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rworldmap: A New R package for
Mapping Global Data
by Andy South

Abstract rworldmap is a relatively new pack-
age available on CRAN for the mapping and vi-
sualisation of global data. The vision is to make
the display of global data easier, to facilitate un-
derstanding and communication. The initial fo-
cus is on data referenced by country or grid due
to the frequency of use of such data in global as-
sessments. Tools to link data referenced by coun-
try (either name or code) to a map, and then to
display the map are provided as are functions to
map global gridded data. Country and gridded
functions accept the same arguments to specify
the nature of categories and colour and how leg-
ends are formatted. This package builds on the
functionality of existing packages, particularly
sp, maptools and fields. Example code is pro-
vided to produce maps, to link with the pack-
ages classInt, RColorBrewer and ncdf, and to
plot examples of publicly available country and
gridded data.

Introduction

Global datasets are becoming increasingly common
and are frequently seen on the web, in journal pa-
pers and in our newspapers (for example a ’carbon
atlas’ of global emissions available at http://image.
guardian.co.uk/sys-files/Guardian/documents/
2007/12/17/CARBON_ATLAS.pdf). At the same time
there is a greater interest in global issues such as cli-
mate change, the global economy, and poverty (as
for example outlined in the Millenium Development
Goals, http://www.un.org/millenniumgoals/bkgd.
shtml). Thirdly, there is an increasing availability of
software tools for visualising data in new and inter-
esting ways. Gapminder (http://www.gapminder.
org) has pioneered making UN statistics more avail-
able and intelligible using innovative visualisation
tools and Many Eyes (http://www-958.ibm.com/)
provides a very impressive interface for sharing data
and creating visualisations.

World maps have become so common that they
have even attracted satire. The Onion’s Atlas of
the Planet Earth (The Onion, 2007), contains a ’Bono
Awareness’ world map representing ’the intensity
with which artist Bono is aware of the plight and
daily struggles of region’, with a categorisation rang-
ing from ’has heard of nation once’ through ’moved
enough by nations crisis to momentarily remove sun-
glasses’ to ’cares about welfare of nation nearly as
much as his own’.

There appears to be a gap in the market for
free software tools that can be used across disci-
plinary boundaries to produce innovative, publica-
tion quality global visualisations. Within R there are
great building blocks (particularly sp, maptools and
fields) for spatial data but users previously had to go
through a number of steps if they wanted to produce
world maps of their own data. Experience has shown
that difficulties with linking data and creating classi-
fications, colour schemes and legends, currently con-
strains researchers’ ability to view and display global
data. We aim to reduce that constraint to allow re-
searchers to spend more time on the more important
issue of what they want to display. The vision for
rworldmap is to produce a package to facilitate the
visualisation and mapping of global data. Because
the focus is on global data, the package can be more
specialised than existing packages, making world
mapping easier, partly because it doesn’t have to deal
with detailed local maps. Through rworldmap we
aim to make it easy for R users to explore their global
data and also to produce publication quality figures
from their outputs.

rworldmap was partly inspired and largely
funded by the UK Natural Environment Research
Council (NERC) program Quantifying Uncertainty
in Earth System Science (QUEST). This program
brings together scientists from a wide range of dis-
ciplines including climate modellers, hydrologists
and social scientists. It was apparent that while
researchers have common tools for visualisation
within disciplines, they tend to use different ones
across disciplines and that this limits the sharing
of data and methods necessary for truly interdis-
ciplinary research. Within the project, climate and
earth system modellers tended to use IDL, ecologists
ArcGIS, hydrologists and social scientists Matlab and
fisheries scientists R. With the exception of R, these
software products cost thousands of pounds which
acts as a considerable constraint on users being able
to try out techniques used by collaborators. This
high cost and learning curve of adopting new soft-
ware tools hinders the sharing of data and methods
between disciplines. To address this, part of the vi-
sion for rworldmap was to develop a tool that can be
freely used and modified across a multi-disciplinary
project, to facilitate the sharing of scripts, data and
outputs. Such freely available software offers greater
opportunity for collaboration with research institutes
in developing countries that may not be able to af-
ford expensive licenses.
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rworldmap data inputs

rworldmap consists of tools to visualise global data
and focuses on two types of data. Firstly, data that
are referenced by country codes or names and sec-
ondly, data that are referenced on a grid.

