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Summary.  We consider two fundamental properties in the analysis of two-way tables of 

positive data: the principle of distributional equivalence, one of the cornerstones of 

correspondence analysis of contingency tables, and the principle of subcompositional 

coherence, which forms the basis of compositional data analysis.   For an analysis to be 

subcompositionally coherent, it suffices to analyse the ratios of the data values.  The 

usual approach to dimension reduction in compositional data analysis is to perform 

principal component analysis on the logarithms of ratios, but this method does not obey 

the principle of distributional equivalence.   We show that by introducing weights for the 

rows and columns, the method achieves this desirable property.  This weighted log-ratio 

analysis is theoretically equivalent to “spectral mapping”, a multivariate method developed 

almost 30 years ago for displaying ratio-scale data from biological activity spectra.  The 

close relationship between spectral mapping and correspondence analysis is also 

explained, as well as their connection with association modelling.  The weighted log-ratio 

methodology is applied here to frequency data in linguistics and to chemical 

compositional data in archaeology. 

Keywords: association models; biplot; compositional data; contingency tables; 

correspondence analysis; distributional equivalence; log-ratio transformation; ratio-scale 

data; singular value decomposition; spectral map; subcompositional coherence. 
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1.     Introduction 

There are a number of techniques available for the multidimensional analysis of tables of  

nonnegative data, for example, principal component analysis, correspondence analysis and, in 

the special case of compositional data, various methods based on analysing ratios between 

components.   Our objective in this paper is to examine the foundational principles on which 

such methods are constructed and to show how the methods are related, both from a theoretical 

and practical point of view.  In the course of our description we shall focus on a method based 

on a weighted form of log-ratio analysis, also called the “spectral map”, which has all the 

favourable properties one might wish for when analysing positive ratio-scale data, its main 

inconvenience being the difficulty in handling data zeros. 

Correspondence analysis (Benzécri, 1973; Greenacre, 1984, 1993a; Lebart, Morineau and 

Warwick, 1984) is one of a family of methods based on the singular value decomposition, and 

has become a standard method for graphically displaying tables of nonnegative data.  The 

method is particularly popular in the social and environmental sciences for analyzing frequency 

data (see, for example, Greenacre and Blasius (1994) and ter Braak (1985) respectively).  As 

emphasised by Benzécri, who originally developed correspondence analysis (CA) as a method 

for exploring large tables of counts in linguistics, a fundamental property of CA is the so-called 

principle of distributional equivalence: “Our first principle is that of distributional equivalence” 

(Benzécri, 1973: vol. I, p. 23).  This principle can be stated in a simplified form as follows: if 

two columns (resp., two rows) have the same relative values, then merging them does not affect 

the distances between rows (resp., columns).   

For example, consider the data in Table 1, the counts of the 26 letters of the alphabet in 12 

different English texts, pairs of which are written by the same author (these data are from 

dataset ‘author’ provided in the software packages S-PLUS (2005) and R (R Development Core 

Team, 2005).   As we shall show later, although there are very small differences in relative 

frequencies of letters between texts, it is nevertheless possible to discriminate between the six 

authors, mainly due to differences in the use of consonants.  Since the vowels have a 

distribution across the texts which are almost identical, it is possible to merge their counts into 

one category called “vowels”.  The principle of distributional equivalence ensures that the 

distances between texts (chi-square distances in CA) are hardly changed by merging these 

almost “distributionally equivalent” categories, and in the limit when the distributions are 

identical, these distances would remain unaffected.  For more details about this principle and a 

proof in the context of CA, see Benzécri (1973), Escofier (1978) or Greenacre (1984: Section 

4.1.17). 
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Compositional data analysis (Aitchison, 1986) is concerned with data vectors of (strictly) 

positive values summing to one, that is with the unit-sum constraint, or closure.  This 

methodology has become popular in the physical sciences, especially geology and chemistry.  

For example, chemical samples are typically analyzed into constituent components by weight or 

by volume, expressed as proportions of the total sample.  One of the founding principles of 

compositional data analysis is that of subcompositional coherence.  For example, suppose that a 

chemical sample has inorganic and organic components, and that scientist A is investigating all 

of these components, whereas scientist B is investigating just the organic components of the 

same samples, that is B’s data constitute a subcomposition where proportions have been 

calculated relative to total organic material, i.e., the values in the subcomposition have been “re-

closed” to add up to 1.  Subcompositional coherence means that any relationships found by 

scientist B concerning the components of the subcomposition should be the same as scientist 

A’s, unaffected by the fact that B is looking at a reduced data set.   In our geometric framework 

we shall make this concept more precise by saying that measures of association or measures of 

dissimilarity between components, for example correlations or distances, are unaffected by 

considering subcompositions.   This principle has led to the study of ratios of components, 

which are unaffected by forming subcompositions. 

For example, consider the data in Table 2 from Baxter, Cool and Heyworth (1990) on the 

percentages by weight of 11 elements in a sample of Roman glass cups found in archeological 

sites in Colchester.   The dominating element is Silicon (Si) and one might choose to make an 

analysis of the other 10 elements by themselves, re-closing their weights as percentages of the 

non-Silicon part in each sample.  Clearly, a measurement of relationship, for example a 

correlation, between two elements such as phosphorus (P) and potassium (K) should be 

invariant to whether we analyse the 10 elements alone or the full composition including Silicon. 

