices of V \ H of degree at least 𝜅.
Suppose that there are no adjacent vertices in T of degree at least 0.95ΔT . Fix an (M ,H )-code
C = {c(b ) ,1 ≤ b ≤ a} and let

𝜀 = 𝜀(C ,T ) = (2a)2 max
b∈[a ]

ΔT (c(b ) )
2

(len(c(b ) )+f (c(b ) ) )

ΔT

Then for all v ∈ V ,

Nk (v ,T ) ≤ 2a (k + 1)2ΔkT

(
1 +

Δ
(2)
T

Δ2
T

)2k (
1 + e 20a2𝜀

)k
.

The proposition has a direct consequence for the largest eigenvalue of T . Indeed, since

𝜆1(T ) = lim
k→∞

(
max
v ∈V

Nk (v ,T )
) 1

2k

,
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we have the following result.

Corollary 2.7. In the setting of Proposition 2.6, the largest eigenvalue of T satisfies

𝜆1(T ) ≤
√︁
ΔT

(
1 +

Δ
(2)
T

Δ2
T

) √︁
1 + e 20a2𝜀.

To put this into perspective, recall that our goal is to prove an eigenvalue bound of the
form 𝜆1(T ) ≤

√
ΔT + o (1) for most trees on n vertices. The corollary implies that such a

bound follows if both Δ
(2)
T /ΔT and 𝜀 = 𝜀(C ,T ) are much smaller than 1/

√
ΔT . While Δ

(2)
T /ΔT

depends only on the tree, 𝜀 depends also on the choices of code C and threshold 𝜅 (since
𝜅 determines M and H ). It will turn out that taking 𝜅 = log1/5 n is good enough for our
purposes, if the right code is used.

Let us now prove the proposition.

Proof of Proposition 2.6. In order to bound Nk (v ,T ), we partition the set of walks of length 2k
from v to v into equivalence classes. An equivalence class is determined by

(1) the number of single backtracking steps of type xyx where x has high degree;
(2) the number of single backtracking steps of type xyx where x is of moderate degree;
(3) the number of double backtracking steps of type xyzyx where x is of high degree;
(4) the number of double backtracking steps of type xyzyx where x is of moderate degree;

To formalize this, given a walk w = (w0, . . . ,w2k ) inT , the reduced (M ,H )- walk is obtained
from w by removing all backtracking steps from w. In other words, if (wi , . . . ,wi+ j ) is a simple
or double backtracking step of w, then replace w by the subwalk (w0, . . . ,wi ,wi+ j+1, . . . ,w2k ),
and repeat until no simple or double backtracking steps remain. From the definition of
backtracking steps, it is straightforward to verify that the resulting walk w− does not depend
on the order in which the backtracking steps are removed, and that w− is an (M ,H )-walk as
defined in the previous subsection.

Writing ⟨w−⟩ for the equivalence class of w−, which consists of all walks w of length 2k
from v to v whose reduced (M ,H )-walk is w−, we then have

Nk (v ,T ) =
∑︁
w−
|⟨w−⟩|, (13)

where sum on the right is over all (M ,H )-walks w− from v to v of (even) length 0 ≤ 2 j ≤ 2k .
To bound this expression, group (M ,H )-walks by their lengths. We know from Corol-

lary 2.5 that N M ,H
j (v ,T ), the number of (M ,H )-walks of length 2 j from v to itself, is at most

2a a2 j 𝜀 j Δ
j
T , so

Nk (v ,T ) ≤
k∑︁
j=0

(2a a2 j 𝜀 j Δ
j
T ) Z ( j ,k ), (14)

where
Z ( j ,k ) := max{|⟨w−⟩| : w− is an (M ,H )-walk of length 2 j }.

We now make the following claim.

Claim 2.8. For each 0 ≤ j ≤ k ,

Z ( j ,k ) ≤ (k + 1)2
(
1 +

Δ
(2)
T

Δ2
T

)2k (
k
j

)
e 20 j Δ

k− j
T .

The proposition follows from combining this claim with (14) and applying the binomial
theorem. The remainder of the proof thus consists of the proof of Claim 2.8. We fix 0 ≤ j ≤ k
from now on, and perform the following steps.
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Step 1 We find a function F : {ℓ ,m,h}2 j+1 → ℝ+ with the following property. Consider an
(M ,H )-walk w− of length 2 j and let 𝜏 = (𝜏i (C ,w−),0 ≤ i ≤ 2 j ) ∈ {ℓ ,m,h}2 j+1 be the
corresponding type sequence. Then:

|⟨w−⟩| ≤ F (𝜏).
This reduces the problem of bounding Z ( j ,m) to a maximization of F over a re-
stricted set that we will define below.

Step 2 We find an explicit 𝜏max ∈ {ℓ ,m,h}2 j+1 such that F (𝜏max) ≥ F (𝜏) for any 𝜏 that is
the type sequence of some w−. We then compute F (𝜏max) explicitly to find an upper
bound for Z ( j ,k ).

Step 3 We finish the proof of the claim by bounding F (𝜏max).
Let us now present these steps in detail.

Step 1: find a function F . Consider an (M ,H )-walk w− of length 2 j , and let 𝜏 = (𝜏i ,0 ≤
i ≤ j ) ∈ {ℓ ,m,h}2 j+1. Any walk w of length 2k whose reduced (M ,H )-walk is w− can be
constructed in the following way:

For each 0 ≤ i ≤ 2 j with 𝜏i ∈ {m,h}, choose 𝜎i , 𝛿i ∈ ℤ≥0; for 𝜏i = ℓ , set
𝜎i = 𝛿i = 0. For each 0 ≤ i ≤ 2 j , we will add 𝜎i single backtracking steps and
𝛿i doubly backtracking steps to location w−i along the walk. To ensure that the
total length of the resulting walk is 2k , we require that

∑2 j
i=0(𝜎i +2𝛿i ) = k − j .

At each location 0 ≤ i ≤ 2 j , having fixed 𝜎i and 𝛿i , the single and double backtracking
steps at location i can happen in a total of up to

(𝜎i+𝛿i
𝜎i

)
possible orders. The number of

choices for each single backtracking step is the degree of vertex w−i , which is at most ΔT if
𝜏i = h and at most 0.95ΔT if 𝜏i = m. The number of choices for the double backtracking
steps is at most the size of the second neighborhood of w−i , which we bound by Δ

(2)
T . All in

all, the number of possible choices for the single and double backtracking steps at position
i , for a given choice of 𝜎i and 𝜏i , is at most(

𝜎i + 𝛿i
𝜎i

)
(Δ(2)T )

𝛿i Δ
𝜎i
T (0.95)𝜎i1[𝜏−i =m ] .

The upshot of the above discussion is this. Given x = (xi )2 ji=0 ∈ {ℓ ,m,h}
2 j+1, define

S (x) :=

((𝜎i , 𝛿i ),0 ≤ i ≤ 2 j ) ∈ ℤ2(2 j+1)
≥0 :

∑2 j
i=0(𝜎i + 2𝛿i ) = (k − j )

and
∀0 ≤ i ≤ 2 j , if xi = ℓ then 𝜎i = 𝛿i = 0


and

F (x) :=
∑︁

(𝜎i ,𝛿i )2 ji=0∈S (x )

2 j∏
i=0

(
𝜎i + 𝛿i
𝜎i

)
(Δ(2)T )

𝛿i Δ
𝜎i
T (0.95)𝜎i1[xi =m ] .

Then
|⟨w−⟩| ≤ F (𝜏).

By assumption, T does not contain two adjacent vertices of type h. Therefore, 𝜏 cannot
contain more than j + 1 coordinates equal to h. This allows us to conclude that

Z ( j ,k ) ≤ max

{
F (𝜏) : 𝜏 ∈ {ℓ ,m,h}2 j+1,

2 j∑︁
i=0

1[𝜏i=h ] ≤ j + 1

}
. (15)

Step 2: find the maximizer and compute the maximum.
Inspection reveals that F has the following properties.

(1) for any x ∈ {ℓ ,m,h}2 j+1, F (x) is invariant under permutations of the coordinates of
x .
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(2) Changing some coordinates of x from ℓ to m can only increase F (x). Indeed, such a
chance to x can only increase the set S (x) and the combinatorial factors in the sum
defining F .

(3) Likewise, changing some coordinates of x from m to h can only increase F .

Recalling (15), we conclude that

Z ( j ,k ) ≤ F (𝜏max) (16)

where

𝜏max = h j+1m j .

We note in passing that 𝜏max is not the type sequence of any (M ,H )-walk in T , as it contains
consecutive occurences of h. The alternating sequence hmhmh . . .mh, which also maximizes
F , could in principle correspond to a (M ,H )-walk on some tree. However, working with 𝜏max
is a bit easier in what follows.