Country data

There is a wealth of global country level data avail-
able on the internet including UN population data,
and many global indices for, among others: Envi-
ronmental Performance, Global Hunger and Multi-
dimensional Poverty.

Data are commonly referenced by country names
as these are the most easily recognised by users,
but country names have the problem that vocabu-
laries are not well conserved and many countries
have a number of subtly different alternate names
(e.g. Ivory Coast and Cote d’Ivoire, Laos and Peo-
ple’s Democratic Republic of Lao). To address this
problem there are ISO standard country codes of ei-
ther 2 letters, 3 letters or numeric, and also 2 letter
FIPS country codes, so there is still not one univer-
sally adopted standard. rworldmap supports all of
these country codes and offers tools to help when
data are referenced by names or other identifiers.

Gridded data

Global datasets are frequently spatially referenced
on a grid, because such gridded or raster data for-
mats offer advantages in efficiency of data storage
and processing. Remotely sensed data and other val-
ues calculated from it are most frequently available
in gridded formats. These can include terrestrial or
marine data or both.

There are many gridded data formats, here I will
concentrate on two: ESRI GridAscii and netCDF.

ESRI GridAscii files are an efficient way of storing
and transferring gridded data. They are straightfor-
ward text files so can be opened by any text editor.
They have a short header defining the structure of
the file (e.g. number, size and position of rows and
columns), followed by a single row specifying the
value at each grid cell. Thus they use much less space
than if the coordinates for each cell had to be speci-
fied.

Example start of gridAscii file for a half degree
global grid:

ncols 720
nrows 360
xllcorner -180
yllcorner -90
cellsize 0.5
NODATA_value -999
-999 1 0 1 1 ... [all 259200 cell values]

NetCDF is a data storage file format com-
monly used by climate scientists and oceanogra-
phers. NetCDF files can be multi-dimensional, e.g.
holding (x,y) data for multiple attributes over mul-
tiple months, years, days etc. The package ncdf is
good for reading data from netCDF files.

rworldmap functionality

rworldmap has three core functions outlined below
and others that are described later.

1. joinCountryData2Map() joins user country
data referenced by country names or codes to
a map to enable plotting

2. mapCountryData() plots a map of country data

3. mapGriddedData() plots a map of gridded data

Joining country data to a map

To join the data to a map use joinCountryData2Map.
You will need to specify the name of column contain-
ing your country identifiers (nameJoinColumn) and
the type of code used (joinCode) e.g. "ISO3" for ISO
3 letter codes or "UN" for numeric country codes.

data(countryExData)
sPDF <- joinCountryData2Map( countryExData

,joinCode = "ISO3"
,nameJoinColumn = "ISO3V10")

This code outputs, to the R console, a summary of
how many countries are successfully joined. You can
specify verbose=TRUE to get a full list of countries.
The object returned (named sPDF in this case) is of
type "SpatialPolygonsDataFrame" from the package
sp. This object is required for the next step, display-
ing the map.

If you only have country names rather than codes
in your data, use joinCode="NAME"; you can expect
more mismatches due to the greater variation within
country names mentioned previously. To address
this you can use the identifyCountries() function
described below, and change any country names in
your data that do not exactly match those in the in-
ternal map.