But the usual linear correlation coefficient would change in the subcomposition, hence the need 

for an alternative approach.  Now the ratio P/K of phosphorus to potassium remains unchanged 

whether it is part of the full composition or the subcomposition, so any measure of difference or 

association between P and K that depends only on these ratios across the samples will be 

invariant: for example, var[log(P/K)] = var[log(P)–log(K)], the variance of the differences in 

their logarithms, would be the same in the full composition and a subcomposition. 

Aitchison (1980, 1983) defined a variant of principal component analysis for compositional 

data, based on logarithmically transforming component ratios, called log-ratios.  Kazmierczak 

(1988) demonstrated several graphical properties of this method, which he called “logarithmic 

analysis”.  The biplot version of this display has several interesting properties, summarized by 

Aitchison and Greenacre (2002): for example, it is equivalent to analyze all the log-ratios for 
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pairs of components within samples or to analyse the logarithms of the components relative to 

their geometric mean for the sample.  However, although this “log-ratio biplot” has 

subcompositional coherence, it does not obey the principle of distributional equivalence.  This is 

unfortunate for compositional data analysis, because if two components were always occurring 

in the same proportion in every sample, then the analysis should be unaffected by considering 

these two components amalgamated into one.  In other words, in our glass cups example above, 

if the ratio P/K were constant across the samples, then we should be able to amalgamate their 

values into one value without changing the measure of distance between the glass cups.  

Distributional equivalence also means that any part of the composition can be broken down into 

subparts, all in proportion to the original part, without affecting the distances between cups.    

In this paper we will show that by introducing weights into Aitchison’s log-ratio analysis, in 

exactly the same spirit that CA weights the rows and columns of a data table, the method does 

indeed achieve distributional equivalence.  In fact, the resulting “weighted log-ratio biplot” can 

be applied to a wider class of positive data matrices, not only to compositional data.   In the 

particular case when the weights are proportional to the margins of the table, this method of data 

visualization turns out to be equivalent to spectral mapping, developed by Lewi (1976, 1980), in 

the specific context of the analysis of biological activity spectra.  In fact, the same issue of 

analyzing relative values rather than their original absolute values is present in this biomedical 

context as well as several other areas of research, outside the realm of compositional data.  For 

example, in the analysis of contingency tables vectors of relative frequencies, or profiles, are 

visualized in CA, while odds and odds ratios are analyzed in association modelling.  In the 

analysis of biometric measurements, for example measurements on animal skulls for purposes 

of classification, we are not interested so much in the overall level of the measurements, or 

“size”, but rather in their relative values, or “shape”.  In this latter case, the principle of 

distributional equivalence is again of importance: if one measurement is the sum total of smaller 

component measurements and if the component measurements are always in the same 

proportion across the individuals, then we should be able to retain just the sum, omitting its 

components (or retain the components, omitting the sum), without affecting our measure of 

distance between individuals.   

In the course of our explanation we will use the two data matrices given in Tables 1 and 2 to 

show how the weighted log-ratio biplot functions, how its results are interpreted and how it 

compares to CA, in the context of frequency and compositional data respectively.   
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2.     Weighted log-ratio biplot 

We consider a general matrix N (I×J ) of positive values nij > 0, with row totals, column totals 

and grand total denoted by ni+, n+j and n respectively.  Denote by L the matrix of logarithms of 

the frequencies, lij = log(nij).  In the case of compositional data, where ni+=1 for all i, Aitchison's 

“relative variation diagram” (Aitchison 1980) consists of double-centring the matrix L with 

respect to averages of the rows and columns (l+j/I and li+/J respectively), followed by a singular 

value decomposition (SVD) to obtain least-squares matrix approximations and maps depicting 

rows and columns in a low-dimensional subspace. The same result can be achieved by row-

centring L and then applying a regular principal component analysis (PCA) with column-

centring but no column-normalization.   Aitchison and Greenacre (2002) describe the properties 

of the biplots that are obtained from the above SVD, specifically the form biplot that favours the 

display of distances between samples (rows), and the covariance biplot that favours the display 

of the components (columns), explained in more detail below.  

Applying this algorithm to Baxter's cup data in Table 2, we obtain the form biplot in Figure 1.  

This map shows three diagonal bands of points which are due to the values of the element 

manganese (Mn) which takes on only three different values in the data set, all very small: 0.01 

(35 cups), 0.02 (10 cups) and 0.03 (2 cups).  These values, reported to two decimal places on a 

percentage scale, engender large differences on the logarithmic scale and in all log-ratios; for 

example, amongst themselves there are differences as high as threefold.  Hence manganese, 

which has the lowest mean percentage, has the highest variance than any other component in the 

data set.  As a consequence, this rare component dominates the solution, as can be seen in 

Figure 1, with samples 3 and 25 being the two cups with the highest values (0.03%).   

One possible course of action is to omit an over-influential component such as manganese and 

analyse the remaining components as a subcomposition.  Another option, which we present here 

and which we believe to be more appropriate, is to down-weight its influence in the graphical 

display by introducing weights in the analysis.  In CA the inherent weights are the marginal row 

and column sums relative to the grand total: ri = ni+/n and cj = n+j /n, which are called masses.  

For a table of frequencies, the masses would be proportional to the marginal row and column 

counts, while if we applied CA to a matrix of compositional data, the row masses would be 

equal to a constant 1/I and the column masses would be the average proportions of the 

components across the samples.  Using these weights in the glass cups application would mean 

attributing importance to the components proportional to their average weights, effectively 

down-weighting the influence of the manganese component.    
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The argument we present below is valid for any chosen set of row or column weights; for 

example, in the case of compositional data one might have information about the precision of 

measurement, which could be used to define weights for the columns, and different row weights 

could be defined to correct for disproportionate sampling.  

