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Iterated Local Search

Helena R. Lourenço, Olivier C. Martin, and Thomas Stützle

1 Introduction

The importance of high performance algorithms for tackling difficult opti-
mization problems cannot be understated, and in many cases the most meth-
ods effective are metaheuristics. When designing a metaheuristic, it is prefer-
able that it be simple, both conceptually and in practice. Naturally, it also
must lead to effective algorithms, and if possible, general purpose. If we think
of a metaheuristic as simply a construction for guiding (problem-specific)
heuristics, the ideal case is when the metaheuristic can be used without any

problem-dependent knowledge.
As metaheuristics have become more and more sophisticated, this ideal

case has been pushed aside in the quest for greater performance. As a conse-
quence, problem-specific knowledge (in addition to that built into the heuris-
tic being guided) must now be incorporated into metaheuristics in order to
reach the state of the art level. Unfortunately, this makes the boundary be-
tween heuristics and metaheuristics fuzzy, and we run the risk of loosing both
simplicity and generality. To counter this, we appeal to modularity and try
to decompose a metaheuristic algorithm into a few parts, each with its own
specificity. In particular, we would like to have a totally general purpose part,
while any problem-specific knowledge built into the metaheuristic would be
restricted to another part. Finally, to the extent possible, we prefer to leave
untouched the embedded heuristic (which is to be “guided”) because of its
potential complexity. One can also consider the case where this heuristic is
only available through an object module, the source code being proprietary;
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it is then necessary to be able to treat it as a “black-box” routine. Iterated
local search provides a simple way to satisfy all these requirements.

The essence of the iterated local search metaheuristic can be given in
a nut-shell: one iteratively builds a sequence of solutions generated by the
embedded heuristic, leading to far better solutions than if one were to use re-
peated random trials of that heuristic. This simple idea [9] has a long history,
and its rediscovery by many authors has lead to many different names for
iterated local search like iterated descent [8, 7], large-step Markov chains [61],
iterated Lin-Kernighan [45], chained local optimization [60], or combinations
of these [1] ... Readers interested in these historical developments should con-
sult the review [46]. For us, there are two main points that make an algorithm
an iterated local search: (i) there must be a single chain that is being followed
(this then excludes population-based algorithms); (ii) the search for better
solutions occurs in a reduced space defined by the output of a black-box
heuristic. In practice, local search has been the most frequently used embed-
ded heuristic, but in fact any optimizer can be used, be it deterministic or
not.

The purpose of this review is to give a detailed description of iterated
local search and to show where it stands in terms of performance. So far,
in spite of its conceptual simplicity, it has lead to a number of state-of-the-
art results without the use of too much problem-specific knowledge; perhaps
this is because iterated local search is very malleable, many implementation
choices being left to the developer. We have organized this chapter as follows.
First we give a high-level presentation of iterated local search in Section 2.
Then we discuss the importance of the different parts of the metaheuristic in
Section 3, especially the subtleties associated with perturbing the solutions.
In Section 4 we go over past work testing iterated local search in practice,
while in Section 5 we discuss similarities and differences between iterated
local search and other metaheuristics. The chapter closes with a summary of
what has been achieved so far and an outlook on what the near future may
look like.

2 Iterating a local search

2.1 General framework

We assume we have been given a problem-specific heuristic optimization al-
gorithm that from now on we shall refer to as a local search (even if in fact
it is not a true local search). This algorithm is implemented via a computer
routine that we call LocalSearch. The question we ask is “Can such an algo-
rithm be improved by the use of iteration?”. Our answer is “YES”, and in fact
the improvements obtained in practice are usually significant. Only in rather
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Fig. 1 Probability densities of costs. The curve labeled s gives the cost density for all
solutions, while the curve labeled s∗ gives it for the solutions that are local optima.

pathological cases where the iteration method is “incompatible” with the lo-
cal search will the improvement be minimal. In the same vein, in order to
have the most improvement possible, it is necessary to have some understand-
ing of the way the LocalSearch works. However, to keep this presentation as
simple as possible, we shall ignore for the time being these complications; the
additional subtleties associated with tuning the iteration to the local search
procedure will be discussed in Section 3 Furthermore, all issues associated
with the actual speed of the algorithm are omitted in this first section as we
wish to focus solely on the high-level architecture of iterated local search.

Let C be the cost function of our combinatorial optimization problem; C is
to be minimized. We label candidate solutions or simply “solutions” by s, and
denote by S the set of all s (for simplicity S is taken to be finite, but it does
not matter much). Finally, for the purposes of this high-level presentation,
it is simplest to assume that the local search procedure is deterministic and
memoriless:1 for a given input s, it always outputs the same solution s∗

whose cost is less or equal to C(s). LocalSearch then defines a many to one
mapping from the set S to the smaller set S∗ of locally optimal solutions s∗.
To have a pictorial view of this, introduce the “basin of attraction” of a local
minimum s∗ as the set of s that are mapped to s∗ under the local search
routine. LocalSearch then takes one from a starting solution to a solution at
the bottom of the corresponding basin of attraction.