Mapping country data

To plot anything other than the default map,
mapCountryData requires an object of class
"SpatialPolygonsDataFrame" and a specification of
the name of the column containing the data to plot:

data(countryExData)
sPDF <- joinCountryData2Map( countryExData

,joinCode = "ISO3"
,nameJoinColumn = "ISO3V10")

mapDevice() #create world map shaped window
mapCountryData(sPDF

,nameColumnToPlot='BIODIVERSITY')
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Figure 1: Output of mapCountryData()

Mapping gridded data

The mapGriddedData function can accept either

1. an object of type "SpatialGridDataFrame", as
defined in the package sp

2. the name of an ESRI GridAscii file as a charac-
ter string

3. a 2D R matrix or array (rows by columns)

rworldmap contains a "SpatialGridDataFrame"
example that can be accessed and mapped as shown
in the code and figure below.

data(gridExData)
mapDevice() #create world map shaped window
mapGriddedData(gridExData)

0 27350000

Figure 2: Output of mapGriddedData()

Modifying map appearance

rworldmap plotting functions are set up to work
with few parameters specified (usually just those
identifying the data) and in such cases, default val-
ues will be used. However, there is considerable flex-
ibility to modify the appearance of plots by specify-
ing values for arguments. Details of argument op-
tions are provided in the help files but here are a se-
lection of the main arguments:

• catMethod determines how the data values
are put into categories (then colourPalette
determines the colours for those cate-
gories). Options for catMethod are: "pretty",
"fixedWidth", "diverging", "logfixedWidth",

"quantiles", "categorical", or a numeric vec-
tor defining the breaks between categories.
Works with the next argument (numCats) , al-
though numCats is not used for "categorical",
where the data are not modified, or if the user
specifies a numeric vector, where the number
of categories will be a result.

• numCats specifies the favoured number of cat-
egories for the data. The number of categories
used may be different if the number requested
is not possible for the chosen catMethod (e.g.
for "quantiles" if there are only 2 values in the
data it is not possible to have more than 2 cate-
gories).

• colourPalette specifies a colour palette to use
from:

1. "palette" for the current palette
2. a vector of valid colours, e.g. c("red",

"white", "blue") or output from
RColorBrewer

3. a string defining one of the in-
ternal rworldmap palettes from:
"heat", "diverging", "white2Black",
"black2White", "topo", "rainbow",
"terrain", "negpos8", "negpos9".

• addLegend set to TRUE for a default legend,
if set to FALSE the function addMapLegend or
addMapLegendBoxes can be used to create a
more flexible legend.

• mapRegion a region to zoom in on, can be set to
a country name from getMap()$NAME or one of
"eurasia", "africa", "latin america", "uk",
"oceania", "asia".

mapBubbles(), mapBars(), and mapPies()

Another option for displaying data is to use the
mapBubbles function which allows flexible creation
of bubble plots on global maps. You can specify data
columns that will determine the sizing and colouring
of the bubbles (using nameZSize and nameZColour).
The function also accepts other spatialDataFrame ob-
jects or data frames containing columns specifying
the x and y coordinates. If you wish to represent
more attribute values per location there are also the
newer mapBars() and mapPies() functions to pro-
duce bar and pie charts respectively (noting that pie
charts may not be the best way of presenting data
when there are more than a few categories).

mapDevice() #create world map shaped window
mapBubbles(dF=getMap()

,nameZSize="POP2005"
,nameZColour="REGION"
,colourPalette="rainbow"
,oceanCol="lightblue"
,landCol="wheat")
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Figure 3: Output of mapBubbles()

Identifying countries

The interactive function identifyCountries() al-
lows the user to click on the current map and, pro-
vided the cursor is sufficiently close to country cen-
troid, will add the country name to the map. Op-
tionally, the name of an attribute variable can also
be passed to the function to cause the value of the
attribute to be added to the label. e.g. ’Cape Verde
506807’ will be printed on the map if the code below
is entered and the mouse clicked over those islands
(if you know where they are!).

identifyCountries(getMap()
,nameColumnToPlot="POP2005")

Aggregating data to produce different out-
puts

rworldmap offers options for aggregating half de-
gree gridded data to countries, and in turn for aggre-
gating country level data to regions. In both of these
options a range of aggregation options are available
including mean, minimum, maximum and variance.

mapHalfDegreeGridToCountries() takes a grid-
ded input file, aggregates to a country level and plots
the map. It accepts most of the same arguments as
mapCountryData().