Let r be the vector of row weights, c the vector of column weights and Dr and Dc the 

corresponding diagonal matrices.  The only condition on the weights is that they be positive and 

– purely for notational convenience – be closed (i.e., sum to 1).   We shall discuss later the 

special case when we choose weights proportional to the table margins, as is the practice in CA.  

Otherwise, we follow very closely the CA methodology: the row and column weights are 

introduced first into the double-centring stage, so that centring is with respect to weighted 

averages, and then – more importantly – into the matrix approximation stage, so that fitting is 

by weighted least squares.  As a direct result of the weighting, if we agglomerate  

distributionally equivalent columns, and similarly agglomerate their weights, then the principle 

of distributional equivalence is satisfied (this result is proved in Section 3). 

We now summarize the four-step algorithm for performing a “weighted log-ratio” (WLR) 

analysis, including the definitions of the various maps of the rows and columns.  This 

methodology applies to any matrix of positive data, transformed to logarithms in the I × J 

matrix L, and any sets of row and column weights, r and c, which are positive values summing 

to 1.   

 
Step 1.  Double-centre the matrix L with respect to its weighted row and column averages, the 

order of centring being invariant.  That is, calculate the weighted averages of the rows of L, 

using the column masses to weight each column element:  li·= Σj cj lij (i=1,···,I ) and then subtract 

these averages from all the elements in the corresponding row, lij – li· (this is “weighted row-

centring”). Then perform “weighted column-centring” by calculating weighted averages of the 

columns, using the row masses to weight each element: Σi ri (lij – li·) (j=1,···,J ), and then 

subtract these averages from all the elements in the corresponding columns.  The result of this 

operation is a double-centred matrix with elements aij =lij – li· – l·j + l··, where the dot subscript 

indicates weighted averaging over the corresponding subscript.  In matrix notation, this double-

centring can be written as (where I is the identity matrix and 1 the vector of ones of appropriate 

order): 

   A = (I – 1rT)L(I – c1T)             (1) 

. 

Step 2. To prepare the matrix for a weighted SVD, multiply aij by (ri cj)1/2, that is multiply the 

rows and columns by the square roots of their respective masses:  
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S = Dr
½ A Dc

½  

 

Step 3. Perform the SVD of this transformed matrix: 

S = UΓVT      where UTU = VTV = I 

where the singular values down the diagonal of Γ are in descending order: γ1 ≥ γ2 ≥ ··· >0. 

 

Step 4. Calculate the standard coordinates (Greenacre 1984) by dividing the rows of the matrix 

of left singular vectors by ri
½, and the rows of the matrix of right singular vectors by cj

½ : 

            (row standard)  X = Dr
–½ U                (column standard)  Y = Dc

–½ V 

The principal coordinates for the rows and columns are the standard coordinates scaled by the 

singular values: 

(row principal)  F = XΓ = Dr
–½ UΓ            (column principal)  G = YΓ = Dc

–½ VΓ 

In general, the coordinates can be written Dr
–½UΓα (for the rows) and Dc

–½VΓβ (for the 

columns), the above options being α and β equal to 1 or 0 for principal and standard coordinates 

respectively.  Notice how the masses are used to pre-transform the matrix in step 2 and post-

transform the resultant singular vectors in step 4, which engenders a weighted (or generalized) 

SVD on the centred matrix A (for a description of the generalized SVD see Greenacre 1984: 

Appendix 1).    

As in all methods of this type, we can choose to represent either of two so-called asymmetric 

maps: 

(i) Use F and Y to represent the rows and columns respectively – this map is also called 

“row-principal” or “row-metric-preserving (RMP)” (Gabriel 1971), with α = 1, β = 0. 

(ii) Use X and G to represent the rows and columns respectively – this asymmetric map is 

called “column-principal”, or “column-metric-preserving (CMP)”, with α = 0, β = 1.   

For representing the points in a two-dimensional map, for example, use the first two columns of 

the respective coordinate matrices defined above. 

Both asymmetric maps are biplots in the true sense of the term (Gabriel 1971), characterised by 

the condition α + β = 1, where row–column scalar products approximate the elements of the 

double-centred matrix A.  When the data are in the usual cases-by-variables format, Aitchison 

and Greenacre (2002) call the RMP biplot a form biplot and the CMP biplot a covariance biplot.  

A popular alternative map, especially in CA, is the symmetric map where both rows and 

columns are represented in principal coordinates F and G respectively (α = 1, β = 1).  The 

symmetric map is, strictly speaking, not a biplot (see, for example, Greenacre, 1993b), but 
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Gabriel (2002) shows that the scalar-product approximations are not substantially degraded in 

most cases.   