Now take an s or an s∗ at random. Typically, the distribution of costs
found has a very rapidly rising part at the lowest values. In Figure 1 we show
the kind of distributions found in practice for combinatorial optimization

1 The reader can check that very little of what we say really uses this property, and in
practice, many successful implementations of iterated local search have non-deterministic
local searches or include memory.
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problems having a finite solution space. The distribution of costs is bell-
shaped, with a mean and variance that is significantly smaller for solutions
in S∗ than for those in S. As a consequence, it is much better to use local
search than to sample randomly in S if one seeks low cost solutions. The
essential ingredient necessary for local search is a neighborhood structure.
This means that S is a “space” with some topological structure, not just a
set. Having such a space allows one to move from one solution s to a better
one in an intelligent way, something that would not be possible if S were just
a set.

Now the question is how to go beyond this use of LocalSearch. More pre-
cisely, given the mapping from S to S∗, how can one further reduce the costs
found without opening up and modifying LocalSearch, leaving it as a “black
box” routine?

2.2 Random restart

The simplest possibility to improve upon a cost found by LocalSearch is to
repeat the search from another starting point. Every s∗ generated is then
independent, and the use of multiple trials allows one to reach into the lower
part of the distribution. Although such a “random restart” approach with
independent samplings is sometimes a useful strategy (in particular when all
other options fail), it breaks down as the instance size grows because in that
limit the tail of the distribution of costs collapses. Indeed, empirical stud-
ies [46] and general arguments [77] indicate that local search algorithms on
large generic instances lead to costs that: (i) have a mean that is a fixed per-
centage excess above the optimum cost; (ii) have a distribution that becomes
arbitrarily peaked about the mean when the instance size goes to infinity.
This second property makes it impossible in practice to find an s∗ whose cost
is even a little bit lower percentage-wise than the typical cost. Note however
that there do exist many solutions of significantly lower cost, it is just that
random sampling has a lower and lower probability of finding them as the
instance size increases. To reach those configurations, a biased sampling is
necessary; this is precisely what is accomplished by a stochastic search.

2.3 Searching in S
∗

To overcome the problem just mentioned associated with large instance sizes,
reconsider what local search does: it takes one from S where C has a large
mean to S∗ where C has a smaller mean. It is then most natural to invoke
recursion: use local search to go from S∗ to a smaller space S∗∗ where the
mean cost will be still lower! That would correspond to an algorithm with one
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local search nested inside another. Such a construction could be iterated to
as many levels as desired, leading to a hierarchy of nested local searches. But
upon closer scrutiny, we see that the problem is precisely how to formulate
local search beyond the lowest level of the hierarchy: local search requires
a neighborhood structure and this is not a priori given. The fundamental
difficulty is to define neighbors in S∗ so that they can be enumerated and
accessed efficiently. Furthermore, it is desirable for nearest neighbors in S∗

to be relatively close when using the distance in S; if this were not the case,
a stochastic search on S∗ would have little chance of being effective.

Upon further thought, it transpires that one can introduce a good neigh-
borhood structure on S∗ as follows. First, one recalls that a neighborhood
structure on a set S directly induces a neighborhood structure on subsets of
S: two subsets are nearest neighbors simply if they contain solutions that are
nearest neighbors. Second, take these subsets to be the basins of attraction
of the s∗; in effect, we are lead to identify any s∗ with its basin of attraction.
This then immediately gives the “canonical” notion of neighborhood on S∗,
notion which can be stated in a simple way as follows: s∗1 and s∗2 are neighbors
in S∗ if their basins of attraction “touch” (i.e., contain nearest-neighbor so-
lutions in S). Unfortunately this definition has the major drawback that one
cannot in practice list the neighbors of an s∗ because there is no computa-
tionally efficient method for finding all solutions s in the basin of attraction of
s∗. Nevertheless, we can stochastically generate nearest neighbors as follows.
Starting from s∗, create a randomized path in S, s1, s2, ..., si, where sj+1 is
a nearest neighbor of sj . Determine the first sj in this path that belongs to
a different basin of attraction so that applying local search to sj leads to an
s∗′ 6= s∗. Then s∗′ is a nearest-neighbor of s∗.

Given this procedure, we can in principle perform a local search2 in S∗.
Extending the argument recursively, we see that it would be possible to have
an algorithm implementing nested searches, performing local search on S,
S∗, S∗∗, etc... in a hierarchical way. Unfortunately, the implementation of
nearest neighbor search at the level of S∗ is much too costly computationally
because of the number of times one has to execute LocalSearch. Thus we are
led to abandon the (stochastic) search for nearest neighbors in S∗; instead we
use a weaker notion of closeness which then allows for a fast stochastic search
in S∗. Our construction leads to a (biased) sampling of S∗; such a sampling
will be better than a random one if it is possible to find appropriate com-
putational ways to go from one s∗ to another. Finally, one last advantage
of this modified notion of closeness is that it does not require basins of at-
traction to be defined; the local search can then incorporate memory or be
non-deterministic, making the method far more general.