To continue, we find a more convenient expression for F (𝜏max). First of all notice that

S (𝜏max) :=

{
(𝜎i , 𝛿i )2 ji=0 ∈ ℤ

2(2 j+1)
≥0 :

2 j∑︁
i=0

(𝜎i + 2𝛿i ) = (k − j )
}

is the disjoint union of the sets

S (sh ,sm ,d ) :=

(𝜎i , 𝛿i )
2 j
i=0 ∈ ℤ

2 (2 j+1)
≥0 :

∑ j
i=0 𝜎i = sh ,∑2 j
i= j+1 𝜎i = sm ,∑2 j
i=0 𝛿i = d

 . (17)

where (sh ,sm ,d ) range over all triples in ℤ3
≥0 with sh + sm + 2d = k − j . Intuitively, sh and

sm correspond to the number of single backtracking steps at high and moderate vertices,
respectively, that were removed to obtain the (M ,H )-walk, whereas d corresponds to double
backtracking steps (the intuition is not quite right, because 𝜏max does not correspond to a
(M ,H )-walk, as noted above).

For each element (𝜎i , 𝛿i )2 ji=0 ∈ S (sh ,sm ,d ), we have

2 j∏
i=0

(Δ(2)T )
𝛿i Δ

𝜎i
T (0.95)𝜎i1[ti =m ] = Δ

sh
T (0.95ΔT )sm (Δ(2)T )

d . (18)

On the other hand, the sum ∑︁
(𝜎i ,𝛿i )2 ji=0∈S (sh ,sm ,d )

2 j∏
i=0

(
𝜎i + 𝛿i
𝜎i

)
counts the number of ways one can write a string of the form

h R0 h R2 . . . h R j mR j+1mR j+2 . . . mR2 j (19)

where

• each Ri is a permutation of a𝜎ib𝛿i , for some choice of 𝜎i , 𝛿i ∈ ℤ≥0 (so there are(𝜎i+𝛿i
𝜎i

)
choices for Ri once these two numbers is fixed);

• the total number of characters equal to a in the strings R0, . . . ,R j is
∑ j
i=0 𝜎i = sh ;

• the total number of characters equal to a in R j+1, . . . ,R2 j is
∑2 j
i= j+1 𝜎i = sm ;

• the total number of characters equal to b in R0,R1, . . . ,R2 j is
∑2 j
i=0 𝛿i = d .
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We now give an alternative way to count these strings. Notice that such a string has total
length 2 j + 1 + sh + sm + d , and always begins with ‘h’. There are thus(

2 j + sh + sm + d
d

)
ways to choose the position of the d ’s in a string of the above form. Once the d ’s are removed,
one is left with a string of the form

h a𝜎0 h a𝜎1 . . . ha𝜎 j ma𝜎 j+1 . . . ma𝜎2 j

with
∑ j
i=0 𝜎i = sh and

∑2 j
i= j+1 𝜎i = sm . There are therefore(

j + sh
sh

) (
j − 1 + sm

sm

)
total choices for (𝜎0, . . . ,𝜎2 j ). The upshot of this discussion is that∑︁

(𝜎i ,𝛿i )2 ji=0∈S (sh ,sm ,d )

2 j∏
i=0

(
𝜎i + 𝛿i
𝜎i

)
=

(
2 j + sh + sm + d

d

) (
j + sh
sh

) (
j − 1 + sm

sm

)
.

Combining the above identity with (18) and the definition of S (sh ,sm ,d ) in (17), we obtain

F (𝜏max) =
∑︁

(sh ,sm ,d ) ∈ℤ3
≥0

sh+sm+2d=k− j

(
2 j + sh + sm + d

d

) (
j + sh
sh

) (
j − 1 + sm

sm

)
Δ
sh
T (0.95ΔT )sm (Δ(2)T )

d . (20)

Step 3: bounds and end of proof. To finish the proof, we find upper bounds for F (𝜏max),
starting from (20), via a series of simplifications and overestimates.

First, notice that the formula can be bounded by noticing that k − j − sh − sm = 2d and
2 j + sh + sm +d ≤ k + j −d ≤ 2k for all terms in the RHS of (20). Pulling out a factor of Δk− jT ,
we arrive at

F (𝜏max)
Δ
k− j
T

≤
∑︁

(sh ,sm ,d ) ∈ℤ3
≥0

sh+sm+2d=k− j

(
2k
d

) (
j + sh
sh

) (
j − 1 + sm

sm

)
(0.95)sm

(
Δ
(2)
T

Δ2
T

)d
.

We can further bound the expression, by upper bounding the terms involving d and sm , as

F (𝜏max)
Δ
k− j
T

≤
∑︁

0≤sh≤k− j
(k + 1)

(
j + sh
sh

) [
max
sm ∈ℤ≥0

(
j − 1 + sm

sm

)
(0.95)sm

]  max
0≤d≤2k

(
2k
d

) (
Δ
(2)
T

Δ2
T

)d  ,
where the factor (k + 1) is an upper bound on the maximum number of choices for (sm ,d )
given sh .

We now show that the maximum in sm is at most e 20 j . Notice that

max
sm ∈ℤ≥0

(
j − 1 + s
sm

)
(0.95)sm

is achieved at sm = s∗ := max{19 ( j − 1) − 1,0}. For j = 0,1, the maximum is achieved at
s∗ = 0 and equals 1, which is not larger than e 20 j . For j ≥ 2, we use the general inequality( r
w

)
≤ (er /w)w (valid for integers 0 ≤ w ≤ r ) and 1 + u ≤ eu (valid for all real u) to obtain:(

j − 1 + s∗
s∗

)
(0.95)s∗ ≤

[
19e
20

(
1 +

j − 1
19( j − 1) − 1

)]20 ( j−1)−1

≤ exp
(
19
20
(19 ( j − 1) − 1) + j − 1)

)
≤ e 20 j .

This gives our desired bound.
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As for the maximum in d , we simply note that, by the binomial theorem,(
2k
d

) (
Δ
(2)
T

Δ2
T

)d
≤

(
1 +

Δ
(2)
T

Δ2
T

)2k

.

Applying these two bounds, we obtain

F (𝜏max)
Δ
k− j
T

≤
∑︁

0≤sh≤k− j
(k + 1)

(
j + sh
sh

)
e 20 j

(
1 +

Δ
(2)
T

Δ2
T

)2k

.

We are left with a sum with k − j + 1 ≤ (k + 1) terms, and the remaining binomial coefficient
in our expression satisfies: (

j + sh
sh

)
=

(
j + sh
j

)
≤

(
k
j

)
for any 0 ≤ sh ≤ k − j . We conclude that

F (𝜏max)
Δ
k− j
T

≤ (k + 1)2
(
k
j

)
e 20 j

(
1 +

Δ
(2)
T

Δ2
T

)2k

.

Combining this with (16), we obtain Claim 2.8 and finish the proof. □

3. Structural properties

In this section we establish certain structural properties of random labeled trees that hold
with high probability. These properties allow us to make efficient use of the path counting
techniques developed in Section 2.

We begin with a well-known fact, which shall allow us to understand the typical properties
of random labeled trees by instead studying Poisson Bienaymé trees.3 To state the fact, a
little more terminology is needed. A plane tree, also called an ordered rooted tree, is a rooted
tree in which the set of children of each vertex are ordered. The vertices of a plane tree
are canonically labeled by strings of positive integers as follows: the root is labeled with the
empty string ∅. Inductively, for a vertex labeled a = a1a2 . . . ak and with m children, its
children receive labels a1,a2, . . . am in order. (Here, for a string a and a positive integer i ,
ai represents the string obtained by concatenating a and i .) In this way, vertices at depth d
in the tree are labeled with strings from ℕd . The family trees of branching processes are (a
particular sort of) random plane trees.

Given a rooted tree T with vertices labelled by [n], the plane tree corresponding to T is
constructed as follows. First, for each node v of T , order the children of v from left to right
in increasing order of vertex label; this endows T with a plane structure. Then remove the
original vertex labels.

Lemma 3.1. Fix 𝜆 > 0 and n ∈ ℕ. Let T•n be a uniformly random rooted tree with vertices labelled
by [n], and let T∗n be a Poisson(𝜆 ) Bienaymé tree conditioned to have n vertices. Then the random
plane tree corresponding to T•n has the same distribution as T∗n .

For a proof of the lemma, see [17, Section 5] or [22, Section 7].
In the remainder of the section, we bound the probability that Tn has certain structural

properties by first proving stronger bounds on the probability that a Poisson(1) Bienaymé
tree has such properties, then using Lemma 3.1 (among other tools) to transfer those bounds
to T•n (and thence to Tn , when needed, by a union bound over the choices of possible root).