The description of the WLR method so far allows for any weighting system on the rows and the 

columns.  In many situations, in the absence of additional information, the row and column 

margins of the original data table provide an excellent default weighting system, which is the 

one we shall use here in our applications.  Thus, in the analysis of Table 2, the element 

manganese will be considerably down-weighted in the least-squares fitting of the plane of our 

biplot solution.   Figure 2 shows the WLR biplot for Table 2, verifying that the role played by 

manganese has diminished dramatically.  Although the element antimony (Sb) appears to be an 

outlier, its role is also not so strong owing to its low mass in the analysis.  The contributions of 

individual points to the map can be calculated, as is done regularly in CA (see, for example, 

Greenacre 1993a: chapter 11).  Table 3 shows the percentage contributions of the 11 elements to 

the two-dimensional maps of Figures 1 and 2.  In the unweighted analysis the contribution by 

manganese (Mn) to the variance of the two-dimensional map is the highest (39.48%), while it 

drops to one of the lowest in the weighted analysis (0.37%).  On the other hand, the most 

common element silicon (Si) contributes 7.11% to the unweighted map, and when its very high 

weight is incorporated in the analysis its contribution rises to 21.05%.  Notice that the very large 

weight given to silicon, which is on average 72.31% by weight of the glass cups, does not 

increase its contribution exorbitantly, because the point Si is now much closer to the centroid 

(weighted average), and a point’s contribution is equal to its mass times squared distance to the 

centroid.  Hence, the weighting is important in centring the data as well. 

Points that are displayed in principal coordinates are approximating distances between the rows 

or columns of the original data matrix.   For example, in Figure 2 where the rows are 

represented in principal coordinates, the true underlying (squared) distance function between 

rows i and i' is: 

2
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Aitchison and Greenacre (2002), this distance may be expressed equivalently in terms of the  

½ J(J – 1) log-ratios between unique pairs of columns: 

 
2

loglog2 ∑∑ ′<
′′

′

′
′′ 










= −

jj
ji

ji

ji

ij
jjii n

n

n

n
ccd         (2) 

where the (j,j')-th term is weighted by the product cjcj' of the weights.  With a slight re-

arrangement within the parenthesis, this squared distance is identical again to:     
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showing that log-ratios can be considered between pairs of values in the same column rather 

than across columns.   Alternatively, we can think of this “weighted log-ratio distance” (WLR 

distance) in terms of the logarithms of odds-ratios for the four cells defined by row indices i,i' 

and column indices j,j': 
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Zero distance between a pair of rows means that all ratios are equal, that is the rows have the 

same relative values, or profile: nij/ni+= ni'j/ni'+ .  Thus, if the distance between rows i and i' is 

short in the display, and assuming that the display is an accurate representation of the data, this 

indicates that the rows are approximately proportional to one another, just as in CA.  If the data 

are compositional with the unit-sum constraint, this would imply approximate equality in their 

compositions.  Similarly, if two column points j and j' displayed in principal coordinates are 

close together, this would indicate similar column profiles. For compositional data similar 

column profiles would mean that – although the overall levels of two components are different – 

they have similar “peaks” and “troughs” across the samples (for example, component j occurs 

approximately twice as much as component j' in all samples). 

All the properties of the unweighted log-ratio map described by Aitchison and Greenacre (2002) 

carry over to the weighted version described here, the only difference being in the centring of 

the matrix and the weighted approximation, giving more or less weight to the elements of the 

double-centred matrix according to the row and column margins.    

 

3.     Principle of distributional equivalence 

We now prove that the WLR map obeys the principle of distributional equivalence.  Suppose 

that two columns j and j' have the same profile, that is the ratios nij/nij'  are identical for all rows 

i.  Without loss of generality we can assume that these are the first two columns, j = 1 and j' = 2, 

and that these ratios are equal to a constant K, so that ni1 = K ni2 .  Let us now amalgamate these 

two columns into one column with values equal to ni1 + ni2 = (K+1) ni2 (i = 1,…, I), and column 

mass c1 + c2.  Clearly, the WLR distances between columns are unaffected by this merger, since 

we have just replaced two column points at the same position by one with mass equal to the sum 

of the previous two masses.  The more challenging property to prove is that the WLR distances 

between rows are unaffected.  In distance formula (2) all terms with log-ratios not involving 
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columns 1 and 2 are unaffected by the merger, so we just need to consider terms involving 

columns 1 and 2 before and after they are combined.  Before the merger, the first term of (1), for 

(j, j' ) = (1, 2), is equal to 0 since the ratios are equal and have zero difference.  The other terms 

involving log-ratios with columns 1 and 2 can be written as: 
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because the factor K disappears in the subtraction of the log-ratios.   After the merger, columns 

1 and 2 are eliminated and a new column is formed by adding the previous columns 1 and 2.  

The terms in the WLR distance function corresponding to log-ratios with respect to this new 

column are: 
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where again the factor (1+K) cancels out from the log-ratio differences.  Since (5) and (6) are 

identical, the distances between the rows are shown to be unaffected by the merging of these 

columns, so the principle of distributional equivalence is satisfied. 

 

4.     Application to non-compositional data: spectral mapping 

The methodology described in Section 2 applies just as well to positive data that are not 

necessarily compositional, for example contingency tables or any data measured on a ratio 

scale.  Lewi (1976) independently developed this method, the “spectral mapping” for the 

analysis and visualization of biological activity spectra.  These spectra define an I × J table of 

biological activities of a set of I compounds as observed in a battery of J tests.  Later Lewi 

(1980) proposed weights monotonically related to the table margins, since more importance is 

given to more potent compounds (compounds that are highly active in all or most tests) and to 

tests that are more sensitive (tests that produce higher activities from all or most compounds.  In 

(5) 

(6) 
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this weighted form of spectral mapping, also known as spectral map analysis (SMA), Lewi also 

found that the marginal “masses” of the table constitute good default weights in the analysis of 

the double-centred table, where the double-centring removes the component of potency and 

sensitivity of tests. 