2 Note that the local search finds neighbors stochastically; generally there is no efficient
way to ensure that one has tested all the neighbors of any given s∗.
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Fig. 2 Pictorial representation of iterated local search. Starting with a local minimum s∗,
we apply a perturbation leading to a solution s′. After applying LocalSearch, we find a new
local minimum s∗′ that may be better than s∗.

2.4 Iterated Local Search

We want to explore S∗ using a walk that steps from one s∗ to a “nearby”
one, without the constraint of using only nearest neighbors as defined above.
Iterated local search (ILS) achieves this heuristically as follows. Given the
current s∗, we first apply a change or perturbation that leads to an inter-
mediate state s′ (which belongs to S). Then LocalSearch is applied to s′ and
we reach a solution s∗′ in S∗. If s∗′ passes an acceptance test, it becomes
the next element of the walk in S∗; otherwise, one returns to s∗. The result-
ing walk is a case of a stochastic search in S∗, but where neighborhoods are
never explicitly introduced. This iterated local search procedure should lead
to good biased sampling as long as the perturbations are neither too small
nor too large. If they are too small, one will often fall back to s∗ and few new
solutions of S∗ will be explored. If on the contrary the perturbations are too
large, s′ will be random, there will be no bias in the sampling, and we will
recover a random restart type algorithm.

The overall ILS procedure is pictorially illustrated in Figure 2. To be com-
plete, let us note that generally the iterated local search walk will not be
reversible; in particular one may sometimes be able to step from s∗1 to s∗2 but
not from s∗2 to s∗1. However this “unfortunate” aspect of the procedure does
not prevent ILS from being very effective in practice.

Since deterministic perturbations may lead to short cycles (for instance of
length 2), one should randomize the perturbations or have them be adaptive
so as to avoid this kind of cycling. If the perturbations depend on any of the
previous s∗, one has a walk in S∗ with memory. Now the reader may have
noticed that aside from the issue of perturbations (which use the structure
on S), our formalism reduces the problem to that of a stochastic search on
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Algorithm 1 Iterated Local Search.
1: s0 = GenerateInitialSolution

2: s∗ = LocalSearch(s0)
3: VT = ∅

4: repeat

5: s′ = Perturbation(s∗, history)
6: s∗′ = LocalSearch(s′)
7: s∗ = AcceptanceCriterion

8: until termination condition met

S∗. Then all of the bells and whistles (diversification, intensification, tabu,
adaptive perturbations and acceptance criteria, etc...) that are commonly
used in that context may be applied here. This leads us to define iterated
local search algorithms as metaheuristics having the high level architecture
as given by Algorithm 1.

In practice, much of the potential complexity of ILS is hidden in the his-
tory dependence. If there happens to be no such dependence, the walk has no
memory:3 the perturbation and acceptance criterion do not depend on any
of the solutions visited previously during the walk, and one accepts or not
s∗′ with a fixed rule. This leads to random walk dynamics on S∗ that are
“Markovian”, the probability of making a particular step from s∗1 to s∗2 de-
pending only on s∗1 and s∗2. Most of the work using ILS has been of this type,
though studies show unambiguously that incorporating memory enhances
performance [82].

Staying within Markovian walks, the most basic acceptance criteria will
use only the difference in the costs of s∗ and s∗′; this type of dynamics for
the walk is then very similar in spirit to what occurs in simulated annealing.
A limiting case of this is to accept only improving moves, as happens in
simulated annealing at zero temperature; the algorithm then does (stochastic)
descent in S∗. If we add to such a method a CPU time criterion to stop the
search for improvements, the resulting algorithm pretty much has two nested
local searches; to be precise, it has a local search operating on S embedded
in a stochastic search operating on S∗. More generally, one can extend this
type of algorithm to more levels of nesting, having a different stochastic search
algorithm for S∗, S∗∗ etc... Each level would be characterized by its own type
of perturbation and stopping rule; to our knowledge, such a construction has
never been attempted.

We can summarize this section by saying that the potential power of it-
erated local search lies in its biased sampling of the set of local optima. The
efficiency of this sampling depends both on the kinds of perturbations and
on the acceptance criteria. Interestingly, even with the most näı ve imple-
mentations of these parts, iterated local search is much better than random
restart. But still much better results can be obtained if the iterated local

3 Recall that to simplify this section’s presentation, the local search is assumed to have no
memory.
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search modules are optimized. First, the acceptance criteria can be adjusted
empirically as in simulated annealing without knowing anything about the
problem being optimized. This kind of optimization will be familiar to any
user of metaheuristics, though the questions of memory may become quite
complex. Second, the Perturbation routine can incorporate as much problem-
specific information as the developer is willing to put into it. In practice,
a rule of thumb can be used as a guide: “a good perturbation transforms
one excellent solution into an excellent starting point for a local search”. To-
gether, these different aspects show that iterated local search algorithms can
have a wide range of complexity, but complexity may be added progressively
and in a modular way. (Recall in particular that all of the fine-tuning that
resides in the embedded local search can be ignored if one wants, and it does
not appear in the metaheuristic per-se.) This makes iterated local search an
appealing metaheuristic for both academic and industrial applications. The
cherry on the cake is speed: as we shall soon see, one can perform k local
searches embedded within an iterated local search much faster than if the k
local searches are run within random restart.

