Correspondence Analysis &
Related Methods

Michael Greenacre

SESSION 13: Diagnostics, contributions in weighted PCA
and Correspondence Analysis

Inertia contributions inv weighted PCA

= PCA is a method of data visualization which represents the true
positions of points in a map which comes closest to all the points,
closest in sense of weighted least-squares.
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= The inertia (weighted variance) explained in the map applies to all
the points: if we say 83% of the inertia is explained in the map, 71%
on the first dimension and 12% on the second, this is a figure
calculated for all row (or column) points together.

Inertia contributions inv weighted PCA

= This type of “inertia-explained-by-axes” calculation can be made for
individual points.

» These more detailed results are aids to interpretation in the form of
numerical diagnostics, called contributions.

= Especially when there is not a high percentage of inertia explained by
the map, these contributions will help us to identify points which are
represented inaccurately.

= The inertias and their percentages tell us how much of the variance in
the table is explained by the principal axes. The contributions do the
same, but for each point individually, and help us to see:

(a) which points are being explained better than others;
(b) which points are contributing to the solution more than others.
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Decompositiow of inertiov
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| m f,2/ A, : amount of inertiaof axis k explained by point i (contribution, CTR) |

| m f,,2/ md2 : amount of inertia of point i explained by axis k (squared correlation, COR) |

| mf,2/md? = £,2/d?, i.e thesquareof f,/d, = cos(d), where 6, isthe anglepoint-axis |

Inertiov contributions for CA of “author”

col name mass qlt inr k=1 cor ctr k=2 cor ctr
1 | a | 80 162 10 | 2 1 0] -19 161 8
2 | b | 16 365 18 | 86 338 15| -24 27 2
3 | c | 23 831 60| 185 691 102 | -83 140 43
4 | d | 46 920 89 | -169 788 170 | -69 132 59
5 | e | 127 357 34 | 8 12 1| -42 345 60 |
6 | fo 19 529 28| 112 456 32| -45 72 10
7 g | 20 344 26| -89 325 21 | 21 19 2
8 | h | 65 735 83| -131 721 146 | -18 14 6
9 | i 70 465 28 | 23 74 5| 54 392 55
10 | il 1 28 7 40 9 0] 56 18 1
11 | k | 9 724 43| -241 661 70 | 75 64 14 |
12 | I 43 555 33| 89 548 44| -10 7 1
13 | m | 26 436 35 | 62 153 13 | 85 284 50
14 | n | 69 166 21| -18 54 3| -25 112 12
15 | o | 77 205 32 | -9 12 1| 39 193 31
16 | p | 15 515 51 | 141 317 39 | -112 198 51 |
17 | q | 1 416 12| 357 376 11| -116 40 2
18 | ro| 52 374 35 | 52 215 18 | -45 159 28
19 | s | 61 413 49 | 75 374 45 | 25 40 10
20 | t] 93 90 13| -9 30 1| 12 59 4
21 | u | 30 283 23| 14 14 1| 62 268 31
22 | v | 10 550 37 | 200 548 50 | 11 2 0
23 | w | 26 888 75| -219883 161 | -17 6 2
24 | X | 1 418 22| 292 237 13 | 256 182 21
25 | y | 22 899 106 | 0 0 O] 286 899 485
26 | z | 1 576 30| 596 511 37 | -213 65 10

Swmmanry:
Contributions to- inertiov

= Each principal inertia can decomposed into parts due to each
point, either row points or column points. These contributions
explain how each principal axis has been constructed (hence
the influence of each point in defining the dimension).

= The inertia of a point is similarly decomposed over all the axes,
thanks to using Euclidean-type distance and Pythagoras’
theorem. Each component on an axis can be expressed
relative to the point inertia and this is the same as the squared
cosine (i.e., squared correlation) between the point and the
axis. These values can be added over axes and tell you how
well the point is represented in the solution space.




R implementation of CA (repeat)

# read in data into data-frame data_set
# the next 14 conmands are all you need to conpute CA results

data. P <- data_set/sun(data_set)
data.r <- apply(data.P, 1, sum
data.c <- apply(data.P, 2, sum
dat a. Dr <- diag(data.r)

dat a. Dc <- diag(data.c)

data.Drmh <- diag(l/sqrt(data.r))
data. Dch <- diag(1l/sqrt(data.c))

data. P <- as.matrix(data.P)
data. S <- data.Drmh % % (dat a. P-dat a. r %0%lat a. c) % % dat a. Dcrth
data.svd <- svd(data.S)

data.rsc <- data.Drmh% %lat a. svd$u

data.csc <- data.Dcmh% %dat a. svd$v

data.rpc <- data.rsc% %i ag(dat a. svd$d)

data.cpc <- data.csc% %di ag(dat a. svd$d)

# the symmetric map

pl ot (dat a. rpc[, 1], data. rpc[, 2], type="n", pty="s")

text (data.rpc[, 1], data.rpc[, 2], | abel =rownanes(dat a))

# now do it in one shot using ca package (first install from CRAN)
l'i brary(ca)

pl ot (ca(data_set))