3Bienaymé trees are more commonly called Galton–Watson trees; here we use the alternative terminology proposed
in [2]. Concretely, a Poisson(𝜆 ) Bienaymé tree is the family tree of a branching process with Poisson(𝜆 ) offspring
distribution.
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A second useful tool is the breadth-first search (BFS) construction of plane trees. Given
a sequence of non-negative integers d = (di ,i ≥ 0), the BFS construction works as follows.
First, d0 is the number of children of the root. Next, d1, . . . ,dd0 are the numbers of children of
the children of the root, ordered from left to right. The construction continues sequentially
in this manner; so, for example, the first child of the root has children with dd0+1, . . . ,dd0+d1

children, the second has children which themselves have dd0+d1+1, . . . ,dd0+d1+d2 children, and
so on. The construction may continue indefinitely or may halt; if it halts, it does so at step
𝜎 = 𝜎(d) = 1 + inf{m : d0 + . . . + dm ≤ m}, and in this case the resulting tree has 𝜎 nodes.

Given a rooted tree T and k ∈ ℕ, write T (k ) for the set of nodes at distance k from the
root of t . Note that the BFS construction imparts a total order to the nodes of the resulting
tree, which agrees with the order of the degrees in the sequence d: if k < l then nodes of
T (k ) precede those of T (l ), and within T (k ) nodes are ordered from left to right.

The following construction of Bienaymé trees is classical.

Lemma 3.2. Let X = (Xi ,i ≥ 0) be IID non-negative integer-valued random variables with law 𝜇.
Then the tree T built by applying the BFS construction to X is a Bienaymé(𝜇) tree.

Let S0 = 0 and, for k ≥ 1 let Sk =
∑

0≤i<k (Xi − 1). Then 𝜎 = inf{k : Sk = −1} is the
size (number of nodes) of T, and (1 + Sk ,0 ≤ k ≤ 𝜎) is the BFS queue length process, tracking
the number of nodes which have been revealed in the breadth-first search process but whose
degree in T is not yet known.

In the remainder of the section we let X = (Xi ,i ≥ 0) be a sequence of independent
Poisson(1) random variables and let T be the Poisson(1) Bienaymé tree built by applying
the BFS construction to X.

Lemma 3.3. For all k ,s ∈ ℕ,

P {∃i ≤ k : |T(i ) | ≥ s } ≤ P
{

max
i≤(k−1)s

Si ≥ s
}
.

Proof. Let 𝜏(0) = 0 and, for i ≥ 0, let 𝜏(i + 1) = 𝜏(i ) + S𝜏 (i ) + 1. It is straightforward to see,
by induction, that for all i ≥ 0, 𝜏(i ) = ∑

0≤ j<i |T( j ) | and |T(i ) | = S𝜏 (i ) + 1.
Now let I = inf{ j ≥ 0 : |T( j ) | ≥ s }. Since |T(0) | = 1 and |T( j ) | < s for 0 < j < I , it

follows that 𝜏(I ) ≤ (I − 1) (s − 1) + 1 ≤ (I − 1)s and S𝜏 (I ) ≥ s . Thus if I ≤ k then there is
j ≤ (k − 1)s such that S j ≥ s . The result follows. □

Proposition 3.4. Fix positive functions m = m (n) = o (n) and r = r (n) = o (n1/2). If 𝜏 is any
stopping time for S = (Sk ,k ≥ 0), then

P {𝜏 ≤ m | |T| = n } = (1 + o (1))E
[
S𝜏1[𝜏≤min(m,|T | ) ]1[S𝜏≤r ]

]
+ P {𝜏 ≤ m,S𝜏 > r | |T| = n }

Proof. We first write

P {𝜏 ≤ m, |T| = n} = P {𝜏 ≤ m,S𝜏 ≤ r , |T| = n} + P {𝜏 ≤ m,S𝜏 > r , |T| = n} . (21)

To bound the first probability on the right, note that since |T| = 𝜎,

P {𝜏 ≤ m,S𝜏 ≤ r , |T| = n} = P {𝜏 ≤ m,S𝜏 ≤ r ,𝜎 = n}

=
∑︁
i≤m

r∑︁
s=1

P {𝜏 = i ≤ 𝜎,S𝜏 = s ,𝜎 = n}

=
∑︁
i≤m

r∑︁
s=1

P {𝜏 = i ≤ 𝜎,Si = s }P {𝜎 = n | 𝜏 = i ≤ 𝜎,Si = s }

By Kemperman’s formula [21, 6.3],

P {𝜎 = n | 𝜏 = i ≤ 𝜎,Si = s } =
s
n
P {Sn−i = −s }
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so

P {𝜏 ≤ m,S𝜏 ≤ r , |T| = n} =
∑︁
i≤m

r∑︁
s=1

P {𝜏 = i ≤ 𝜎,Si = s } ·
s
n
P {Sn−i = −s } .

Uniformly over i and s with i ≤ m = o (n) and s ≤ r = o (n1/2), by the local central limit
theorem P {Sn−i = −s } = (1 + o (1))P {Sn = −1}. Combined with Kemperman’s formula this
gives that

s
n
P {Sn−i = −s } = (1 + o (1))

s
n
P {Sn = −1} = (1 + o (1))sP {|T| = n} .

It follows that

P {𝜏 ≤ m,S𝜏 ≤ r , |T| = n} = (1 + o (1))
∑︁
i≤m

r∑︁
s=1

P {𝜏 = i ≤ 𝜎,Si = s } · sP {|T| = n}

= (1 + o (1))E
[
S𝜏1[𝜏≤min(m,𝜎) ]1[S𝜏≤r ]

]
· P {|T| = n} .

Using this identity, the proposition now follows from (21) and Bayes formula. □

The next lemma controls neighbourhood sizes near a fixed vertex of T; the following
lemma uses the first to deduce additional information about the local structure of T.

Lemma 3.5. Let T be a Poisson(1) Bienaymé tree. Then for n sufficiently large, the following
bounds both hold. First,

P
{
∃ j ≤ 4 : |T( j ) | ≥ 37 logn

}
≤ n−4.

Second,
P

{
∃ j ≤ log n : |T( j ) | ≥ ⌊log2 n⌋

}
≤ 2 exp(−(log2 n)/5) . (22)

Proof. By Lemma 3.3, we have

P
{
∃ j ≤ k : |T( j ) | ≥ s

}
≤ P

{
max

i≤(k−1)s
Si ≥ s

}
where (Sk ,k ≥ 0) is a random walk with steps (Xi − 1,i ≥ 1). Since a Poisson(𝜆 ) random
variable has a median in [𝜆 − ln 2,𝜆 +1/3) (see [11]) and X1+· · ·+Xi is Poisson(i )-distributed,
by Lévy’s reflection principle [25, Theorem 1.4.13], for s ≥ 1 we have

P
{

max
i≤(k−1)s

Si ≥ s
}
≤ 2P

{
S (k−1)s ≥ s − 1

}
.

We now use a standard Poisson tail bound [20, Lemma 1.2]: for 𝜀 > 0,

P {Poi(𝜆 ) > (1 + 𝜀)𝜆 )} ≤ exp(−𝜆 ((1 + 𝜀) log(1 + 𝜀) − 𝜀)) . (23)

If 𝜀 ≤ 1/2 then this upper bound is at most exp(−𝜀2𝜆/4). If k ≥ 3, so that s −1 ≤ (k −1)s/2,
then using that Si + i is Poisson(i )-distributed, this implies that

P
{
S (k−1)s ≥ s − 1

}
≤ 2P {Poisson((k − 1)s ) ≥ 3(k − 1)s/2} ≤ exp

(
−1

4
(s − 1)2
(k − 1)s

)
.

Taking k = 4 and s = 37 logn now yields the first bound, and taking k = ⌊log n⌋ and
s = ⌊log2 n⌋ yields the second bound. □

Lemma 3.6. Let T be a Poisson(1) Bienaymé tree. Then for n sufficiently large, the following
bounds both hold. First, writing deg(w) = degT(w) for vertices w of T, and setting

K ∗ := min(k ∈ ℕ : deg(w) < log1/5 n for all w ∈ T(2k ) ∪T(2k + 1)),
we have

P
{
K ∗ ≥ 15(log4/5 n)/log logn

}
< 2n−4 .

Second, writing
Z = {v ∈ T : |v | < 2K ∗,deg(v ) ≥ log1/5 n},
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we have

P

{∑︁
v ∈Z

deg(v ) ≥ 3 logn

}
< 4n−4 ,

and

P

{∑︁
v ∈Z
|{w ∈ [n] : dist(v ,w) ≤ 3}| ≥ 150(log n) (log logn)2

}
< 7n−4.

Proof. Let 𝜏0 = 0 and for i ≥ 0 let 𝜏i+1 = 𝜏i +S𝜏i + 1. Note that 𝜏i − 1 is a stopping time for the
filtration generated by X. Writing f (T) for the height of T, then for 0 ≤ k < f (T), the k ’th
generation T(k ) of T is constructed by BFS between times 𝜏k and 𝜏k+1, and f (T) = inf(k >

0 : 𝜏k = 𝜏k−1) − 1 is the height of T. In particular, for 0 ≤ k < f (T), the degrees of the
vertices of T(k ) are X𝜏k , . . . ,X𝜏k+1−1.