3 Getting high performance

Given all these advantages, we hope the reader is now motivated to go on
and consider the more nitty-gritty details that arise when developing an ILS
algorithm for a new application. In this section, we will illustrate the main
issues that need to be tackled when optimizing an ILS algorithm in order to
achieve high performance.

There are four components to consider: GenerateInitialSolution, LocalSearch,
Perturbation, and AcceptanceCriterion. Before attempting to develop a state-
of-the-art algorithm, it is relatively straight-forward to develop a more basic
version of ILS. Indeed, (i) one can start with a random solution or one re-
turned by some greedy construction heuristic; (ii) for most problems a local
search algorithm is readily available; (iii) for the perturbation, a random move
in a neighborhood of higher order than the one used by the local search al-
gorithm can be surprisingly effective; and (iv) a reasonable first guess for the
acceptance criterion is to force the cost to decrease, corresponding to a first-
improvement descent in the set S∗. Basic ILS implementations of this type
usually lead to much better performance than random restart approaches.
The developer can then run this basic ILS to build his intuition and try to im-
prove the overall algorithm performance by improving each of the four mod-
ules. This should be particularly effective if it is possible to take into account
the specificities of the combinatorial optimization problem under considera-
tion. In practice, this tuning is easier for ILS than for memetic algorithms or
to name but these metaheuristics. The reason may be that the complexity
of ILS is reduced by its modularity, the function of each component being
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relatively easy to understand. Finally, the last task to consider is the overall
optimization of the ILS algorithm; indeed, the different components affect
one another and so it is necessary to understand their interactions. However,
because these interactions are so problem dependent, we wait till the end of
this section before discussing that kind of “global” optimization.

Perhaps the main message here is that the developer can choose the level
of optimization he wants. In the absence of any optimizations, ILS is a simple,
easy to implement, and quite effective metaheuristic. But with further work
on its four components, ILS can often be turned into a very competitive or
even state of the art algorithm.

3.1 Initial solution

Local search applied to the initial solution s0 gives the starting point s∗0 of the
walk in the set S∗. Starting with a good s∗0 can be important if high-quality
solutions are to be reached as fast as possible.

Standard choices for s0 are either a random initial solution or a solution
returned by a greedy construction heuristic. A greedy initial solution s0 has
two main advantages over random starting solutions: (i) when combined with
local search, greedy initial solutions often result in better quality solutions s∗0;
(ii) a local search from greedy solutions takes, on average, less improvement
steps and therefore the local search requires less CPU time.4

The question of an appropriate initial solution for (random restart) local
search carries over to ILS because of the dependence of the walk in S∗ on
the initial solution s∗0. Indeed, when starting with a random s0, ILS may take
several iterations to catch up in quality with runs using an s∗0 obtained by a
greedy initial solution. Hence, for short computation times the initial solution
is certainly important to achieve the highest quality solutions possible. For
larger computation times, the dependence on s0 of the final solution returned
by ILS reflects just how fast, if at all, the memory of the initial solution is
lost when performing the walk in S∗.

Let us illustrate the tradeoffs between random and greedy initial solu-
tions when using an ILS algorithm for the permutation flow shop problem
(FSP) [79]. That ILS algorithm uses a straight-forward local search imple-
mentation, random perturbations, and always applies Perturbation to the best
solution found so far. In Figure 3 we show how the average solution cost
(makespan) evolves with the number of iterations for two instances. The aver-

4 Note that the best possible greedy initial solution need not be the best choice when
combined with a local search. For example, in [46], it is shown that the combination of
the Clarke-Wright starting tour (one of the best performing TSP construction heuristics)
with local search resulted in worse local optima than starting from random initial solutions
when using 3-opt. Additionally, greedy algorithms which generate very high quality initial
solutions can be quite time-consuming.
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Fig. 3 The plots show the average solution cost (makespan on the y-axis) as a function
of CPU time (given on the x-axis) for an ILS algorithm applied to the FSP on instances
ta051 and ta056.

ages are for 10 independent runs when starting from random initial solutions
or from initial solutions returned by the NEH heuristic [69]. (NEH is one of
the best performing constructive heuristics for the FSP.) For short runs, the
curve for the instance on the right shows that the NEH initial solutions lead
to better average solution cost than random initial solutions. But at longer
times, the picture is not so clear, sometimes random initial solutions lead to
better average results as we see on the instance on the left. This kind of test
was also performed for ILS applied to the TSP [1]. Again it was observed that
the initial solution had a significant influence on quality for short to medium
sized runs.

In general, there will not always be a clear-cut answer regarding the best
choice of an initial solution, but greedy initial solutions appear to be recom-
mendable when one needs low-cost solutions quickly. For much longer runs,
the initial solution seems to be less relevant, so the user can choose the initial
solution that is the easiest to implement. If, however, one has an application
where the influence of the initial solution does persist for long times, probably
the ILS walk is having difficulty in exploring S∗ and so other perturbations
or acceptance criteria should be considered.