Computation of contributions

# conpute matrix of contributions for rows and inertias

data.rcon <- data.rpc”2 * data.r
appl y(data.rcon, 1, sum

# conpute contributions and squared correl ati ons

data.rctr <- t( t(data.rcon) / apply(data.rcon, 2, sum )
data.rcor <- data.rcon / apply(data.rcon, 1, sum

# conpute qualities in 2-d solution

appl y(data.rcor[,1:2], 1, sum

# conpute matrix of contributions for colums and inertias

dat a. ccon <- data.cpc”2 * data.c
appl y(data.ccon, 1, sum

# conpute contributions and squared correl ations

data.cctr <- t( t(data.ccon) / apply(data.ccon, 2, sum )
data.ccor <- data.ccon / apply(data.ccon, 1, sum

# conpute qualities in 2-d solution

appl y(data.ccor[,1:2], 1, sum
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SESSION 14: 1. CORRESPONDENCE ANALYSIS &
CLUSTER ANALYSIS

2. CORRESPONDENCE ANALYSIS & BIPLOT

= Correspondence analysis (CA) is a method of data visualization that reveals
continuous structures (the dimensions)
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= Butin our search for structure in the table we can also consider clustering the
rows and columns, to reveal discrete structures (the clusters, or classes):
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Mno| 65| 19| 51

uni| 28| 17| 103| 37

A simple example

= 988 students, males and females classified each according to their
parents having been or not to university, cross-tabulated with their
choice of studies at high school

NS MA LS PS

no | 94| 43| 197| 61 Inertia = 0.1848 Chi-square = 182.6

Which two rows can we merge so that inertia
132 (or chi-square) is reduced the least?

Muni| 17| 9| 30| 85 F_no and F_uni: reduces inertia by 0.0070

F_no: female, parents no university F_uni: female, parents university
M_no: male, parents no university M_uni: male, parents university

NS: non-science MA: mathematics LS: life sciences PS: physical sciences

A simple example

= 988 students, males and females classified each according to their
parents having been or not to university, cross-tabulated with their
choice of studies at high school

NS MA LS PS

{F_no,| 122| 60| 300| 98
F_uni}

M_no 65| 19 51| 132

Inertia=0.1778

Which two rows can we merge so that inertia
is reduced the least?

Muni| 17| 9| 30| 85

M_no and M_uni: reduces inertia by 0.0104

= F_no: female, parents no university F_uni: female, parents university
M_no: male, parents no university M_uni: male, parents university

= NS: non-science MA: mathematics LS: life sciences PS: physical sciences




A simple example

= 988 students, males and females classified each according to their
parents having been or not to university, cross-tabulated with their
choice of studies at high school

NS MA LS PS

E:F__u’:ﬁ} 122 | 60| 300| 98 Inertia = 0.1674

{h',‘l"—u”n‘i’}' 83| 28| 81|217(  Which two rows can we merge so that inertia
- (or chi-square) is reduced the least?

Only two rows left to merge and this reduces
inertia by 0.1674

= F_no: female, parents no university F_uni: female, parents university
M_no: male, parents no university M_uni: male, parents university

= NS: non-science MA: mathematics LS: life sciences PS: physical sciences

A simple example

= 988 students, males and females classified each according to their
parents having been or not to university, cross-tabulated with their
choice of studies

NS MA LS PS

F_no 1
Fno| 94| 43| 197| 61

Funi| 28| 17| 103 | 37 F_uniJ

M_no| 65| 19| 51132

M_uni| 17 9 30| 85

critical point for the chi-square is
13.11, that is for the inertia:
13.11/988 = 0.0133. This gives
multiple comparison test for 0.0133
differences between rows.

From Greenacre(1993:118), the J
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Ward clustering

» The type of clustering performed by this procedure of “minimizing
the reduction of inertia at each step” is called Ward clustering (see
our earlier classes on cluster analysis)

= Ward clustering is a hierarchical clustering analysis which needs:
(a) description vectors of objects to be clustered
(b) weights for each object
If you prefer to have a “distance” criterion for clustering, this is it:

rr Chi-square distance
Masses of 12
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=  We want to perform Ward clustering on the profiles, with weights

equal to the masses.

» Since Ward clustering calculates Euclidean distances between
vectors, we would need to prepare the profiles so that the Euclidean
distances will be chi-squared: that is, we have to divide the profile
elements by the square roots of their average (expected) values.

» But we need to weight the points: use XLSTAT or Fionn Murtagh’s R
code: hitp://astro.u-strasbg.fr/~fmurtagh/mda-sw/correspondances

= Correspondence analysis is based on the SVD of
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= We want the right hand side in the form of scalar products between the
coordinate matrices

D*(P-rc")D; =D;Y?UD, (D;"?V)" =FT"

p. —rC,
In full space: % =t foy, e
=]
In reduced space: D.J%CEC, = fu+ fal
(e.q., 2-d) i~

scalar product

& —-c. |/c. = between row
i i X
N/ profile and column

row profile element  average profile element vertex

l




Biplot vawiations by Gabriel & Greenacre

scalar product

(repeat) & -c |/c = between row
f \' | ! profile and column

row profile element  average profile element vertex
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= Gabriel's modification:

deviation of profile from average
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