Country level data can be aggregated to global re-
gions specified by regionType in country2Region()
which outputs as text, and mapByRegion() which
produces a map plot. The regional classifications
available include SRES (The Special Report on Emis-
sions Scenarios of the Intergovernmental Panel on
Climate Change (IPCC) ), GEO3(Global Earth Obser-
vation), Stern and GBD (Global Burden of Disease).

data(countryExData)
country2Region(countryExData

,nameDataColumn="CLIMATE"
,joinCode="ISO3"
,nameJoinColumn="ISO3V10"
,regionType="Stern"
,FUN="mean")

Outputs this text:

meanCLIMATEbyStern
Australasia 56.92000
Caribbean 65.20000
Central America 76.11250
Central Asia 56.18000
East Asia 69.18462
Europe 73.87619
North Africa 71.00000
North America 62.70000
South America 77.01818
South Asia 77.22000
South+E Africa 75.79474
West Africa 78.68421
West Asia 49.62000

data(countryExData)
mapDevice() #create world map shaped window
mapByRegion(countryExData

,nameDataColumn="CLIMATE"
,joinCode="ISO3"
,nameJoinColumn="ISO3V10"
,regionType="Stern"
,FUN="mean")

Produces this map:

49.6 78.7

mean CLIMATE by Stern regions

Figure 4: Output of mapByRegion()

The identity of which countries are in which re-
gions are stored in the data frame countryRegions.
This also identifies which countries are currently
classed by the UN as Least Developed Countries
(LDC), Small Island Developing states (SID) and
Landlocked Developing Countries (LLDC). To map
just the Least Developed Countries the code below
could be used:

data(countryRegions)
sPDF <- joinCountryData2Map( countryRegions

,joinCode = "ISO3"
,nameJoinColumn = "ISO3")

mapDevice() #create world map shaped window
mapCountryData(sPDF[which(sPDF$LDC=='LDC'),]

,nameColumnToPlot="POP2005")

Using rworldmap with other packages
classInt and RColorBrewer

While rworldmap sets many defaults internally there
are also options to use other packages to have greater
flexibility. In the example below classInt is used to
create the classification and RColorBrewer to spec-
ify the colours.
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library(classInt)
library(RColorBrewer)

#getting smallexample data and joining to a map
data(countryExData)
sPDF <- joinCountryData2Map(countryExData

,joinCode = "ISO3"
,nameJoinColumn = "ISO3V10"
,mapResolution = "coarse")

#getting class intervals
classInt <- classIntervals( sPDF[["EPI"]]

,n=5, style = "jenks")
catMethod = classInt[["brks"]]

#getting colours
colourPalette <- brewer.pal(5,'RdPu')

#plot map
mapDevice() #create world map shaped window
mapParams <- mapCountryData(sPDF

,nameColumnToPlot="EPI"
,addLegend=FALSE
,catMethod = catMethod
,colourPalette=colourPalette )

#adding legend
do.call(addMapLegend

,c(mapParams
,legendLabels="all"
,legendWidth=0.5
,legendIntervals="data"
,legendMar = 2))

EPI

39.1 50.5 62.3 72.8 81.8 95.5

Figure 5: Output of mapCountryData() using inputs
from classInt and RColorBrewer

Examples using data freely avail-
able on the web

Example country data from the web

The Happy Planet Index or HPI (http://www.
happyplanetindex.org) combines country by coun-
try estimates of life expectancy, life satisfaction and
ecological footprint to create an index of sustainable
well-being that makes much more sense than GDP
for assessing how countries are doing (Marks, 2010).

An Excel file containing the data (‘hpi-2-0-
results.xls’) can be downloaded from the HPI

website at: http://www.happyplanetindex.org/
learn/download-report.html.

I copied the country data from the sheet ‘All Data’
and pasted into a ‘.csv’ file so that the header row
was at the top of the file and the summary statistics
at the bottom were left off. I then edited some of the
column names to make them appropriate R variable
names (e.g. changing ‘Life Sat (0-10)’ to ‘LifeSat’).

