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SESSION 13: Diagnostics, contributions in weighted PCA 
and Correspondence Analysis

Inertia contributions in weighted PCAInertia contributions in weighted PCAInertia contributions in weighted PCAInertia contributions in weighted PCA

� PCA is a method of data visualization which represents the true 
positions of points in a map which comes closest to all the points, 
closest in sense of weighted least-squares.
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� The inertia (weighted variance) explained in the map applies to all 
the points: if we say 83% of the inertia is explained in the map, 71% 
on the first dimension and 12% on the second, this is a figure 
calculated for all row (or column) points together.

71%

12%

Inertia contributions in weighted PCAInertia contributions in weighted PCAInertia contributions in weighted PCAInertia contributions in weighted PCA

� This type of “inertia-explained-by-axes” calculation can be made for 
individual points.

� These more detailed results are aids to interpretation in the form of 
numerical diagnostics, called contributions.

� Especially when there is not a high percentage of inertia explained by 
the map, these contributions will help us to identify points which are 
represented inaccurately.

� The inertias and their percentages tell us how much of the variance in 
the table is explained by the principal axes.  The contributions do the 
same, but for each point individually, and help us to see:

(a) which points are being explained better than others; 
(b) which points are contributing to the solution more than others.
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mi fik
2 / λk : amount of inertia of axis k explained by point i  (contribution, CTR)
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2 : amount of inertia of point i explained by axis k  (squared correlation, COR)
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2 , i.e. the square of fik / di = cos(θik ), where θik is the angle point-axis

θik

InertiaInertiaInertiaInertia contributionscontributionscontributionscontributions forforforfor CA CA CA CA ofofofof ““““authorauthorauthorauthor””””
col   name mass qlt inr k=1 cor ctr k=2 cor ctr

1  |    a |   80  162   10 |    2   1   0 |  -19 161   8 |
2  |    b |   16  365   18 |   86 338  15 |  -24  27   2 |
3  |    c |   23  831   60 |  185 691 102 |  -83 140  43 |
4  |    d |   46  920   89 | -169 788 170 |  -69 132  59 |
5  |    e |  127  357   34 |    8  12   1 |  -42 345  60 |
6  |    f |   19  529   28 |  112 456  32 |  -45  72  10 |
7  |    g |   20  344   26 |  -89 325  21 |   21  19   2 |
8  |    h |   65  735   83 | -131 721 146 |  -18  14   6 |
9  |    i |   70  465   28 |   23  74   5 |   54 392  55 |
10 |    j |    1   28    7 |   40   9   0 |   56  18   1 |
11 |    k |    9  724   43 | -241 661  70 |   75  64  14 |
12 |    l |   43  555   33 |   89 548  44 |  -10   7   1 |
13 |    m |   26  436   35 |   62 153  13 |   85 284  50 |
14 |    n |   69  166   21 |  -18  54   3 |  -25 112  12 |
15 |    o |   77  205   32 |   -9  12   1 |   39 193  31 |
16 |    p |   15  515   51 |  141 317  39 | -112 198  51 |
17 |    q |    1  416   12 |  357 376  11 | -116  40   2 |
18 |    r |   52  374   35 |   52 215  18 |  -45 159  28 |
19 |    s |   61  413   49 |   75 374  45 |   25  40  10 |
20 |    t |   93   90   13 |   -9  30   1 |   12  59   4 |
21 |    u |   30  283   23 |   14  14   1 |   62 268  31 |
22 |    v |   10  550   37 |  200 548  50 |   11   2   0 |
23 |    w |   26  888   75 | -219 883 161 |  -17   6   2 |
24 |    x |    1  418   22 |  292 237  13 |  256 182  21 |
25 |    y |   22  899  106 |    0   0   0 |  286 899 485 |
26 |    z |    1  576   30 |  596 511  37 | -213  65  10 |

Summary: Summary: Summary: Summary: 
Contributions to inertiaContributions to inertiaContributions to inertiaContributions to inertia

� Each principal inertia can decomposed into parts due to each 
point, either row points or column points.  These contributions 
explain how each principal axis has been constructed (hence 
the influence of each point in defining the dimension).

� The inertia of a point is similarly decomposed over all the axes, 
thanks to using Euclidean-type distance and Pythagoras’
theorem.  Each component on an axis can be expressed 
relative to the point inertia and this is the same as the squared 
cosine (i.e., squared correlation) between the point and the 
axis.    These values can be added over axes and tell you how 
well the point is represented in the solution space.



R implementation of CA (repeat)

# read in data into data-frame data_set

# the next 14 commands are all you need to compute CA results

data.P <- data_set/sum(data_set)
data.r <- apply(data.P,1,sum)
data.c <- apply(data.P,2,sum)
data.Dr <- diag(data.r)
data.Dc <- diag(data.c)
data.Drmh <- diag(1/sqrt(data.r))
data.Dcmh <- diag(1/sqrt(data.c))

data.P <- as.matrix(data.P)
data.S <- data.Drmh %*% (data.P-data.r%o%data.c) %*% data.Dcmh
data.svd <- svd(data.S)

data.rsc <- data.Drmh%*%data.svd$u
data.csc <- data.Dcmh%*%data.svd$v
data.rpc <- data.rsc%*%diag(data.svd$d)
data.cpc <- data.csc%*%diag(data.svd$d)

# the symmetric map

plot(data.rpc[,1],data.rpc[,2],type="n",pty="s")
text(data.rpc[,1],data.rpc[,2],label=rownames(data))