3.2 Perturbation

The main drawback of local descent is that it gets trapped in local optima
that are significantly worse than the global optimum. Much like simulated
annealing, ILS escapes from local optima by applying perturbations to the
current local minimum. We will refer to the strength of a perturbation as
the number of solution components which are modified. For instance for the
TSP, it is the number of edges that are changed in the tour, while in the flow
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shop problem, it is the number of jobs which are moved in the perturbation.
Generally, the local search should not be able to undo the perturbation,
otherwise one will fall back into the local optimum just visited. Surprisingly
often, a random move in a neighborhood of higher order than the one used
by the local search algorithm can achieve this and will lead to a satisfactory
algorithm. Still better results can be obtained if the perturbations take into
account properties of the problem and are well matched to the local search
algorithm.

By how much should the perturbation change the current solution? If the
perturbation is too strong, ILS may behave like a random restart, so better
solutions will only be found with a very low probability. On the other hand,
if the perturbation is too small, the local search will often fall back into the
local optimum just visited and the diversification of the search space will be
very limited. An example of a simple but effective perturbation for the TSP
is the double-bridge move. This perturbation cuts four edges (and is thus of
“strength” 4) and introduces four new ones as shown in Figure 4. Notice that
each bridge is a 2-change, but neither of the 2-changes individually keeps
the tour connected. Nearly all ILS studies of the TSP have incorporated this
kind of perturbation, and it has been found to be effective for all instance
sizes. This is almost certainly because it changes the topology of the tour and
can operate on quadruples of very distant cities, whereas local search always
modifies the tour among nearby cities. In effect, the double-bridge pertur-
bation cannot be undone easily, neither by simple local search algorithms
such as 2-opt or 3-opt, nor by most local search algorithms based on the
Lin-Kernighan heuristic [54], which is currently the champion local search al-
gorithm for the TSP. (Only very few local searches include such double-bridge
changes in the search, the best known being the Lin-Kernighan implementa-
tion of Helsgaun [40].) Furthermore, this perturbation does not increase much
the tour length, so even if the current solution is very good, one is almost
sure the next one will be good, too. These two properties of the perturbation
– its small strength and its fundamentally different nature from the changes
used in local search – make the TSP the perfect application for iterated local
search. But for other problems, finding an effective perturbation may be more
difficult.

We will now consider optimizing the perturbation assuming the other mod-
ules to be fixed. In problems like the TSP, one can hope to have a satisfactory
ILS when using perturbations of fixed size (independent of the instance size).
On the contrary, for more difficult problems, fixed-strength perturbations
may lead to poor performance. Of course, the strength of the perturbations
used is not the whole story; their nature is almost always very important
and will also be discussed. Finally we will close by pointing out that the
perturbation strength has an effect on the speed of the local search: weak
perturbations usually lead to faster execution of LocalSearch. All these dif-
ferent aspects need to be considered when optimizing this module.
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A

BC

D

Fig. 4 Schematic representation of the double-bridge move. The four dotted edges are
removed and the remaining parts A, B, C, D are reconnected by the dashed edges.

3.2.1 Perturbation strength

For some problems, an appropriate perturbation strength is very small and
seems to be rather independent of the instance size. This is the case for
both the TSP and the FSP, and interestingly iterated local search for these
problems is very competitive with today’s best metaheuristic methods. We
can also consider other problems where instead one is driven to large per-
turbation sizes. Consider the example of an ILS algorithm for the quadratic
assignment problem (QAP). We use an embedded 2-opt local search algo-
rithm, the perturbation is a random exchange of the location of k items, where
k is an adjustable parameter, and Perturbation always modifies the best solu-
tion found so far. We applied this ILS algorithm to QAPLIB instances5 from
four different classes of QAP instances [83]; computational results are given
in Table 1. A first observation is that the best perturbation size is strongly
dependent on the particular instance. For two of the instances, the best per-
formance was achieved when as many as 75% of the solution components
were altered by the perturbation. Additionally, for a too small perturbation
strength, the ILS performed worse than random restart (corresponding to
the perturbation strength n). However, the fact that random restart for the
QAP may perform—on average—better than a basic ILS algorithm is a bit
misleading: in the next section we will show that by simply modifying a bit
the acceptance criterion, ILS becomes far better than random restart. Thus
one should keep in mind that the optimization of an iterated local search
may require more than the optimization of the individual components.

5 QAPLIB is accessible at http://www.seas.upenn.edu/qaplib.
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Table 1 The first column is the name of the QAP instance; the number gives its size n.
The successive columns are for perturbation sizes 3, n/12, · · ·, n. A perturbation of size n
corresponds to random restart. The table shows the mean solution cost, averaged over 10
independent runs for each instance. The CPU-time for each trial is 30 sec. for kra30a, 60
sec. for tai60a and sko64, and 120 sec. for tai60b on a Pentium III 500 MHz PC.

instance 3 n/12 n/6 n/4 n/3 n/2 3n/4 n

kra30a 2.51 2.51 2.04 1.06 0.83 0.42 0.0 0.77
sko64 0.65 1.04 0.50 0.37 0.29 0.29 0.82 0.93
tai60a 2.31 2.24 1.91 1.71 1.86 2.94 3.13 3.18
tai60b 2.44 0.97 0.67 0.96 0.82 0.50 0.14 0.43

3.2.2 Adaptive perturbations

The behavior of ILS for the QAP and also for other combinatorial optimiza-
tion problems [41, 79] shows that there is no a priori single best size for the
perturbation. This motivates the possibility of modifying the perturbation
strength and adapting it during the run.