This data can then be read in easily using
read.csv() and joinCountryData2Map().

inFile <- 'hpi2_0edited2.csv'
dF <- read.csv(inFile,header=TRUE,as.is=TRUE)
sPDF <- joinCountryData2Map(dF

, joinCode='NAME'
, nameJoinColumn='country'
, verbose='TRUE')

Unfortunately, but in common with many global
country level datasets, the countries are specified by
name alone rather than by ISO country codes. The
verbose=TRUE option in joinCountryData2Map() can
be used to show the names of the 10 countries that
don’t join due to their names being slightly different
in the data than rworldmap. The names of the coun-
tries that failed to join can be edited in the csv to be
the same as those in getMap()[[’NAME’]], and then
they will join. A selection is shown below.

name in HPI name in rworldmap
Iran Iran (Islamic Republic of)
Korea Korea, Republic of
Laos Lao People's Democratic Republic
Moldova Republic of Moldova
Syria Syrian Arab Republic
Tanzania United Republic of Tanzania
Vietnam Viet Nam
United States of America United States

The map of the HPI on the website is interesting
in that the colours applied to countries are not deter-
mined by the value of the HPI for that country, but
instead by the values of the three component indices
for Life Expectancy, Life Satisfaction and Ecological
Footprint. Therefore I needed to add some extra R
code to be able to recreate the HPI map.

#categorise component indices
dF$LifeSatcolour <-
ifelse(dF$LifeSat < 5.5,'red'

,ifelse(dF$LifeSat > 7.0,'green'
,'amber' ))

dF$LifeExpcolour <-
ifelse(dF$LifeExp < 60,'red'
,ifelse(dF$LifeExp > 75,'green'

,'amber' ))

dF$HLYcolour <-
ifelse(dF$HLY < 33,'red'
,ifelse(dF$HLY > 52.5,'green'

,'amber' ))
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dF$Footprintcolour <-
ifelse(dF$Footprint > 8.4,'blood red'
,ifelse(dF$Footprint > 4.2,'red'

,ifelse(dF$Footprint < 2.1,'green'
,'amber' )))

#count red, amber , greens per country
numReds<-
(as.numeric(dF$Footprintcolour=='red')
+as.numeric(dF$LifeExpcolour=='red')
+as.numeric(dF$LifeSatcolour=='red'))

numAmbers<-
(as.numeric(dF$Footprintcolour=='amber')
+as.numeric(dF$LifeExpcolour=='amber')
+as.numeric(dF$LifeSatcolour=='amber'))

numGreens<-
(as.numeric(dF$Footprintcolour=='green')
+as.numeric(dF$LifeExpcolour=='green')
+as.numeric(dF$LifeSatcolour=='green'))

#calculate HPI colour per country
dF$HPIcolour <-
ifelse(dF$Footprintcolour=='blood red'

| numReds>1,6
,ifelse(numReds==1,5
,ifelse(numAmbers==3,4
,ifelse(numGreens==1 & numAmbers==2,3
,ifelse(numGreens==2 & numAmbers==1,2
,ifelse(numGreens==3,1
,NA))))))

#join data to map
sPDF <- joinCountryData2Map(dF

,joinCode="NAME"
,nameJoinColumn="country")

#set colours
colourPalette <- c('palegreen'

,'yellow'
,'orange'
,'orangered'
,'darkred')

#plot map
mapDevice() #create world map shaped window
mapParams <- mapCountryData(sPDF

,nameColumnToPlot='HPIcolour'
,catMethod='categorical'
,colourPalette=colourPalette
,addLegend=FALSE
,mapTitle='Happy Planet Index')

#changing legendText
mapParams$legendText <-

c('2 good, 1 middle'
,'1 good, 2 middle'
,'3 middle'
,'1 poor'
,'2 poor or footprint v.poor')