Following the work of Lewi (1998), this weighting applies equally well to count data: for 

example, applying these weights to the rows and columns of the letter counts in Table 1, ratios 

would be weighted higher when the overall counts are higher.  As shown in the distance 

formulations (2) and (3), one can think of the log-ratios row-wise or column-wise: either the 

ratios between counts of different letters within the same text are visualized, or the ratios 

between counts for the same letter across the texts.  Figure 3 shows the resulting symmetric 

WLR/SMA map where both texts and letters are represented in principal coordinates.  The 

symmetric map has the advantage that the row and column points can be plotted on the same 

scale (compare with Figure 2, where it was necessary to scale up the row coordinates to 

represent the rows on the same scale as the columns), and both configurations have a distance 

interpretation.  The most surprising result of this display is the proximity of the pairs of texts by 

the same author – one might think that letter counts would not discriminate well between 

authors, but this map shows otherwise.  In fact, a permutation test shows that no other allocation 

of the 12 row labels (amongst over 10000 possible allocations) gives a lower sum of the six 

“within-author” distances than the labelling of the configuration in Figure 3 – in this sense the 

authors are discriminated in the map with a P-value less than 0.0001.    

Gabriel (1972) showed how the biplot represents differences between variables as the vectors 

joining them.  These links, i.e. vectors joining pairs of letters in this example, represent 

logarithms of ratios of two letters.  In the case of compositional data, Aitchison and Greenacre 

(2002) showed that points that lie in straight lines are an indication of constant “log-contrasts”.  

This property carries over to the general case of the present example.  For example, in Figure 3 

the letters k, y and x are aligned, and Table 4 shows the ratios of k and y with respect to x and 

the corresponding log-ratios.  Figure 4 plots log(y/x) versus log(k/x) and there is a clear linear 

relationship (correlation = 0.93).  The regression equation has a slope of 0.80 and an intercept of 

1.33.  This implies the model: 

  log(y/x) = 0.80 log(k/x) + 1.33 

or    log(y) – 0.20 log(x) – 0.80 log(k) =  1.33               (7) 

i.e.                             y = 3.78 x0.2k0.8                        (8) 

On the left of (7) is a linear combination of logarithms of the three letters, with coefficients 

adding up to 0, hence the term log-contrast.  In other applications constant log-contrasts, or 
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their equivalent multiplicative form shown in (8) with index powers on both sides of the 

equation having the same sum (1 in this case), have a clear substantive meaning and are 

associated with equilibrium relationships, for example in geology and population genetics 

(Aitchison 1990).  In the present linguistic context of English texts it is not known if the above 

equilibrium relationship between the letters k, x and y has any particular substantive relevance, 

but the relationship is certainly apparent in this data set. 

 

5.     Relationship to correspondence analysis 

The SVDs on which the spectral map and CA are based are closely connected.  Let us first 

summarize the matrices being decomposed in each case.  We have already seen that the spectral 

map double-centres the matrix L = log(N), using weights proportional to the table margins (CA 

masses) A = (I – 1rT)L(I – c1T) (see formula (1)).  Then A is decomposed using a weighted 

SVD.  Since any constant row- or column-effect added to the elements of L will be removed by 

the double-centring, let us define L* as the matrix of logarithms of the so-called Pearson 

contingency ratios, denoted by qij: 

)log()log()log()log(
/

log)log(* nnnn
nnn

n
ql jiij

ji

ij
ijij +−−=










== ++

++

       (7) 

so that A can be written equivalently as: A = (I – 1rT)L* (I – c1T). The contingency ratios are 

the observed values divided by the “expected” values, where expected value is defined as that 

obtained if the profiles of the rows (or of the columns) agree perfectly with the average profiles 

defined by the table margins (the terms observed and expected are used more in the context of 

contingency tables, but we extend their usage here to all tables of positive numbers).  Lewi 

(1998) aptly terms the contingency ratios as the double-closure of the original table, since the 

(weighted) row and column sums of the matrix Q of contingency ratios are all equal to 1. 

Now CA, which has many equivalent definitions, can be defined as the double-centring with 

respect to weighted averages (using the masses as weights) of the matrix Q, followed by the 

weighted SVD.  We have the following well-known approximation, using a first-order Taylor 

approximation: 

 log(qij) = log(1+ qij – 1) ≈ qij –1 

when qij –1 is small.  Since double-centring of Q–11T yields the same matrix as double-centring 

of Q, it follows that the spectral map and CA tend to the same solution as  

qij –1 tends to 0, that is as “observed” values tend to “expected” ones.  In practical terms, 

whenever variance (called inertia in CA) in a matrix is low, the two methods will give 
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approximately the same results.  In the case of both practical examples considered here, the 

variance is indeed low, especially for the letter counts of Table 1.  Figure 5 shows the CA 

symmetric map of Table 2 and it is indeed quite similar to Figure 3, even the amounts and 

percentages of inertia on each dimension are similar in value.  While CA has several interesting 

graphical properties of its own, such as optimal scaling and maximizing correlation between 

rows and columns (see, for example, Greenacre (1993a)), it does not have subcompositional 

coherence, nor does it have the model diagnostic features of the weighted log-ratio map – for 

example, the letters k, x and y are no longer lined up in Figure 5.  