One possibility to do so is to exploit the search history. For the devel-
opment of such schemes, inspiration can be taken from what is done in the
context of [6, 5]. In particular, Battiti and Protasi proposed [5] a reactive
search algorithm for MAX-SAT which fits perfectly into the ILS framework.
They perform a “directed” perturbation scheme which is implemented by
a tabu search algorithm and after each perturbation they apply a standard
local descent algorithm.

Another way of adapting the perturbation is to change deterministically
its strength during the search. One particular example of such an approach
is employed in the scheme called basic variable neighborhood search (basic
VNS) [66, 38]; we refer to Section 5 for some explanations on VNS. Other
examples arise in the context of [36]. In particular, ideas such as strategic
oscillations may be useful to derive more effective perturbations; that is also
the spirit of the reactive search algorithm previously mentioned.

3.2.3 More complex perturbation schemes

Perturbations can be more complex than changes in a higher order neigh-
borhood. One rather general procedure to generate s′ from the current s∗

is as follows. First, gently modify the definition of the instance, e.g. via the
parameters defining the various costs. Second, for this modified instance, run
LocalSearch using s∗ as input; the output is the perturbed solution s′. Inter-
estingly, this is the method proposed it the oldest ILS work we are aware of:
in [9], Baxter tested this approach with success on a location problem. This
idea seems to have been rediscovered later by Codenotti et al. in the context
of the TSP. Those authors [18] first change slightly the city coordinates. Then
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they apply the local search to s∗ using the perturbed city locations, obtaining
the new tour s′. Finally, running LocalSearch on s′ using the unperturbed city
coordinates, they obtain the new candidate tour s∗′.

Other sophisticated ways to generate good perturbations consist in op-
timizing a sub-part of the problem. If this task is difficult for the embed-
ded heuristic, good results can follow. Such an approach was proposed by
Lourenço [55] in the context of the job shop scheduling problem (JSP).
Her perturbation schemes are based on defining one- or two-machine sub-
problems by fixing a number of variables in the current solution and solving
these sub-problems, either heuristically [56] or to optimality using for in-
stance Carlier’s exact algorithm [15] or the early-late algorithm [56]. These
schemes work well because: (i) local search is unable to undo the perturba-
tions; (ii) after the perturbation, the solutions tend to be very good and also
have “new” parts that are optimized. More recently, evolutionary algorithms
have been used to generate perturbations for ILS algorithms [58]. The idea in
this approach is generate a small population of solutions by perturbing the
best so far solution as the initial solution of a short run of a GA and then to
use the best solution found in this process as a new starting solution for the
local search.

3.2.4 Speed

In the context of “easy” problems where ILS can work very well with weak
(fixed size) perturbations, there is another reason why that metaheuristic
can perform much better than random restart: Speed . Indeed, LocalSearch

will usually execute much faster on a solution obtained by applying a small
perturbation to a local optimum than on a random solution. As a conse-
quence, iterated local search can run many more local searches than can
random restart in the same CPU time. As a qualitative example, consider
again Euclidean TSPs. O(n) local changes have to be applied by the local
search to reach a local optimum from a random start, whereas empirically a
nearly constant number is necessary in ILS when using the s′ obtained with
the double-bridge perturbation. Hence, in a given amount of CPU time, ILS
can sample many more local optima than can random restart. This speed

factor can give ILS a considerable advantage over other restart schemes.
Let us illustrate this speed factor quantitatively. We compare for the TSP

the number of local searches performed in a given amount of CPU time
by: (i) random restart; (ii) ILS using a double-bridge move; (iii) ILS using
five simultaneous double-bridge moves. (For both ILS implementations, we
used random starts and the routine AcceptanceCriterion accepted only shorter
tours.) For our numerical tests we used a fast 3-opt implementation with
standard speed-up techniques. In particular, it used a fixed radius nearest
neighbor search within candidate lists of the 40 nearest neighbors for each
city and don’t look bits [11, 46, 61]. Initially, all don’t look bits are turned
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Table 2 The first column gives the name of the TSP instance, where the number in the
identifier specifies the number of cities. The next columns give the number of local searches
performed when using: (i) random restart (#LSRR); (ii) ILS with a single double-bridge
perturbation (#LS1−DB); (iii) ILS with a five double-bridge perturbation (#LS5−DB).
All algorithms were run 120 secs. on a Pentium 266 MHz PC.