For k ≥ 0 let

Ek = {max(Xi , 𝜏2k ≤ i ≤ min(𝜏2k+2 − 1, 𝜏2k + 2⌊log2 n⌋) < log1/5 n − 1}.
Since 𝜏2k − 1 is a stopping time, by the Markov property we have

P
{
Eck | Xi ,0 ≤ i ≤ 𝜏2k − 1

}
= P

{
max(X j ,1 ≤ j ≤ min(𝜏2 − 1,1 + 2⌊log2 n⌋) ≥ log1/5 n − 1

}
≤ P

{
max(X j ,1 ≤ j ≤ 1 + 2⌊log2 n⌋⌋) ≥ log1/5 n − 1

}
≤

4 log2 n

(⌈log1/5 n − 1⌉)!

≤ 4 exp
(
(11/5) log logn − (log1/5 n − 1) log(log1/5 n − 1)

)
where in the third inequality we have used the bound m! > (m/e )m .

Now let K = min(k ≥ 0 : Ek occurs). Setting k ∗ = C (log4/5 n)/log logn for C sufficiently
large (C = 15 suffices), it follows from the above bound and the Markov property that that
for all large n,

P {K ≥ k ∗} ≤
(
4 exp

(
(11/5) log logn − (log1/5 n − 1) log(log1/5 n − 1)

))k∗
< n−4 .

Since the degree of a vertex in T is at most its number of children plus one, on the event
that |T( j ) | ≤ log2 n for all j ≤ ⌊log n⌋, if K < k ∗ the maximum degree in T(2K ) ∪T(2K +1)
is less than log1/5 n, so also K ∗ < k ∗. It thus follows by the above tail bound on K together
with (22) that

P {K ∗ ≥ k ∗} ≤ 2 exp(−(log2 n)/5) + n−4,

which establishes the first bound.
Next, for i ≥ 1 write X +i = (Xi + 1)1[Xi ≥log1/5 n−1] . On the events that |T( j ) | < log2 n for

all j ≤ ⌊log n⌋ and that K ∗ ≤ 15 log4/5 n/log logn, which have combined probability at least
1 − 2n−4 for n large, we have∑︁

v ∈Z
deg(v ) ≤

∑︁
i<⌊log2 n ⌋ ·30 log4/5 n/log logn

(X +i + 1) ≤
∑︁

i≤log14/5 n

(X +i + 1).

To control the latter sum, write S + :=
∑
i≤log14/5 n X

+
i . For t > 0, a Chernoff bound gives

P
{
S + ≥ M

}
≤ e −tME

[
e tS

+
]

= e −tM (Ee tX +1 )log14/5 n .
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For any j ≥ 2 it holds that E
[
exp(t (X1 + 1)1[X1≥ j ])

]
≤ 1 + 2e t j / j !, so taking t = 2 and

j = ⌈log1/5 n − 1⌉ the above bound gives

P
{
S + ≥ M

}
≤ e −2M

(
1 + 2e 2⌈log1/5 n−1⌉

(⌈log1/5 n − 1⌉)!

) log14/5 n

Using that m! ≥ (m/e )m and that 1 + x ≤ e x for x > 0, it follows that(
1 + 2e ⌈log1/5 n−1⌉

(⌈log1/5 n − 1⌉)!

) log14/5 n

< 2

for n large, so for n large we have

P
{
S + ≥ M

}
< 2e −2M .

Taking M = 2 logn, the bound on P
{∑

v ∈Z deg(v ) ≥ 3 logn
}

follows.
For the third bound, we claim that for n large, for any K ∈ ℕ and C ≥ 7 log log n with

KC logC ≥ 8 logn,

P

{
∃S ⊂ [⌊log3 n⌋] : |S | ≤ K ,

∑︁
i ∈S

Xi ≥ CK
}
≤ n−4 . (24)

Assuming this, we prove the third bound as follows. Let S be the set of times at which
neighbours of vertices in Z (including parents of vertices of Z ) are explored in the breadth-
first search process. On the event G1 that |T( j ) | < log2 n for all j ≤ ⌊log n⌋ and that K ∗ <
15 log2/3 n/log logn, we have S ⊂ [⌊log3 n⌋]. On the event G2 that

∑
v ∈Z deg(v ) < 3 logn,

this set S also has size less than 3 logn. It thus follows from the preceding bounds of the
lemma and from (24) applied with K = ⌊3 logn⌋ and C = 7 log log n that

P

{
G1,G2,

∑︁
i ∈S

Xi ≥ 3 logn · 7 log log n

}
≤ n−4 .

LetG3 be the event that
∑
i ∈S Xi < 3 logn ·7 log log n. OnG1∩G2∩G3, the second neighbour-

hood of Z has size at most 3 logn · (7 log log n+1). Moreover, writing S2 for the set of times at
which vertices in the second neighbourhood of Z are explored, onG1 we have S2 ⊂ [⌊log3 n⌋].
It follows from (24) applied with K = ⌊3 logn (7 log log n + 1)⌋ and C = 7 log log n that

P

{
G1,G2,G3,

∑︁
i ∈S2

Xi ≥ 3 logn · (7 log log n + 1)7 log log n

}
≤ n−4.

For n large, if
∑
i ∈S2

Xi < 3 logn · (7 log log n + 1)7 log log n and G2 and G3 both occur then∑︁
v ∈Z
|{w ∈ [n] : dist(v ,w) ≤ 3}| < 150(log n) (log logn)2,

so the above bounds yield that

P

{∑︁
v ∈Z
|{w ∈ [n] : dist(v ,w) ≤ 3}| < 150(log n) (log logn)2

}
< 2 exp(−(log2 n)/5) + 6n−4

< 7n−4,

the last bound holding for n large, as required.
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It remains to prove (24); for this write L = ⌊log3 n⌋. It suffices to consider sets S ⊂ [L] of
size exactly K , since the Xi are non-negative. By a union bound, it then follows that

P

{
∃S ⊂ [⌊log3 n⌋] : |S | ≤ K ,

∑︁
i ∈S

Xi ≥ CK
}

≤
(
L
K

)
P {Poisson(K ) ≥ CK }

≤ exp
(
K logL − K (C logC − (C − 1))

)
,

where in the second inequality we have used that
(L
K

)
≤ LK and the Poisson upper tail

bound (23).
Since C > 7 log log n and logL ≤ 3 log log n, for n large we have C logC − (C −1) − logL >

C logC /2 and so the final bound is at most e −(KC logC )/2 < n−4. □

The next corollary transfers the above probability bounds from T to Tn . For a vertex u of
Tn and a positive integer j , define Γj (u ,Tn) (or Γj (u) for simplicity) as the set of vertices
v with distTn (u ,v ) = j where we recall from the introduction that distTn (u ,v ) is the distance
of u and v in the tree. Similarly, Γ≤ j (u ,Tn) (or simply Γ≤ j (u)) denotes the set of all vertices
v with distTn (u ,v ) ≤ j .

Corollary 3.7. For n ≥ 1 let Tn be a uniformly random tree with vertices labeled by [n]. Then
there exists a constant C > 0 such that the following bounds hold for all n.

P
{
∃u ∈ [n],∃ j ≤ log n : |Γj (u) | ≥ ⌊log2 n⌋

}
≤ Cn5/2 exp(−(log2 n)/5) . (25)

Next, for u ∈ [n], writing

K ∗(u) := min(k ∈ ℕ : deg(v ) < log1/5 n for all v ∈ Nu (2k ) ∪ Nu (2k + 1)),

then

P
{
max(K ∗(u),u ∈ [n]) ≥ 15(log4/5 n)/log logn

}
≤ Cn−3/2 .

Finally, for u ∈ [n] writing

Z (u) = {v ∈ Tn : dist(u ,v ) < 2K ∗(u),deg(v ) ≥ log1/5 n},

then

P

max
u∈[n ]

∑︁
v ∈Z (u )

deg(v ) ≥ 3 logn

 ≤ Cn−3/2 ,

and

P

max
u∈[n ]

∑︁
v ∈Z (u )

|Γ≤3(v ) | ≥ 150(log n) (log logn)2
 < Cn−3/2

Proof. We continue to take T as above. Recalling that 𝜎 = inf(k : Sk = −1), then

P {|T| = n} = P {𝜎 = n} = 1
n
P {X1 + . . . + Xn = n − 1} = 1 + o (1)

√
2𝜋n3/2

, (26)

the first identity holding by another application of Kemperman’s formula and the second
by the local central limit theorem (or by Stirling’s formula). Combining this fact with
Lemma 3.1, it follows that for any graph property P,

P
{
T•n has property P

}
= P

{
T has property P

�� |T| = n}
≤ (1 + o (1))

√
2𝜋n3/2 · P

{
T has property P

}
.
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Recall that T•n is a uniformly random rooted tree with vertices labeled by [n]. We may
generate T•n from Tn by choosing a root 𝜌 uniformly at random, so it follows by a union
bound and the above asymptotic inequality that

P
{
∃u ∈ [n],∃ j ≤ log n : |Γj (u) | ≥ ⌊log2 n⌋

}
≤ nP

{
∃ j ≤ log n : |T•n ( j ) | ≥ ⌊log2 n⌋

}
≤ (1 + o (1))

√
2𝜋n5/2P

{
∃ j ≤ log n : |T( j ) | ≥ ⌊log2 n⌋

}
.