#add legend
do.call( addMapLegendBoxes

, c(mapParams
,x='bottom'
,title="HPI colour"))

Happy Planet Index

HPI colour

2 good, 1 middle
1 good, 2 middle
3 middle
1 poor
2 poor or footprint v.poor

Figure 6: Happy Planet Index 2.0, using rworldmap
to replicate map in happy planet report

Example gridded data from the web

‘Koeppen Geiger’ is a published classification divid-
ing the world into 30 climatic zones. The GIS files
for a Koeppen Geiger gridded climatic regions map
are freely available from http://koeppen-geiger.
vu-wien.ac.at/. The code below shows how to read
in and plot an ascii file downloaded from that site.

inFile1 <- 'Koeppen-Geiger-ASCII.txt'
#read in data which is as lon,lat,catID
dF<-read.table(inFile1,header=TRUE,as.is=TRUE)
#convert to sp SpatialPointsDataFrame
coordinates(dF) = c("Lon", "Lat")
# promote to SpatialPixelsDataFrame
gridded(dF) <- TRUE
# promote to SpatialGridDataFrame
sGDF = as(dF, "SpatialGridDataFrame")
#plotting map
mapDevice() #create world map shaped window
mapParams <- mapGriddedData(sGDF

,catMethod='categorical'
,addLegend=FALSE)

#adding formatted legend
do.call(addMapLegendBoxes

,c(mapParams
,cex=0.8
,ncol=10
,x='bottom'
,title='Koeppen-Geiger Climate Zones'))

This produces a map that looks a lot different
from the published map because it is using a differ-
ent colour palette. The default "heat" colour palette
is not the best for this categorical data and one of
the palettes from RColorBrewer more suitable for
categorical data could be used. However it would
be good to retain the palette created by the authors
of the data. The ascii file does not contain any
colour information, however the authors also pro-
vide ESRI and Google Earth compatible files that do
have colour information. It appeared to be impos-
sible to extract the palette from the ESRI files, but
by opening the ‘.kmz’ file in Google Earth, saving to
‘.kml’ and some fiddly text editing in R the colours
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could be extracted as a single column then saved to a
‘.csv’ file, the first few lines of which are:

colour
#960000
#ff0000
#ff9999
#ffcccc
...

Plotting the map in the original colours can then
be achieved relatively simply by:

#reading in colour palette
#as.is=T stops conversion to factors
#which otherwise messes up colours
tst <- read.csv('paletteSaved.csv',as.is=TRUE)

#plotting map
mapDevice() #create world map shaped window
#tst$x passes the palette as a vector
mapParams <- mapGriddedData(sGDF

,catMethod='categorical'
,addLegend=FALSE
,colourPalette=tst$x)

#adding legend
do.call(addMapLegendBoxes

,c(mapParams
,cex=0.8
,ncol=3
,x='bottomleft'
,title='Koeppen-Geiger Climate Zones'))

Koeppen−Geiger Climate Zones
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Figure 7: ‘Koeppen Geiger’ climatic zones, map pro-
duced using mapGriddedData() and freely available
data

Using rworldmap to map netCDF data in
tandem with ncdf

netCDF is a common file format used in meteorology
and oceanography, it is both multi-dimensional and
self documented. The package ncdf allows netCDF
files to be opened, queried and data extracted di-
rectly to R. Data extracted from netCDF files in this
way can then be converted to sp objects and plotted
using rworldmap. In the example below the netCDF
file (∼ 333 KB) is first downloaded from the IPCC
data distribution centre at: http://www.ipcc-data.
org/cgi-bin/downl/ar4_nc/tas/HADCM3_SRA1B_1_
tas-change_2046-2065.cyto180.nc.