instance #LSRR #LS1-DB #LS5-DB

kroA100 17507 56186 34451
d198 7715 36849 16454
lin318 4271 25540 9430
pcb442 4394 40509 12880
rat783 1340 21937 4631
pr1002 910 17894 3345
pcb1173 712 18999 3229
d1291 835 23842 4312
fl1577 742 22438 3915
pr2392 216 15324 1777

pcb3038 121 13323 1232
fl3795 134 14478 1773
rl5915 34 8820 556

off (set to 0). If for a node no improving move can be found, its don’t look
bit is turned on (set to 1) and the node is not considered as a starting node
for finding an improving move in the next iteration. When an arc incident to
a node is changed by a move, the node’s don’t look bit is turned off again. In
addition, when running ILS, after a perturbation we only turn off the don’t
look bits of the 25 cities around each of the four breakpoints in a current
tour. All three algorithms were run for 120 seconds on a 266 MHz Pentium II
processor on a set of TSPLIB6 instances ranging from 100 up to 5915 cities.
Results are given in Table 2. For the smallest instances, we see that iterated
local search ran between 2 and 10 times as many local searches as random
restart. This advantage of ILS grows fast with increasing instance size: for
the largest instance, the first ILS algorithm ran approximately 260 times as
many local searches as random restart in our alloted time. Obviously, this
speed advantage of ILS over random restart is strongly dependent on the
strength of the perturbation applied. The larger the perturbation size, the
more the solution is modified and generally the longer the subsequent local
search takes. This fact is intuitively obvious and is confirmed in Table 2.

In summary, the optimization of the perturbations depends on many fac-
tors, and problem-specific characteristics play a central role. Finally, it is im-
portant to keep in mind that the perturbations also interact with the other
components of ILS. We will discuss these interactions in Section 3.5

6 TSPLIB is accessible at www.iwr.uni-heidelberg.de/groups/comopt/software/

TSPLIB95.
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3.3 Acceptance criterion

ILS does a randomized walk in S∗, the space of the local minima. The per-
turbation mechanism together with the local search defines the possible tran-
sitions between a current solution s∗ in S∗ to a “neighboring” solution s∗′

also in S∗. The procedure AcceptanceCriterion then determines whether s∗′ is
accepted or not as the new current solution. AcceptanceCriterion has a strong
influence on the nature and effectiveness of the walk in S∗. Roughly, it can be
used to control the balance between intensification and diversification of that
search. A simple way to illustrate this is to consider a Markovian acceptance
criterion. A very strong intensification is achieved if only better solutions
are accepted. We call this acceptance criterion Better and it is defined for
minimization problems as:

Better(s∗, s∗′, history) =







s∗′ if C(s∗′) < C(s∗)

s∗ otherwise
(1)

At the opposite extreme is the random walk acceptance criterion (denoted
by RW) which always applies the perturbation to the most recently visited
local optimum, irrespective of its cost:

RW(s∗, s∗′, history) = s∗′ (2)

This criterion clearly favors diversification over intensification.
Many intermediate choices between these two extreme cases are possible.

In one of the first ILS algorithms, the large-step Markov chains algorithm
proposed by Martin, Otto, and Felten [61, 62], a simulated annealing type
acceptance criterion was applied. We call it LSMC(s∗, s∗′, history). In partic-
ular, s∗′ is always accepted if it is better than s∗. Otherwise, if s∗′ is worse
than s∗, s∗′ is accepted with probability exp{(C(s∗)−C(s∗′))/T } where T is
a parameter called temperature and it is usually lowered during the run as
in simulated annealing. Note that LSMC approaches the RW acceptance crite-
rion if T is very high, while at very low temperatures LSMC is similar to the
Better acceptance criterion. An interesting possibility for LSMC is to allow
non-monotonic temperature schedules as proposed in [43] for simulated an-
nealing or in tabu thresholding [34]. This can be most effective if it is done
using memory: when further intensification no longer seems useful, increase
the temperature to do diversification for a limited time, then resume inten-
sification. Of course, just as in tabu search, it is desirable to do this in an
automatic and self-regulating manner [36].

A very limited usage of memory in the acceptance criteria is to completely
restart the ILS algorithm when the intensification seems to have become inef-
fective. (Of course this is a rather extreme way to switch from intensification
to diversification). For instance one can restart the ILS algorithm from a new
initial solution if no improved solution has been found for a given number of



Iterated Local Search 17

iterations. The restart of the algorithm can easily be modeled by the accep-
tance criterion called Restart(s∗, s∗′, history). Let ilast be the last iteration
in which a better solution has been found and i be the iteration counter.
Then Restart(s∗, s∗′, history) is defined as

Restart(s∗, s∗′, history) =



















s∗′ if C(s∗′) < C(s∗)

s if C(s∗′) ≥ C(s∗) and i − ilast > ir

s∗ otherwise.
(3)

where ir is a parameter that indicates that the algorithm should be restarted
if no improved solution was found for ir iterations. Typically, s can be gen-
erated in different ways. The simplest strategy is to generate a new solution
randomly or by a greedy randomized heuristic. Clearly many other ways to
incorporate memory may and should be considered, the overall efficiency of
ILS being quite sensitive to the acceptance criterion applied. We now illus-
trate this with two examples.