The first bound of the corollary now follows from the second bound of Lemma 3.5. The
other bounds of the corollary follow from Lemma 3.6 in an essentially identical fashion. □

We also record the following tail bound on the largest degree in Tn , which will be used,
when proving the main theorem, to convert probability tail bounds to expectation bounds.

Fact 3.8. For all n sufficiently large, P
{
ΔTn ≥ 2 logn

}
≤ n−2.

Proof. An argument just as in the above corollary shows that

P
{
ΔTn ≥ 2 logn

}
≤ (1 + o (1))

√
2𝜋n5/2P

{
|T(1) | ≥ 2 logn

}
= (1 + o (1))

√
2𝜋n5/2P

{
Poisson(1) ≥ 2 logn

}
≤ n−2 ,

the last bound holding for n large. □

We also need to control the number of vertices of high degree contained in a small neigh-
bourhood. For this, we use Proposition 3.4.

Lemma 3.9. The probability that Tn contains two adjacent nodes of degree ≥ 0.9 logn/log logn
is at most n−0.8+o (1) .

Proof. Set h := 0.9 logn/log logn. In the proof we will use the following estimates,

∀i ≥ 0 : P {Xi ≥ h − 1} ≤ n−0.9+o (1) and P
{
Xi ≥ log n

}
= n−𝜔(1) , (27)

which both follow from the Poisson tail bound (23).
Now let E denote the event where there are two adjacent nodes in Tn with degrees ≥ h.

Recall that the random rooted n-vertex tree T•n can be obtained from Tn by picking a root
uniformly at random, so

P {E}
n
≤ P

{
degT•n (root) ≥ h and max

v ∈T•n (1)
degT•n (v ) ≥ h

}
= P {F | |T| = n} ,

where

F :=
{
degT(root) ≥ h and max

v ∈T(1)
degT(v ) ≥ h

}
= {X0 ≥ h and ∃ 1 ≤ i ≤ X0 : Xi ≥ h − 1} .

Therefore, our goal is to show that P {F | |T| = n} ≤ n−1.8+o (1) . To this end, consider the
events

G0 := {∃0 ≤ i ≤ log n : Xi ≥ log n}
and

G1 := {X0 ∈ [h, log n] and ∃1 ≤ i ≤ log n : Xi ∈ [h − 1, log n]}.
Then F ⊂ G0 ∪G1. Estimate (27) and a union bound imply that G0 has superpolynomially
small probability in n if we do not condition on P {|T| = n}. Since P {|T| = n} ≍ n−3/2 by
(26), this also holds conditionally. It thus suffices to show that P {G1 | |T| = n} ≤ n−1.8+o (1) ,
which we do via Proposition 3.4.

Define a stopping time 𝜏 for the (Xi )i≥0 (or equivalently, for (Si )i≥0)) as follows. If X0 ∉

[h, log n], or if Xi ∉ [h, log n] for all 1 ≤ i ≤ n, we set 𝜏 = n. Otherwise, we let 𝜏 be the
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smallest index 1 ≤ i ≤ n with Xi ∈ [h, log n]. Notice that G1 = {𝜏 ≤ log n}. Applying
Proposition 3.4 with d = (log n + 1)2 and m = log n, we obtain

P {G1 | |T| = n} = (1 + o (1))E
[
S𝜏1[S𝜏≤d ,𝜏≤min(log n,|T | ) ]

]
+ P

{
𝜏 ≤ log n,S𝜏 > d | |T| = n

}
= O (log2 n)P

{
𝜏 ≤ log n

}
+ P

{
𝜏 ≤ log n,S𝜏 > (log n + 1)2 | |T| = n

}
.

The first term on the right is

O (log2 n) P
{
𝜏 ≤ log n

}
= O (log2 n) P

{
X0 ≥ h and ∃1 ≤ i ≤ log n, Xi ≥ h − 1

}
≤ n−1.8+o (1)

by (27) and a union bound in i .
For the second term, we note that if 𝜏 ≤ log n but S𝜏 > (log n + 1)2, there must be

0 ≤ i ≤ log n such that Xi ≥ log n. By (27) and a union bound, the probability of this event
without the conditioning on |T| = n is n−𝜔(1) , and the conditioning does not change this
because P {|T| = n} ≍ n−3/2 by (26). □

We close the section by proving tail bounds on the number of high-degree vertices in T•n .
Our tool for doing so is the following distributional identity for the numbers of children of
vertices in random rooted labeled trees, which is an immediate consequence of Lemmas 3.1
and 3.2.

Corollary 3.10. Let T•n be a uniformly random rooted tree with vertices labeled by [n], and for
1 ≤ i ≤ n let ci be the number of children of i in T•n . Then (c1, . . . ,cn) has the same distribution as
(P1, . . . ,Pn), where P1, . . . ,Pn are independent Poisson(1) random variables conditioned to satisfy∑n
i=1 Pi = n − 1.

Corollary 3.11. Let T•n be a uniformly random rooted tree with vertices labeled by [n]. Fix any
k ∈ ℕ, and let D≥k (n) be the number of vertices of T•n with at least k children. Then for t > 0

P {D≥k (n) ≤ ED≥k (n) − t } ≤ exp(−t2/(2ED≥k (n))),
and uniformly over 1 ≤ k ≤ ⌈log n⌉,

ED≥k (n) ≥ (1 − o (1))
n
k !

.

Proof. The vector (c1, . . . ,cn) of numbers of children of the vertices of T•n is multinomially
distributed by Corollary 3.10, so its entries are negatively associated (see [13]). The lower
tail bound then follows from [13, Proposition 5] and standard binomial tail estimates. For
the expectation bound, let (Xi ,i ≥ 1) be independent Poisson(1) random variables; by
Corollary 3.10,

P {c1 = k } = P {X1 = k |X1 + . . . + Xn = n − 1}

= P {X1 = k } P {X2 + . . . + Xn = n − 1 − k }
P {X1 + . . . + Xn = n − 1}

=
1
k !

P {X2 + . . . + Xn = n − 1 − k }
P {X1 + . . . + Xn = n − 1} .

Since
ED≥k (n) = nP {c1 ≥ k } > nP {c1 = k } ,

the result follows by the local central limit theorem. □

Corollary 3.12. Let T•n be a uniformly random rooted tree with vertices labeled by [n], and let
a∗ = a∗(n) = max(m ∈ ℕ : m! ≤ n). Then E

√︁
ΔT•n ≤ a∗(n) + o (1) as n →∞.

Proof. Note that a∗ = (1 + o (1)) (log n)/(log logn). Recycling the computation from the pre-
vious lemma, uniformly over a∗ ≤ k ≤ ⌈log n⌉ we have

P {c1 = k } = (1 + o (1)) 1
k !
≤ (1 + o (1)) 1

n

(
log logn

log n

)k−a∗−1

,
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so writing Dk (n) for the number of vertices of T•n with exactly k children, we have

EDk (n) ≤ (1 + o (1))
(
log logn

log n

)k−a∗−1

,

uniformly over k in this range.
Since ΔT•n is at most one greater than max(k : Dk (n) > 0), it follows that

E
√︃
ΔT•n ≤

√
a∗ + 3 +

√︁
1 + log nP

{
a∗ + 3 ≤ ΔT•n < log n

}
+
√
nP

{
ΔT•n ≥ log n

}
.

To bound the second term, we use that

P
{
a∗ + 3 ≤ ΔT•n < log n

}
≤
⌈log n ⌉−1∑︁
k=a∗+2

P {Dk (n) > 0}

≤
⌈log n ⌉−1∑︁
k=a∗+2

EDk (n) ≤ (1 + o (1))
(
log logn

log n

)
,

so √︁
1 + log nP

{
a∗ + 3 ≤ ΔT•n < log n

}
= o (1) .

To bound the third term, we use Corollary 3.10 to deduce that

P
{
c1 ≥ ⌈log n⌉

}
≤

P
{
X1 ≥ ⌈log n⌉

}
P {X1 + . . . + Xn−1 = n − 1} ,

where, like above, X1, . . . ,Xn are independent and Poisson(1)-distributed. The numerator on
the right-hand side is 1+o (1)

( ⌈log n ⌉ )! , which decays faster than polynomially, and the denominator

is Θ(n−1/2); so √
nP

{
ΔT•n ≥ log n

}
≤ n3/2P

{
c1 ≥ ⌈log n

}
= o (1) .

Combining the above bounds, we conclude that

E
√︃
ΔT•n ≤

√
a∗ + 3 + o (1) =

√
a∗ + o (1) ,

the last identity holding since a∗ = a∗(n) → ∞ as n → ∞. The result follows since ΔTn and
ΔT•n have the same distribution. □

4. Tree surgery

At this point, we already have some information about the structure of the uniformly
random tree Tn . In particular, we can show that Tn usually satisfies the properties N1 −N3
described in the proof overview, in Section 1.2. Recall from that section that for an n-vertex
tree T = (V,E) and v ∈ V , the cluster CT (v ) is the set of all vertices w ∈ V such that the
unique path from v to w does not contain two consecutive vertices with degree < (log n)1/5.
We note right away the following fact.