# now do it in one shot using ca package (first install from CRAN)

library(ca)
plot(ca(data_set))

ComputationComputationComputationComputation of of of of contributionscontributionscontributionscontributions

# compute matrix of contributions for rows and inertias

data.rcon <- data.rpc^2 * data.r

apply(data.rcon, 1, sum)

# compute contributions and squared correlations

data.rctr <- t( t(data.rcon) / apply(data.rcon, 2, sum) )

data.rcor <- data.rcon / apply(data.rcon, 1, sum)

# compute qualities in 2-d solution

apply(data.rcor[,1:2], 1, sum)

# compute matrix of contributions for columns and inertias

data.ccon <- data.cpc^2 * data.c

apply(data.ccon, 1, sum)

# compute contributions and squared correlations

data.cctr <- t( t(data.ccon) / apply(data.ccon, 2, sum) )

data.ccor <- data.ccon / apply(data.ccon, 1, sum)

# compute qualities in 2-d solution

apply(data.ccor[,1:2], 1, sum)
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� Correspondence analysis (CA) is a method of data visualization that reveals 
continuous structures (the dimensions) 
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� But in our search for structure in the table we can also consider clustering the 
rows and columns, to reveal discrete structures (the clusters, or classes):
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A simple exampleA simple exampleA simple exampleA simple example

� 988 students, males and females classified each according to their 
parents having been or not to university, cross-tabulated with their 
choice of studies at high school

F_no

F_uni

M_no

M_uni

NS      MA      LS      PS

30

51

103

197

85917

1321965

371728

614394 Inertia = 0.1848   Chi-square = 182.6

Which two rows can we merge so that inertia 
(or chi-square) is reduced the least?

F_no and F_uni: reduces inertia by 0.0070

� F_no : female, parents no university  F_uni : female, parents university 
M_no : male, parents no university  M_uni : male, parents university

� NS : non-science  MA : mathematics LS : life sciences   PS : physical sciences

A simple exampleA simple exampleA simple exampleA simple example

� 988 students, males and females classified each according to their 
parents having been or not to university, cross-tabulated with their 
choice of studies at high school

{F_no,
F_uni}

M_no

M_uni

NS      MA      LS      PS

30

51

300

85917

1321965

9860122 Inertia = 0.1778 

Which two rows can we merge so that inertia  
is reduced the least?

M_no and M_uni: reduces inertia by 0.0104

� F_no : female, parents no university  F_uni : female, parents university 
M_no : male, parents no university  M_uni : male, parents university

� NS : non-science  MA : mathematics LS : life sciences   PS : physical sciences



A simple exampleA simple exampleA simple exampleA simple example

� 988 students, males and females classified each according to their 
parents having been or not to university, cross-tabulated with their 
choice of studies at high school

{F_no,
F_uni}
{M_no,
M_uni}

NS      MA      LS      PS

81

300

2172883

9860122 Inertia = 0.1674 

Which two rows can we merge so that inertia 
(or chi-square) is reduced the least?

Only  two rows left to merge and this reduces 
inertia by 0.1674

� F_no : female, parents no university  F_uni : female, parents university 
M_no : male, parents no university  M_uni : male, parents university

� NS : non-science  MA : mathematics LS : life sciences   PS : physical sciences

A simple exampleA simple exampleA simple exampleA simple example

� 988 students, males and females classified each according to their 
parents having been or not to university, cross-tabulated with their 
choice of studies
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From Greenacre(1993:118), the
critical point for the chi-square is 
13.11, that is for the inertia:  
13.11/988 = 0.0133. This gives
multiple comparison test for 
differences between rows.

0.0133

Ward clusteringWard clusteringWard clusteringWard clustering
� The type of clustering performed by this procedure of “minimizing 

the reduction of inertia at each step” is called Ward clustering (see 
our earlier classes on cluster analysis)

� Ward clustering is a hierarchical clustering analysis which needs:

(a) description vectors of objects to be clustered

(b) weights for each object

If you prefer to have a “distance” criterion for clustering, this is it:

� We want to perform Ward clustering on the profiles, with weights
equal to the masses.

� Since Ward clustering calculates Euclidean distances between 
vectors, we would need to prepare the profiles so that the Euclidean 
distances will be chi-squared: that is, we have to divide the profile 
elements by the square roots of their average (expected) values.

� But we need to weight the points: use XLSTAT or Fionn Murtagh’s R 
code:    http://astro.u-strasbg.fr/~fmurtagh/mda-sw/correspondances
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BiplotBiplotBiplotBiplot

� Correspondence analysis is based on the SVD of
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� We want the right hand side in the form of scalar products between the 
coordinate matrices

L++=
−

2211 jiji
ji

jiij ff
cr

crp
γγ

2211 jiji
ji

jiij ff
cr

crp
γγ +≈

−

In full space:

In reduced space:
(e.g., 2-d)

2211/ jijijj
i

ij ffcc
r
p

γγ +≈







−

row profile element average profile element 

scalar product 
between row 
profile and column 
vertex



BiplotBiplotBiplotBiplot variations by Gabriel & variations by Gabriel & variations by Gabriel & variations by Gabriel & GreenacreGreenacreGreenacreGreenacre
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� Gabriel’s modification: 

� Greenacre’s modification (the standard biplot): 
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vertices shrunk by 
square roots of their 
respective masses; 
squares of these 
rescaled column 
coordinates are 
exactly the (relative) 
contributions of the 
column to the 
respective dimension

� (Relative) column contribution:  
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