This particular file was accessed from: http://
www.ipcc-data.org/ar4/info/UKMO-HADCM3_SRA1B_
tas.html

The ’lon180’ option was chosen to get a file with
longitude values from −180 to 180 as that requires
less editing before plotting.

library(ncdf)
#the downloaded file
inFile <-

'HADCM3_SRA1B_1_tas-change_2046-2065.cyto180.nc'
memory.limit(4000) #set memory limit to max
nc = open.ncdf(inFile, write=FALSE)

print(nc) prints to console a description of the
file contents which includes the information shown
below (edited slightly for brevity).

file ... has 4 dimensions:
time Size: 12
latitude Size: 73
longitude Size: 96
bounds Size: 2
------------------------
file ... has 4 variables
float climatological_bounds[bounds,time]
float latitude_bounds[bounds,latitude]
float longitude_bounds[bounds,longitude]
float

air_temperature_anomaly[longitude,latitude,time]

After the netCDF file has been opened
in this way, selected variables can be read
into R using get.var.ncdf(), converted to a
SpatialGridDataFrame and plotted using the
rworldmap function mapGriddedData. The code
below first creates a grid from the parameters in
netCDF file, and is written to be generic so that it
should work on other similar netCDF files. Then it
creates a standard classification and colour scheme
for all of the plots based on having looked at the val-
ues in each months data first. Finally it loops through
all months reads in the data for that month, creates a
spatialGridDataFrame for each, plots it and saves it
as a ‘.png’.

ncArray =
get.var.ncdf(nc,'air_temperature_anomaly')

# creating gridTopology from the netCDF metadata
offset = c(min(nc$dim$longitude$vals)

,min(nc$dim$latitude$vals))
cellsize = c( abs(diff(nc$dim$longitude$vals[1:2]))

, abs(diff(nc$dim$latitude$vals[1:2])))
# add cellsize/2 to offset
# to convert from lower left referencing to centre
offset = offset + cellsize/2
cells.dim = c(nc$dim$longitude$len

,nc$dim$latitude$len )

gt <- GridTopology(cellcentre.offset = offset
, cellsize = cellsize
, cells.dim = cells.dim )
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mapDevice()
#creating a vector to classify the data
catMethod=seq(from=-5,to=19,by=2)
#creating a colourPalette for all plots
#-ve blue, 0 white, +ve yellow to red
colourPalette=c('blue','lightblue','white'

,brewer.pal(9,'YlOrRd'))

#looping for each month
for( zDim in 1 : nc$dim$time$len ){
#reading the values for this month
ncMatrix <- ncArray[,,zDim]
#to get the image up the right way
#this reverses the y values but not the x ones
ncMatrix2 <-ncMatrix[ ,nc$dim$latitude$len:1 ]
gridVals <-data.frame(att=as.vector(ncMatrix2))
#creating a spatialGridDataFrame
sGDF <-SpatialGridDataFrame(gt, data=gridVals)

#plotting the map and getting params for legend
mapParams <- mapGriddedData( sGDF

,nameColumnToPlot='att'
,catMethod=catMethod
,colourPalette=colourPalette
,addLegend=FALSE )

#adding formatted legend
do.call(addMapLegend

,c(mapParams
,legendLabels="all"
,legendWidth=0.5
,legendMar = 3))

title(paste('month :',zDim))#adding brief title

outputPlotType = 'png'
savePlot(paste("ipccAirAnomalyMonth",zDim,sep='')

,type=outputPlotType)
} #end of month loop
close.ncdf(nc) #closing the ncdf file

Figure 8: Two examples of IPCC temperature
anomaly data (for December and June respectively)
plotted using mapGriddedData()

Summary

rworldmap is a new package to facilitate the display
of global data, referenced by grid, country or region.
It is available on CRAN at http://cran.r-project.
org/web/packages/rworldmap. rworldmap aims to
provide tools to improve the communication and
understanding of world datasets. If you have any
comments or suggestions or would like to contribute
code please get in touch. The source code and de-
velopment versions are available from http://code.
google.com/p/rworld/. I plan to extend this work by
making datasets, including those used in this paper,
more easily accessible, perhaps through a package
called rworldmapData. We are also working on vi-
sualisations to communicate more information than
by maps alone. For more help on rworldmap there is
a vignette available at http://cran.r-project.org/
web/packages/rworldmap/vignettes/rworldmap.
pdf and an FAQ at http://cran.r-project.org/
web/packages/rworldmapvignettes/rworldmapFAQ.
pdf.
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Appendix: Comparing using
rworldmap to not using it