Fact 4.1 (Proof omitted). “w ∈ CT (v )” is an equivalence relation over V , so that V is a disjoint
union of clusters. Moreover, each cluster is a connected subset of T .

Definition 4.2 (Typical trees). A n-vertex tree T = (V,E) is said to be typical if

N1 The maximum degree of T is at least 0.99 (log n/log logn).
N2 For all x ∈ V ,

∑
y∈CT (x ) degT (y)1[degT (y )≥ (log n )1/5 ] ≤ 3 logn.

N3 There are no adjacent nodes that both have degree ≥ 0.9 logn/log logn.

We show in Section 4.1 that this terminology makes sense — a uniformly random tree is
typical with high probability — and is good enough to control second neighborhood sizes.
However, typicality by itself does not suffice for our path-counting arguments to work. A
stronger notion is needed for this purpose.
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Definition 4.3 (Nice trees). A n-vertex tree T̃ = (Ṽ , Ẽ) is said to be nice if it is typical and
satisfies the following additional property:

N4 For all x ∈ Ṽ , CT̃ (x) contains less than 9 log log n vertices of degree ≥ (log n)1/5.

Thus a nice tree is a typical tree where there are very few nodes of (relatively) high degree
in any cluster. The main result of this section is that any upper bound on the top eigenvalue of
all nice trees extends to all typical trees. The proof of the next lemma is given in Section 4.3.

Lemma 4.4. For n > 10, for any typical n-vertex tree T = (V,E), there exists a nice n-vertex tree
T̃ with 𝜆1(T ) ≤ 𝜆1(T̃ ) and with ΔT̃ = ΔT .

To prove Lemma 4.4 we use the rewiring result, Lemma 1.5, from Section 1.2, to perform
a sequence of rewirings which can only increase the top eigenvalue. Moreover, Section 4.2
establishes that “good rewirings” preserve the typicality and and maximum degree of the
tree, while decreasing the number of high-degree vertices in a cluster. Lemma 4.4 will follow
from iterating “good rewirings” until they are no longer possible, which will be shown to
imply that the resulting tree is nice.

4.1. Basic facts on typical trees. We prove here two facts pertaining to typical trees. The
first one is that uniformly random trees are usually typical.

Lemma 4.5. The uniformly random tree Tn is typical (i.e., satisfies Definition 4.2) with probability
1 − n−0.8+o (1) .

Proof. It suffices to show that Tn satisfies each property N1-N3 with probability ≥ 1 −
n−0.8+o (1) .

For property N1, it follows from results of Moon [19, Theorem 2 and Lemma 4] that
ΔTn ≥ 0.99 (log n/log logn) with probability 1 − e −(1+o (1) )n0.01

.
For property N3, the desired probability bound is given by Lemma 3.9.
Property N2 can be dealt with via Corollary 3.7. For each u ∈ [n], let

K ∗(u) := min(k ∈ ℕ : deg(v ) < log1/5 n for all v ∈ Nu (2k ) ∪ Nu (2k + 1))
and

Z (u) = {v ∈ Tn : dist(u ,v ) < 2K ∗(u),deg(v ) ≥ log1/5 n}
be as in the corollary. By definition of K ∗(u), all vertices in CTn (u) lie within distance less
than 2K ∗(u) from u . As a consequence, all nodes in v ∈ CTn (u) with degree detTn (v ) ≥
(log n)1/5 lie in the set Z (u). It follows that

max
u∈[n ]

∑︁
v ∈CTn (u )

degTn (v )1[degTn (v )≥ (log n )1/5 ] ≤ max
u∈[n ]

∑︁
v ∈Z (u )

degTn (u).

Corollary 3.7 implies that the right-hand side is bounded by 3 logn, with probability at least
1 −Cn−3/2. Therefore, N2 holds with at least this probability. □

Our second result on typical trees is that their second neighborhoods can never be two
large.

Proposition 4.6. In a typical tree with maximum degree ΔT ≥ 0.99 (log n/log logn), the second
neighborhood of any vertex has size at most

LΔ6/5
T (logΔT )1/5,

where L > 0 is a universal constant.

Proof. Fix a vertex x ∈ V (T ). All neighbors of x with degree at least (log n)1/5 lie in CT (x).
Therefore, property N2 implies that the total contribution of these neighbors to the second
neighborhood of x is at most 3 logn = O (ΔT logΔT ). On the other hand, x has at most
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ΔT neighbors of degree less than (log n)1/5 (by N1), and each of these contribute at most
(log n)1/5 = O ((ΔT logΔT )1/5) to the second neighborhood. Therefore, there are at most

O
(
ΔT logΔT + Δ6/5

T log1/5 ΔT
)
= O

(
Δ

6/5
T log1/5 ΔT

)
second neighbors to x . □

4.2. Safe and good rewirings. The idea of the proof of Lemma 4.4 is to perform a sequence
of rewirings from a typical tree until it becomes nice. However, we have to ensure that the
tree remains typical and preserves its maximum degree along the way. This motivates the
next definition.

We fix a n-vertex tree T = (V,E) for the remainder of the subsection.

Definition 4.7 (Safe/good to rewire). A pair (v ,w) ∈ V 2 is safe to rewire for the treeT if v ≠ w
and the following three conditions are satisfied

S1 min{degT (v ),degT (w)} ≥ (log n)1/5;
S2 degT (v ) + degT (w) ≤ 0.9 (log n/log logn);
S3 v and w belong to the same cluster in T .

If moreover 𝜆1(Tv ,w ) ≥ 𝜆1(T ), (v ,w) is said to be good to rewire for T .

The following is an immediate consequence of Lemma 1.5 and the fact that the definition
of “safe to rewire” is symmetric in v and w .

Fact 4.8. If (v ,w) ∈ V 2 is safe to rewire for T , then either (v ,w) or (w ,v ) is good to rewire.

It turns out that rewiring a pair that it is safe to rewire has a constrained effect on the
cluster structure of T . This is the content of the following Lemma.

Lemma 4.9. LetT be a tree and (v ,w) be safe to rewire. Then any cluster ofTv ,w is fully contained
in a cluster of T .

Proof. By Fact 4.1, we must show that any two vertices a,b ∈ V that belong to the same cluster
in Tv ,w also belong to the same cluster in T . To do this, fix a,b ∈ V in the same cluster in
Tv ,w , and consider the unique path Y = y0y1 . . . ym connecting a = y0 to b = ym in Tv ,w . The
fact that a,b lie in the same cluster of Tv ,w is equivalent to the statement that

max{degTv ,w (yi−1),degTv ,w (yi )} ≥ (log n)1/5 for each i ∈ [m] . (28)

Recall from Section 1.2 that Tv ,w is defined by letting u be the unique neighbor of v in T
along the vw path, and replacing each edge sv with s ∈ NT (v ) − {u} with an edge sw . Fixing
this vertex u, we see that there are two possibilities.

Case 1: Y does not contain w . In this case,Y is also the path in T connecting a,b . There-
fore, a and b lie in the same cluster in T if there are no two consecutive vertices in Y have
degree < (log n)1/5 in T . To see that this is indeed true, notice that all vertices inV − {v ,w}
have the same degree inT as inTv ,w . Moreover, S1 ensures that degT (v ) ≥ (log n)1/5. There-
fore, condition (28) forY as a path Tv ,w also applies toY as a path in T , and we are done.

Case 2: Y contains w . In this case, it suffices to argue that a,b ∈ CT (w). In fact, we only
prove a ∈ CT (w), as b ∈ CT (w) follows from “reversing the path."

Since Y is a path in Tv ,w , there exists exactly one index j ∈ [m] ∪ {0} with y j = w . We
further split into cases.

• Case 2.1: j = 0. Then a = w and we are done.
• Case 2.2: j > 0. Then y0 . . . y j−1 is a path in Tv ,w not containing w , so a = y0 and
y j−1 lie in the same cluster ofT by Case 1. It now suffices to show that y j−1 ∈ CT (w),
which again requires a considering two cases.
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– Case 2.2.1: y j−1 is a neighbor of w in T . Then y j−1 ∈ CT (w) because S1
guarantees degT (w) ≥ (log n)1/5;

– Case 2.2.2: y j−1 is not a neighbor of w in T . It is still true that y j−1w is an
edge in Tv ,w , so it must be that y j−1 ∈ NT (v ) − {u}, with u as above. In this case,
S3 guarantees that v ∈ CT (w), and S1 implies that v has degree ≥ (log n)1/5, so
y j−1 ∈ CT (v ) = CT (w), as desired.

□

We now argue that the performing rewirings on safe-to-rewire vertices preserves the typi-
cality and maximum degrees of a tree.