 

5.     Relationship to association modelling 

Association modelling (Goodman 1968, 1983) for contingency tables is concerned with models 

for the probability πij that a case falls into the (i,j)-th cell of the table.  Specifically, the so-called 

RC(M) association model, where R stands for “row”, C for “column” and “M” for the number 

of bilinear terms in the model, can be written as: 

  jMiMMjiejiij
νµφνµφβαπ ++= K111            (8) 

where αi , βj ,φm ,µim ,νjm are parameters of the model (i=1,…,I; j=1,…,J; m=1,…,M) with various 

identification constraints.  In logarithmic form this is: 

∑
=

++=
M

m
jmimmjiij

1

)log()log()log( νµφβαπ          (9) 

If M = min{I–1, J–1} the model is called “saturated”, since it will fit the data perfectly.  Usually 

values M = 1 or 2 are used, the model is fitted by maximum likelihood to the data, and then 

hypothesis testing allows decisions to be made about how many terms are needed to fit the data, 

or whether some parameters are equal.  Such tests are valid for contingency tables established 

from a random sample of n individuals on whom two categorical variables are observed. 

The parametric model (9) has a form very similar to the data decomposition in the spectral map 

analysis (SMA) and the correspondence analysis (CA) described previously, which can be 

written respectively as:  

  SMA: ∑∑∑
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where pij = nij /n and where the approximation for CA holds when the data is close to 

independence (low inertia).  The essential difference between these three methods is thus the 

way the row and column “main effects” and “interaction terms” are estimated.  In SMA the 

weighted row and column averages of the logarithms of observed probabilities estimate the 

main effects and the interaction terms are obtained by a weighted SVD of the residuals.  In CA 

the row and column sums estimate the (multiplicative) main effects and the interaction terms are 

obtained by a weighted SVD of the residuals.  In association modelling, main effects and 

interaction terms are estimated simultaneously, for a given “dimensionality” M, by maximum 

likelihood.    Association modelling applies only to contingency tables, whereas the data-

analytic techniques SMA and CA apply to any tables of positive data for which the basic 

concepts of the methods, for example subcompositional coherence and distributional 

equivalence, make sense. 

 

6.     Discussion 

In this article we have shown how the introduction of row and column weights improves both 

the theoretical properties and practical application of log-ratio analysis.  With the convention 

that weights be added if rows or columns are merged, weighted log-ratio (WLR) maps, alias 

spectral map analysis (SMA), obey the principle of distributional equivalence.  The chi-square 

distance in CA and the WLR distance are not the only distances that obey this principle.  

Escofier (1978) shows that the Hellinger distance also has this property: for example, using 

previous notation, the Hellinger distance (squared) between rows i and i' is: 

2
2 ∑ 
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d  

 (see also Cuadras, Cuadras and Greenacre (2005)).  It can also be shown, in a similar way as in 

Section 3, that a weighted form of normalized PCA is also distributionally equivalent.  For 

example, for a table N of non-negative data, normalize the columns j by dividing by any 

appropriate scale-dependent quantity such as the standard-deviation, sum, maximum or range.  

Then, again using column weights cj applicable to the problem, define the squared distance      

between rows as: 

2
2 ∑ 
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Notice here that the data elements can be considered transformed by a single scale value 

jj sc / , but the two parts of this quotient play different roles in the analysis: the sj normalize 

the columns to make the columns comparable (the columns could be ratio-scale variables or 
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components in compositional data), while the cj are used in the centring and weight least-

squares fitting of the normalized data.  This weighted, normalized PCA has distributional 

equivalence but not subcompositional coherence. 

SMA was developed originally by Lewi (1976) for the analysis of biological activity spectra in 

the context of drug development.  This method has been extensively used in biomedical 

research, for example Wouters et al. (2003) apply it to gene expression data from microarrays 

and compare it with principal component analysis and CA.  In this context the rationale for the 

weighting of the rows and columns of the log-transformed data has been to take into account the 

higher importance of potent compounds and sensitive tests, as explained in Section 4, but the 

weighting makes sense in the analysis of contingency tables and compositional data as well.  As 

in the case of Table 1, we often find that the there is larger relative error in data of lower value, 

so that weighting the log-ratios in this way takes the precision of measurement into account.    

In CA of a contingency table, the rationale is similar, since under the assumption of 

independence, the variability of the contingency ratio for the (i,j)-th cell, is approximately 

1/(ricj), which justifies the weighting in the least-squares formulation by ricj, approximately 

normalizing of the contribution of each row-column term.    

In the case of count or abundance data nij, SMA, alias WLR, has the disadvantage of being 

applicable to strictly positive data only, which rules it out for many social science applications 

and most ecological applications where data matrices contain many zero frequencies.  At a low-

level occurrence of zero data nij = 0, one can apply the transformation log(1+ nij) – see Legendre 

and Gallagher (2001).  In the case of the author data, which had one zero count, we replaced the 

zero with the value ½.  In the case of compositional data and other measurement data, zero 

values can be replaced by some acceptable positive numbers depending on the problem, for 

example half the detection limit (see Martín-Fernández et al., 2003, for an investigation of the 

problem of zero values in a geochemical context).  Apart from this drawback, the method has 

very similar properties to CA, with several additional benefits such as subcompositional 

coherence and the model diagnostic properties.   Thus, in the case of strictly positive data 

matrices, WLR/SMA may be judged superior to CA from a theoretical point of view.  In the 

usual context of CA applications, however, mostly in the social sciences, subcompositional 

coherence is not always relevant, as explained by Greenacre and Pardo (2005) who describe 

how a variant of CA called subset CA can be used to analyse subsets of rows and/or columns of 

a contingency table, without closing the proportions within the subset.   
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Table 1   Letter counts in 12 samples of texts from books by six different authors (R 