Here I show a brief comparison between using
rworldmap and not. It is not my intention to set
up a straw-man that demonstrates how superior my
package is to others. Other packages have different
objectives, by focusing on world maps I can afford
to ignore certain details. It is only by building on
the great work in other packages that I have been
able to get this far. Those caveats aside here is the
comparison using some data on alcohol consump-
tion per adult by country, downloaded as an Ex-
cel file from the gapminder website at http://www.
gapminder.org/data/ and saved as a ‘.csv’. Reading
in the data is common to both approaches:

inFile <- 'indicatoralcoholconsumption20100830.csv'
dF <- read.csv(inFile)

Using rworldmap
library(rworldmap)
sPDF <- joinCountryData2Map(dF,

, joinCode = "NAME"
, nameJoinColumn = "X"
, nameCountryColumn = "X"
, verbose = TRUE)

mapCountryData(sPDF,nameColumnToPlot='X2005')

Not using rworldmap
library(maptools)
library(fields)
## get map
data(wrld_simpl) #from package maptools
## joining
#first identify failures
matchPosnsInLookup <- match(

as.character(dF$X)
,as.character(wrld_simpl$NAME))

failedCodes <- dF$X[is.na(matchPosnsInLookup)]
numFailedCodes <- length(failedCodes)

#printing info to console
cat(numFailedCodes

,"countries failed to join to the map\n")
print(failedCodes)
#find match positions in the data
matchPosnsInData <- match(

as.character(wrld_simpl$NAME)
,as.character(dF$X))

# join data to the map
wrld_simpl@data <- cbind(wrld_simpl@data

, dF[matchPosnsInData,])

#sizing window to a good shape for the world

dev.new(width=9,height=4.5)
#so that maps extends to edge of window
oldpar <- par(mai=c(0,0,0.2,0))

#categorising the data
numCats <- 7
quantileProbs <- seq(0,1,1/numCats)
quantileBreaks <- quantile(wrld_simpl$X2005

,na.rm=T
,probs=quantileProbs)

wrld_simpl$toPlot <- cut( wrld_simpl$X2005
, breaks=quantileBreaks
, labels=F )

#plotting map
plot(wrld_simpl

,col=rev(heat.colors(numCats))[wrld_simpl$toPlot])

#adding legend using the fields package
zlim <- range(quantileBreaks,na.rm=TRUE)
image.plot(legend.only=TRUE

,zlim=zlim
,col=rev(heat.colors(numCats))
,breaks=quantileBreaks
,horizontal=TRUE)

par(oldpar) #reset graphics settings

Slight differences in country naming, and an ab-
sence of country codes, causes 9 countries not to
to join in both approaches. joinCountryData2Map()
outputs the identities of these countries. This means
that in the maps it incorrectly looks like alcohol con-
sumption is zero in both the UK and USA. To correct
this the country names need to be renamed prior to
joining, either in the ‘.csv’ or in the dataframe. In the
R dataframe the countries could be renamed by:

n1<-'United Kingdom of Great Britain and Northern Ireland'
n2<-'United Kingdom'
levels(dF$X)[which(levels(dF$X)==n1)] <- n2

The objective for rworldmap is to make world
mapping easier, based on difficulties experienced by
the author and project collaborators. Of course, there
is still a learning curve associated with being able to
use rworldmap itself. All of the operations shown
in this paper can be accomplished by accomplished
R programmers without the need for rworldmap,
however in an inter-disciplinary project rworldmap
made it easier for scientists who are new to R to start
producing outputs, and encouraged them to extend
their R learning further. There are repetitive data
manipulation routines that are tricky to implement,
rworldmap reduces the time spent on these so that
more time can be spent on the important task of com-
municating what the data say.
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