Lemma 4.10. Assume T is typical and (v ,w) ∈ V 2 is safe to rewire for T . Then Tv ,w and Tw ,v
both have the same vertex set and the same maximum degree as T . Moreover, Tv ,w and Tw ,v are both
typical.

Proof. We only considerTv ,w without loss of generality. Notice that the vertex set is preserved
by construction. As for the maximum degree, we have ΔT ≥ 0.99 (log n/log logn) since T is
typical, and S2 means that neither v or w achieve the maximum degree. For Tv ,w , we have

degTv ,w (v ) = 1, degTv ,w (w) = degT (v ) + degT (w) − 1 < 0.9 (log n/log logn), (29)

and all vertices x ∈ V \ {v ,w} have the same degree as in T . It follows that ΔTv ,w = ΔT is still
achieved by some vertex that is neither v nor w .

We now argue that Tv ,w is typical, as per Definition 4.2. Property N1 is automatic because
T and Tv ,w have the same maximal degree.

To prove property N2 for Tv ,w , first note that Lemma 4.9 implies CTv ,w (x) ⊂ CT (x) for all
x ∈ V . Since T is typical (and in particular satisfies N2), we obtain∑︁

y∈CT (x )
degT (y)1[degT (y )≥ (log n )1/5 ] ≤ 3 logn .

Therefore, it suffices to show that∑︁
y∈CT (x )

degTv ,w (y)1[degTv ,w (y )≥ (log n )1/5 ] ≤
∑︁

y∈CT (x )
degT (y)1[degT (y )≥ (log n )1/5 ] , (30)

where x ∈ V is arbitrary. This property is automatic if v ,w ∉ CT (x), because in this case the
degrees in the left-hand side of (30) are the same as in the right-hand side. If on the other
hand v ∈ CT (x) or w ∈ CT (x), it must be that v ,w ∈ CT (x), because S3 guarantees that v ,w
lie in the same cluster ofT . Property S1 and equation (29) then imply that the left-hand side
of (30) is strictly smaller than the right-hand side: the combined contribution of the terms
y = u and y = v decreases by 1, and all other terms remain unchanged.

Finally, equation (29) implies that no nodes of degree ≥ 0.9 (log n/log logn) are ever
created by the rewiring operation. Since T satisfies N3, it follows that property N3 also
holds for Tv ,w . □

4.3. From typical to nice trees. We now have all the tools we need to prove Lemma 4.4.

Proof of Lemma 4.4. Consider the following procedure applied to T .
(1) Set T̃ ← T ;
(2) While there exists a good-to-rewire pair (v ,w) for T̃ , set T̃ ← Tv ,w T̃ ← T̃v ,w .
(3) Output T̃ .

Note that the vertex set of T̃ is always V ; only the edge set changes. The above procedure
must terminate, since each rewiring operation increases the number of leaves in the tree (cf.
(4) and the fact that v is not itself a leaf by condition S1 in Definition 4.7). By Lemma 4.10,
the final tree T̃ is typical, and has the same vertex set and the same maximum degree as T .
We also know that 𝜆1(T̃ ) ≥ 𝜆1(T ) and that T̃ cannot contain any pair (v ,w) ∈ V 2 that is
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good to rewire. Therefore, by Fact 4.8, it also cannot contain any pair that is safe to rewire
(otherwise the procedure could continue). It follows that T̃ has the following property:

Ñ4 For any two vertices v ,w ∈ V that lie in the same cluster in T̃ ,

min{degT̃ (v ),degT̃ (w)} ≥ (log n)1/5 ⇒ degT̃ (v ) + degT̃ (w) > 0.9 (log n/log logn).
To finish, we show the following claim.

Claim 4.11. If T̃ is typical and satisfies Ñ4, then for all x ∈ V , CT̃ (x) contains < 9 log log n
vertices of degree ≥ (log n)1/5; i.e. T̃ is nice.

To see this, fix any x ∈ V , and consider the sum∑︁
y∈CT̃ (x )

degT̃ (y)1[degT̃ (y )≥ (log n )1/5 ] .

On the one hand, this sum is bounded from above by 3 logn because T̃ is typical (cf. property
N2 in Definition 4.2). On the other hand, Ñ4 implies that, for any two vertices v ,w ∈
CT̃ (x) with min{degT̃ (v ),degT̃ (w)} ≥ (log n)1/5, their joint contribution to the sum is at
least 0.9 (log n/log logn). Therefore

0.9 (log n/log logn)
⌊
#{v ∈ CT̃ (x) : degT̃ (v ) ≥ (log n)1/5}

2

⌋
≤ 3 logn,

from which the claim follows after some simple estimates (this is where the condition that
n > 10 is required). □

5. Putting it all together

In this section we finish the proof of the main result. We will use eigenvalue bound from
Corollary 2.7, and we encourage the reader to refresh themselves on the statement of that
corollary (and that of Proposition 2.6, on which the corollary relies).

The main missing technical ingredient is the construction of a good enough (M ,H )-code
for nice trees. The code we shall use appears in Figure 4. (Like in Section 2.2, in Figure 4 we
use the ∗ symbol as a wildcard, meaning that any of ℓ ,m,h could be there.) The following
claim asserts that it is indeed good enough for our purposes.

Claim 5.1. For the (M ,H )-code C in Figure 4, the parameter 𝜀 in Proposition 2.6 satisfies:

𝜀 ≤ L
(
log2/15 ΔT

Δ
8/15
T

)
.

for any nice tree T on n ≥ 3 vertices (cf. Definition 4.3) with maximum degree ΔT . Here, L > 0 is a
universal constant.

Proof. We assume that the tree T has maximum degree ΔT and is nice, as per Definition 4.3.
To recapitulate, this means that

N1 The maximum degree of T is ΔT ≥ 0.99 (log n/log logn).
N2 For all x ∈ V ,

∑
y∈ degT (y)1[degT (y )≥ (log n )1/5 ] ≤ 3 logn.

N3 There are no adjacent nodes that both have degree ≥ 0.9 logn/log logn.
N4 For all x ∈ V , CT (x) contains < 9 log log n vertices of degree ≥ (log n)1/5.

To apply our combinatorial arguments, we let H denote the set of vertices z ∈ V with
degrees degT (z ) ≥ (log n)1/5.

For the code C shown in Figure 4, our task is to show that

𝜀 (b ) :=
ΔT (c (b ) )

2
(len(c (b ) )+f (c (b ) ) )

ΔT
≤ L

log2/15 ΔT

Δ
8/15
T
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ℓ ∗

m/h ℓ

ℓ

ℓ ℓ

ℓ

∗

∗

ℓ

∗

ℓ

∗

c (1) c (2) c (3) c (4) c (5)

c (6)

ℓ

m/h

m/hm/h

∗

m/h

ℓ

ℓ

c (7)

m/h

m/h

Figure 4. The code we use in our analysis. Each of c (2) , . . . ,c (7) in the above
figure corresponds to multiple code words, as there are two choices at each
location marked m/h and three choices at each location marked ∗. It follows
that the total number of words in the above code is 1+6+3+12+6+18+4 = 50.

for each index b ≤ 7. Here, we recall that ΔT (c (b ) ) is the maximum number of ways one can
insert c (b ) in T (starting from a vertex of the appropriate kind); f (c (b ) ) is the final value of
the codeword; and len(c (b ) ) is the length of the codeword. The parameter 𝜀 in Claim 5.1 is
(up to a universal constant (2a)2 = 1002) the maximum of the 𝜀 (b ) . (Above we are slightly
abusing notation since there are actually 50 codewords, as noted in the caption of Figure 4,
but this should not cause confusion in the sequel; for each b ≤ 7, the bound we prove holds
for any of the codewords corresponding to c (b ) .)

Note that, by condition N1, log n ≤ LΔ logΔ and log logn ≤ L logΔ. We will use these
bounds repeatedly in what follows.
Codeword c (1) . Here f (c (1) ) = 0 and len(c (1) ) = 1. Also, ΔT (c (1) ) ≤ (log n)1/5 ≤
LΔ1/5

T log1/5 ΔT . We conclude that:

𝜀 (1) ≤ L
log2/5 ΔT

Δ
3/5
T

.

Codeword c (2) . In this case f (c (2) ) = len(c (2) ) = 1. To compute ΔT (c (2) ), let x be the
first vertex in the path. Then the second vertex y belongs to CT (x) because y has degree
≥ (log n)1/5. Condition N4 means that, given x , there are at most 9 log log n ≤ L logΔT
choices for y . We conclude that

𝜀 (2) ≤
L logΔT

ΔT
.

Codeword c (3) . Final value and length are given by f (c (3) ) = 2 and len(c (3) ) = 2. Moreover,
given the initial vertex x , there are ((log n)1/5)2 ≤ LΔ2/5

T log2/5 ΔT choices for vertices y ∼ x
and z ∼ y . We conclude that:
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𝜀 (3) ≤ L
log1/5 ΔT

Δ
4/5
T

.