Development Core Team, 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: TD (Three Daughters), EW (East Wind) – Buck (Pearl S. Buck) 

  Dr (Drifters), As (Asia) – Mich (James Michener) 

  LW (Lost World), PF (Profiles of Future) – Clark (Arthur C. Clarke) 

  FA (Farewell to Arms), Is (Islands) – Hem (Ernest Hemingway) 

  SF7 and SF6 (Sound and Fury, chapters 7 and 6) – Faul (William Faulkner) 

  Pen3 and Pen2 (Bride of Pendorric, chapters 3 and 2) – Holt (Victoria Holt)  

 

 

Abbrev. a b c d e f g h i j k l m
TD-Buck 550 116 147 374 1015 131 131 493 442 2 52 302 159
EW-Buck 557 129 128 343 996 158 129 571 555 4 76 291 247
Dr-Mich 515 109 172 311 827 167 136 376 432 8 61 280 146
As-Mich 554 108 206 243 797 164 100 328 471 4 34 293 149
LW-Clark 590 112 181 265 940 137 119 419 514 6 46 335 176
PF-Clark 592 151 251 238 985 168 152 381 544 7 39 416 236
FA-Hem 589 72 129 339 866 108 159 449 472 7 59 264 158
Is-Hem 576 120 136 404 873 122 156 593 406 3 90 281 142
SF7-Faul 541 109 136 228 763 126 129 401 520 5 72 280 209
SF6-Faul 517 96 127 356 771 115 189 478 558 6 80 322 163
Pen3-Holt 557 97 145 354 909 97 121 479 431 10 94 240 154
Pen2-Holt 541 93 149 390 887 133 154 463 518 4 65 265 194

Abbrev. n o p q r s t u v w x y z
TD-Buck 534 516 115 4 409 467 632 174 66 155 5 150 3
EW-Buck 479 509 92 3 413 533 632 181 68 187 10 184 4
Dr-Mich 470 561 140 4 368 387 632 195 60 156 14 137 5
As-Mich 482 532 145 8 361 402 630 196 66 149 2 80 6
LW-Clark 403 505 147 8 395 464 670 224 113 146 13 162 10
PF-Clark 526 524 107 9 418 508 655 226 89 106 15 142 20
FA-Hem 504 542 95 0 416 314 691 197 64 225 1 155 2
Is-Hem 516 488 91 3 339 349 640 194 40 250 3 104 5
SF7-Faul 471 589 84 2 324 454 672 247 71 160 11 280 1
SF6-Faul 483 617 82 8 294 358 685 225 37 216 12 171 5
Pen3-Holt 417 477 100 3 305 415 597 237 64 194 9 140 4
Pen2-Holt 484 545 70 4 299 423 644 193 66 218 2 127 2
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Table 2   Percentage compositions of 47 Roman glass cups (Baxter et al 1990). 

 Cups Si Al Fe Mg Ca Na K Ti P Mn Sb
1 75.2 1.84 0.26 0.47 5.00 16.3 0.44 0.06 0.04 0.01 0.36
2 72.4 1.80 0.28 0.46 5.89 18.2 0.44 0.06 0.04 0.01 0.33
3 69.9 2.08 0.40 0.57 6.33 19.5 0.54 0.09 0.06 0.03 0.44
4 70.2 2.23 0.41 0.60 6.10 19.5 0.42 0.08 0.05 0.01 0.34
5 73.0 2.16 0.35 0.51 5.66 17.3 0.44 0.07 0.05 0.01 0.37
6 74.2 2.02 0.33 0.51 5.34 16.5 0.52 0.07 0.05 0.01 0.35
7 74.2 1.80 0.25 0.39 5.35 17.1 0.44 0.06 0.04 0.01 0.31
8 74.4 1.74 0.27 0.42 5.41 16.8 0.49 0.06 0.05 0.01 0.31
9 72.8 1.81 0.30 0.66 5.86 17.6 0.40 0.07 0.04 0.01 0.33

