Monetary Policy, Inflation and Rational Asset Price Bubbles by Daisuke Ikeda

Alberto Martin

CREI, UPF, Barcelona GSE

August 20, 2017

1 / 14

Overview

- Growing literature on macroeconomics and bubbles
 - ▶ What are bubbles? What are their effects?
 - Can/should we use policy to deal with them?
 - ★ Macroprudential? Fiscal? Monetary?
- This paper: New Keynesian model with rational bubbles
 - Price and wage rigidities
 - Financial constraints
- Key ingredient: bubbles relax financial constraints
 - Financial-cost channel
- Key question: monetary policy
 - Ramsey-optimal policy vs. standard (Taylor) rule

Some background

- Theory of rational bubbles (Samuelson 1958, Tirole 1985)
 - Can asset prices exceed NPV of future dividends?
 - YES! As long as it is expected to do so in the future as well
- Elegant theory, but problematic: bubbles
 - Require dynamic inefficiency (r < g)
 - ★ Rationality requires bubble growth > r
 - \star Feasibility requires bubble growth < g
 - Are contractionary
- Recently, wave of models with financial frictions:
 - ► Existence of bubbles ≠ dynamic inefficiency
 - Multiple interest rates coexist in equilibrium
 - ▶ Bubbles can be expansionary: provide
 - ★ Collateral (Martin and Ventura 2012)
 - ★ Liquidity (Caballero and Krisnamurthy 2006, Farhi and Tirole 2012)
- Is there an optimal bubble? Can policy help attain it?

3 / 14

This paper: model

Firms combine labor and capital to produce intermediate good

$$Y_t = K_t^{\alpha} \cdot L_t^{1-\alpha}$$

- Financial constraint limits hiring/capital purchases
 - Firms can only pledge a fraction of their value
 - ▶ But what is their value?

$$V_t = Q_t \cdot K_t + B_t$$

- ★ $B_t > 0$ raises capital purchases and hiring/output
- ★ How does it affect output and inflation?
- Setup sounds simple enough, but....

Labor agency (aggregation)

Wholesale firms

$$Y_t = K_t^{\alpha} \cdot L_t^{1-\alpha}$$

Investment good firms

Borrowing constraint

$$P_t I_t + \underline{W_t L_t} \leq (1 - \delta_e) E_t \beta \frac{\wedge_{t+1}}{\wedge_t} \int V_{t+1,\tau+1}(\kappa K_t, \epsilon) d\Phi(\epsilon)$$

$${}^{\dagger}L_{t} = \frac{(1-\alpha)\cdot K_{t}}{\frac{W_{t}}{P_{t}}\cdot (1+\zeta_{t})}$$

This paper: policy results (calibration)

- Relative to standard Taylor rule,
 - ▶ Ramsey policy calls for curbing response of *I*, *Y*, *C* to bubble
 - ▶ True with or without financial-cost channel
- Only real implication of financial cost channel:
 - Introduces trade-off between stabilizing Y or π

Comment 1: existence of bubbles

- Model requires deeper explanation
- How can bubbles fulfill transversality?
 - Model answer: they do not need to grow at the interest rate
 - * Why? Additional benefit of relaxing borrowing constraint

$$B_{t,\tau} = (1 - \delta_e) E_t \beta \frac{\Lambda_{t+1}}{\Lambda_t} B_{t+1,\tau+1} (1 + G_{t+1})$$

- Why not save in bonds instead?
 - Sell bubble for B_t and invest it in bonds
 - ▶ Bonds yields market interest rate (> return to bubbles) and...
 - * ...proceeds can also be used to invest in the future
 - This strategy appears to dominate bubbles
 - Not sure how it is ruled out

Comment 2: financial constraint

• All results follow from (intra-period) financial constraint

$$P_t I_t + W_t L_t \leq (1 - \delta_e) \cdot E_t \left[\beta \cdot \frac{\wedge_{t+1}}{\wedge_t} \cdot \int V_{t+1, \tau+1}(\kappa K_t, \epsilon) d\Phi(\epsilon) \right]$$

- Idea: firm borrows to pay wages and purchase capital at beginning of period
 - lacksquare In the event of end-of-period default, creditors seize fraction κ of capital stock
- Questions:
 - Why K_t and not K_{t+1} ?
 - What happens to bubble if firm defaults / is seized by creditors?
 - ★ Can creditors appropriate it entirely?
- None of this is discussed

Comment 3: what is specific about bubbles?

Financial-cost channel driven exclusively by borrowing constraint

$$P_t I_t + W_t L_t \leq (1 - \delta_e) \cdot E_t \left[\beta \cdot \frac{\wedge_{t+1}}{\wedge_t} \cdot \int V_{t+1,\tau+1}(\kappa K_t, \epsilon) d\Phi(\epsilon) \right]$$

- Bubble relaxes constraint (bubble is good!)
- ▶ But bubble volatile
- In principle, similar logic applies to productivity shocks
- Common feature in many bubble models
- But here especially poignant:
 - Emphasis is on monetary policy and financial cost channel
 - Comparison with productivity shocks would be insightful

Comment 4: bottom line on monetary policy

- Without financial cost channel:
 - Bubble raises both output and inflation
 - ▶ Relative to Taylor rule, optimal policy curbs boom: low interest rate
- With financial cost channel:
 - Bubble raises output but reduces inflation
 - ▶ Relative to Taylor rule, optimal policy curbs boom: low interest rate
- I would adopt alternative strategy:
 - What are the inefficiencies/costs associated to bubbles?
 - Absent alternatives, what is the optimal monetary policy?
 - ► How does it differ from inflation target / standard Tayor rule?

Conclusion

- Interesting paper on important and growing literature
- My suggestions:
 - Deeper explanation/exploration of model
 - ► Clarify effects and inefficiencies of bubbles (e.g., vs. productivity shocks)
 - ► Derive optimal policy and compare with standard Taylor rule