Codeword c (4) . In this case f (c (4) ) = len(c (4) ) = 3. To compute ΔT (c (4) ), let x ,y ,z ,w be the
vertices along the path; our goal is to bound the number of choices for w . To do this, notice
that z ∈ CT (x) because both x and z have degree ≥ (log n)1/5. Therefore, w is a neighbor of
a node z ∈ CT (x) with degree degT (z ) ≥ (log n)1/5. Condition N2 guarantees that there are
at most 3 logn ≤ LΔT logΔT choices for w . We conclude

𝜀 (4) ≤ L
log1/3 ΔT

Δ
2/3
T

.

Codeword c (5) . In this case again f (c (5) ) = len(c (5) ) = 3. We again let x ,y ,z ,w be the
vertices where the codeword is placed, in order they appear. The number of choices for y
given x is at most ΔT , and one can then choose z and w in ((log n)1/5)2 ≤ L(ΔT logΔT )2/5
ways. We conclude that ΔT (c (5) ) ≤ L Δ

7/5
T log2/5 ΔT and

𝜀 (5) ≤ L
log2/15 ΔT

Δ
8/15
T

.

Codeword c (6) . In this case, f (c (6) ) = 2 and len(c (6) ) = 4. To count ΔT (c (6) ), notice that
this codeword corresponds to a walk visiting vertices x ,y ,z , returning to y and then visiting
some vertex w . Given x , one can choose y in at most ΔT ways; having chosen y , one can
choose the pair z ,w of neighbours of y in at most ((log n)1/5)2 ≤ L(ΔT logΔT )2/5 ways since
y must have low degree. Therefore, ΔT (c (6) ) ≤ L Δ

7/5
T log2/5 ΔT and

𝜀 (6) ≤ L
log2/15 ΔT

Δ
8/15
T

.

Codeword c (7) . In this final case we have f (c (7) ) = 2 and len(c (7) ) = 4. This codeword
corresponds to a walk of the form xyzyx where both x and z have degree at least (log n)1/5.
But then x and z belong to same cluster and as in the case of codeword c (2) , we can argue that
by property N4, that there are at most 9 log log n ≤ L logΔT choices for z . Thus ΔT (c (7) ) ≤
L logΔT and so

𝜀 (7) ≤ L
log1/3 ΔT

ΔT
. □

We now turn to the proofs of the main theorems.

Proof of Theorem 1.1. We first use the probability bound of the theorem to prove the expecta-
tion bound, then prove the probability bound.

Since 0 ≤ 𝜆1(Tn) ≤ 2
√︁
ΔTn ≤ 2

√
n − 1, if K ∈ ℕ is large enough that (log2 x)/

√
x is

decreasing for x ≥ K then we have

E|𝜆1(Tn) −
√︁
ΔTn | ≤

√
KP

{
ΔTn ≤ K

}
+ L

(
log2K
√
K

)1/15

P

ΔTn ≥ K , |𝜆1(Tn) −
√︁
ΔTn | ≤ L

(
log2 ΔTn√︁

ΔTn

)1/15
+

√︁
2 lognP

ΔTn < 2 logn, |𝜆1(Tn) −
√︁
ΔTn | > L

(
log2 ΔTn√︁

ΔTn

)1/15
+ 2
√
n − 1P

{
ΔTn ≥ 2 logn

}
.
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The first term of this upper bound tends to 0 since ΔTn → ∞ in probability as n → ∞; this
follows from the fact, noted in the introduction, that ΔTn is approximately distributed as the
maximum of n independent Poisson(1) random variables. The probability in the second
term on the right is at most 1. The third term on the right tends to 0 by the probability
bound of the theorem. The fourth term on the right tends to 0 by Fact 3.8. We deduce that

E|𝜆1(Tn) −
√︁
ΔTn | ≤ L

(
log2K
√
K

)1/15

+ o (1) .

Since we can take K ∈ ℕ arbitrarily large, it follows that E|𝜆1(Tn) −
√︁
ΔTn | → 0.

We now turn to proving the probability bound of the theorem. From Lemma 4.5 we
know that the random labelled tree Tn is typical (Definition 4.2) with probability at least
1 − n−0.8+o (1) . Therefore, it suffices to show the following deterministic statement: for any
typical tree T on n vertices and maximum degree ΔT ,√︁

ΔT ≤ 𝜆1(T ) ≤
√︁
ΔT + L

log2/15 ΔT

Δ
1/30
T

, (31)

with a universal constant L > 0. The lower bound is true for all graphs with maximal degree
ΔT , so it suffices to prove the upper bound. By adjusting the value of L, we may also assume
that n is large. In the remainder of this section, L always denotes a universal constant (not
depending on n) whose value may change line to line.

Applying Lemma 4.4, we obtain a nice tree T̃ on n vertices with the same maximum
degree

ΔT ≥
0.99 logn
log logn

as T and with 𝜆1(T ) ≤ 𝜆1(T̃ ).
Properties N1 and N3, together with the preceding bound on ΔT , imply that T̃ does

not have adjacent nodes of degree ≥ 0.95ΔT . Corollary 2.7 applies to the tree T̃ with the
(M ,H )-code C in Figure 4, which has a = 50 codewords. It follows that

𝜆1(T̃ ) =
√︁
ΔT

(
1 +

Δ
(2)
T

Δ2
T

) √︁
1 + e 20a2𝜀.

Using the value of 𝜀 given by Claim 5.1, we obtain that

𝜆1(T̃ ) ≤
√︁
ΔT

(
1 +

Δ
(2)
T

Δ2
T

) (
1 + L

log2/15 ΔT

Δ
8/15
T

)
.

Proposition 4.6 gives us

Δ
(2)
T ≤ LΔ6/5

T (logΔT )1/5,
and the upper bound in (31) now follows after some simple estimates. □

For the second theorem, we require a final lemma, relating eigenvalues and the degrees of
nodes in trees.

Lemma 5.2. Let T be a tree with n vertices. List the vertices of T in decreasing order of degree as
v1, . . . ,vn , and write di for the degree of vi . Then for any integer k ≤ n/2 we have 𝜆k (T ) ≥

√︁
d2k − 1.

Proof. Fix k ≤ n/2 and choose a set S ⊂ [2k ] of size k such that {vi ,i ∈ S } is an independent
set in T ; such S exists since T is bipartite. Then fix a root for T , and for each i ∈ S write
Ci for the resulting set of children of vi in T . Note that |Ci | = di if vi is the root of T and
otherwise |Ci | = di − 1.
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Then for i ∈ S define a vector x (i ) by

x (i )v =


√︁
|Ci | if v = vi

1 if v ∈ Ci
0 otherwise.

Then ⟨x (i ) ,Ax (i )⟩ ≥
√︁
|Ci | |x (i ) |2 ≥

√︁
di − 1|x (i ) |2. Moreover, ⟨x (i ) ,x ( j )⟩ = 0 for i ≠ j with

i , j ∈ S , since {vi ,i ∈ S } is an independent set. It follows by Rayleigh’s principle that
𝜆k (T ) ≥ min(

√︁
di − 1,i ∈ S ) ≥

√︁
d2k − 1. □

Proof of Theorem 1.2. Recall from Corollary 3.12 that we define a∗(n) = max(m ∈ ℕ : m! ≤ n).
By [10, Theorem 1], the median an of ΔTn satisfies that

|an − a∗ | = O (1) , (32)

so in particular,

an = (1 + o (1)) (log n)/log logn .

It then follows from Corollary 3.12 that

EΔTn ≤
√︁
a∗(n) + o (1) = √an + o (1) ,

so, by Theorem 1.1 and the triangle inequality, E𝜆1(Tn) ≤
√
an + o (1). Since 𝜆1(Tn) ≥

𝜆k (n ) (Tn), to prove the theorem it remains to show that E𝜆k (n ) (Tn) ≥
√
an − o (1), where

k (n) = ⌈e (log n ) 𝛽 ⌉ for some 𝛽 ∈ (0,1/2) fixed.
Let 𝛼 ∈ (𝛽,1/2) and take a = ⌊an − log𝛼 n⌋; then it follows from Corollary 3.11 that

ED≥a (n) ≥ (1 − o (1))
n
a!

> 4e (log n ) 𝛽 ,

the second bound holding for n sufficiently large. Using the lower tail bound from Corol-
lary 3.11 it then follows that

P
{
D≥a (n) ≤ 2e (log n ) 𝛽

}
≤ exp(−2e (log n ) 𝛽 ) .

Since the degree of a node in Tn is at least its number of chidren in T•n , it then follows from
Lemma 5.2 that

P
{
𝜆 ⌈e (log n) 𝛽 ⌉ (Tn) <

√
a − 1

}
≤ exp(−2e (log n ) 𝛽 ) .

Since
√
a − 1 ≥ √an − o (1) and k (n) = ⌈e (log n ) 𝛽 ⌉, it follows that

E𝜆k (n ) (Tn) ≥
√
an − o (1) ,

as required. □
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