10 74.8 1.71 0.22 0.35 5.48 16.3 0.42 0.06 0.05 0.01 0.51
11 75.0 1.74 0.22 0.32 5.03 16.8 0.43 0.05 0.05 0.01 0.30
12 73.8 1.93 0.31 0.42 4.94 17.6 0.43 0.05 0.04 0.01 0.38
13 70.3 1.94 0.30 0.44 6.31 19.5 0.57 0.07 0.05 0.01 0.39
14 72.7 1.74 0.25 0.37 5.90 17.8 0.50 0.06 0.05 0.01 0.53
15 74.3 1.88 0.30 0.40 4.76 17.3 0.41 0.05 0.04 0.01 0.48
16 70.2 2.23 0.42 0.56 6.65 18.7 0.61 0.09 0.06 0.02 0.35
17 73.1 1.90 0.29 0.41 5.13 18.2 0.45 0.05 0.04 0.01 0.31
18 73.7 1.78 0.23 0.32 4.98 18.1 0.45 0.06 0.04 0.01 0.27
19 73.3 1.89 0.30 0.41 5.37 17.8 0.42 0.07 0.04 0.01 0.30
20 71.7 1.75 0.27 0.42 6.04 19.0 0.41 0.06 0.05 0.01 0.24
21 73.7 1.80 0.25 0.36 5.15 17.9 0.45 0.06 0.04 0.01 0.18
22 73.1 1.82 0.23 0.32 5.13 18.4 0.46 0.06 0.04 0.01 0.38
23 73.0 1.90 0.27 0.44 5.48 17.9 0.52 0.07 0.05 0.01 0.28
24 68.8 2.03 0.38 0.51 7.02 20.0 0.59 0.07 0.06 0.02 0.40
25 70.2 2.11 0.42 0.59 6.53 19.0 0.53 0.08 0.06 0.03 0.33
26 70.5 2.11 0.39 0.56 6.18 19.1 0.57 0.07 0.05 0.02 0.37
27 72.7 1.96 0.30 0.50 5.58 17.9 0.52 0.07 0.05 0.02 0.28
28 73.1 1.78 0.26 0.42 5.48 17.9 0.46 0.06 0.05 0.01 0.36
29 69.3 2.21 0.45 0.54 6.87 19.4 0.57 0.10 0.06 0.02 0.41
30 70.2 2.25 0.43 0.54 6.77 18.7 0.54 0.09 0.06 0.02 0.31
31 74.4 1.94 0.26 0.46 5.07 17.0 0.47 0.07 0.05 0.01 0.18
32 73.9 1.90 0.26 0.46 5.04 17.6 0.45 0.07 0.04 0.01 0.20
33 72.6 1.81 0.27 0.41 5.48 18.5 0.37 0.07 0.05 0.01 0.31
34 69.9 1.87 0.32 0.46 6.34 19.8 0.58 0.07 0.06 0.02 0.49
35 69.7 2.04 0.36 0.48 6.20 19.8 0.56 0.07 0.06 0.01 0.58
36 72.3 2.08 0.36 0.53 5.47 18.0 0.58 0.08 0.06 0.01 0.49
37 70.5 2.00 0.33 0.59 5.83 19.8 0.42 0.09 0.05 0.01 0.33
38 72.3 1.71 0.21 0.36 5.27 18.8 0.48 0.06 0.07 0.01 0.63
39 72.2 2.02 0.34 0.51 5.36 18.4 0.54 0.08 0.05 0.01 0.46
40 73.8 1.88 0.26 0.45 5.12 17.6 0.45 0.07 0.05 0.01 0.21
41 72.4 1.92 0.29 0.48 5.45 18.4 0.51 0.07 0.05 0.02 0.38
42 72.6 2.00 0.33 0.46 5.41 17.7 0.75 0.08 0.08 0.01 0.54
43 71.6 1.90 0.27 0.48 5.32 19.4 0.47 0.06 0.05 0.01 0.35
44 72.3 2.03 0.30 0.48 5.41 18.6 0.50 0.07 0.05 0.01 0.21
45 73.4 1.93 0.24 0.37 5.18 17.8 0.55 0.06 0.04 0.01 0.30
46 71.7 2.02 0.42 0.53 5.73 18.3 0.62 0.10 0.06 0.02 0.39
47 69.3 2.04 0.40 0.50 6.85 19.5 0.62 0.08 0.06 0.02 0.57

mean 72.31 1.94 0.31 0.46 5.66 18.24 0.50 0.07 0.05 0.01 0.36
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Table 3   Percentage contributions by components in unweighted and weighted log-ratio maps, 

where the weights are given by the column means of Table 2.  In the unweighted analysis the 

rarest components Mn and Sb dominate, while in the weighted analysis more components 

contribute to the solution, including the most frequent one, Si. 

 

 

 

 

 

 

 

 

 

unweighted     weighted
Si 7.11 21.05
Al 2.57 2.76
Fe 2.15 4.34

Mg 2.94 3.44
Ca 0.51 25.93
Na 2.89 22.33

K 0.23 2.20
Ti 1.92 0.53
P 0.80 0.37

Mn 39.48 0.37
Sb 39.39 16.68
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Table 4    Ratios between letter counts for y/x, k/x and the log-ratios. 

 

Book y/x k/x ln(y/x) ln(k/x)
TD-Buck 30.0 10.4 3.401 2.342
EW-Buck 18.4 7.6 2.912 2.028
Dr-Mich 9.8 4.4 2.281 1.472
As-Mich 40.0 17.0 3.689 2.833
LW-Clark 12.5 3.5 2.523 1.264
PF-Clark 9.5 2.6 2.248 0.956
FA-Hem 155.0 59.0 5.043 4.078
Is-Hem 34.7 30.0 3.546 3.401
SF7-Faul 25.5 6.5 3.237 1.879
SF6-Faul 14.3 6.7 2.657 1.897
Pen3-Holt 15.6 10.4 2.744 2.346
Pen2-Holt 63.5 32.5 4.151 3.481



 21

Figure 1   Unweighted log-ratio biplot of Baxter data, showing rows in principal coordinates 

and columns in standard coordinates (form biplot). 
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Figure 2   Weighted log-ratio biplot of Baxter data, showing rows in principal coordinates and 

columns in standard coordinates (form biplot).  Row coordinate values have been multiplied by 

50. 
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Figure 3   Weighted log-ratio biplot of author data, showing both rows and columns in principal 

coordinates (symmetric map).  
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Figure 4   Scatterplot of log-ratios in Table 4, showing the relationship diagnosed by the lining 

up of letters k, x and y in the weighted log-ratio map of Figure 3.  The regression line indicated 

has slope 0.80 and intercept 1.33. 
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Figure 5   CA of author data, showing both rows and columns in principal coordinates 

(symmetric map). 
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