3.3.1 Example 1: TSP

Let us consider the effect of the two acceptance criteria RW and Better. We
performed our tests on the TSP as summarized in Table 3. We give the
average percentage excess over the known optimal solutions when using 10
independent runs on our set of benchmark instances. In addition we also give
this excess for the random restart 3-opt algorithm. First, we observe that
both ILS schemes lead to a significantly better average solution quality than
random restart using the same local search. This is particularly true for the
largest instances, confirming again the claims given in Section 2 Second, given
that one expects the good solutions for the TSP to cluster (see Section 3.5),
a good strategy should incorporate intensification. It is thus not surprising
to see that the Better criterion leads to shorter tours than the RW criterion.

The runs given in this example are rather short. For much longer runs, the
Better strategy comes to a point where it no longer finds improved tours.
In fact, an analysis of ILS algorithms based on the run-time distributions
methodology [42] has shown that such stagnation situations effectively occur
and that the performance of the ILS algorithm can be strongly improved by
additional diversification mechanisms [81], an occassional restart of the ILS
algorithm being the conceptually simplest case.
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Table 3 Influence of the acceptance criterion for various TSP instances. The first column
gives the name of the TSP instance, where the number in the identifier specifies the number
of cities. The next columns give the average excess percentage length of the tours obtained
using: random restart (RR), iterated local search with RW, and iterated local search with
Better. The data is averaged over 10 independent runs. All algorithms were run 120 secs.
on a Pentium 266 MHz PC.

instance ∆avg(RR) ∆avg(RW) ∆avg(Better)

kroA100 0.0 0.0 0.0
d198 0.003 0.0 0.0
lin318 0.66 0.30 0.12
pcb442 0.83 0.42 0.11
rat783 2.46 1.37 0.12

pr1002 2.72 1.55 0.14
pcb1173 3.12 1.63 0.40
d1291 2.21 0.59 0.28
fl1577 10.3 1.20 0.33
pr2392 4.38 2.29 0.54
pcb3038 4.21 2.62 0.47
fl3795 38.8 1.87 0.58
rl5915 6.90 2.13 0.66

3.3.2 Example 2: QAP

Let us come back to ILS for the QAP. For this problem we found that the
acceptance criterion Better together with a (poor) choice of the perturbation
strength could result in worse performance than random restart. In Table 4 we
give results for the same ILS algorithm except that we now also consider the
use of the RW and Restart acceptance criteria. We see that the ILS algorithm
using these modified acceptance criteria are much better than random restart,
the only exception being RW with a small perturbation strength on tai60b.

This example shows that there are strong inter-dependences between the
perturbation strength and the acceptance criterion. Rarely is this inter-
dependence completely understood. But, as a general rule of thumb, when
it is necessary to allow for diversification, we believe it is best to do so by
accepting numerous small perturbations rather than by accepting one large
perturbation.

Most of the acceptance criteria applied so far in ILS algorithms are ei-
ther fully Markovian or make use of the search history in a very limited
way. We expect that there will be many more ILS applications in the future
making strong use of the search history; in particular, alternating between
intensification and diversification is likely to be an essential feature in these
applications.
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Table 4 Further tests on the QAP benchmark problems using the same perturbations
and CPU times as before; given is the mean solution cost, averaged over 10 independent
runs for each instance. Here we consider three different choices for the acceptance criterion.
Clearly, the inclusion of diversification significantly lowers the mean cost found.

instance acceptance 3 n/12 n/6 n/4 n/3 n/2 3n/4 n

kra30a Better 2.51 2.51 2.04 1.06 0.83 0.42 0.0 0.77
kra30a RW 0.0 0.0 0.0 0.0 0.0 0.02 0.47 0.77
kra30a Restart 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.77

sko64 Better 0.65 1.04 0.50 0.37 0.29 0.29 0.82 0.93

sko64 RW 0.11 0.14 0.17 0.24 0.44 0.62 0.88 0.93
sko64 Restart 0.37 0.31 0.14 0.14 0.15 0.41 0.79 0.93

tai60a Better 2.31 2.24 1.91 1.71 1.86 2.94 3.13 3.18
tai60a RW 1.36 1.44 2.08 2.63 2.81 3.02 3.14 3.18
tai60a Restart 1.83 1.74 1.45 1.73 2.29 3.01 3.10 3.18

tai60b Better 2.44 0.97 0.67 0.96 0.82 0.50 0.14 0.43
tai60b RW 0.79 0.80 0.52 0.21 0.08 0.14 0.28 0.43
tai60b Restart 0.08 0.08 0.005 0.02 0.03 0.07 0.17 0.43

3.4 Local search

So far we have treated the local search algorithm as a black box, which is
called many times by ILS. Since the behavior and performance of the over-
all ILS algorithm is quite sensitive to the choice of the embedded heuristic,
one should optimize this choice whenever possible. In practice, there may be
many quite different algorithms that can be used for the embedded heuristic.
(As mentioned at the beginning of the chapter, the heuristic need not even be
a local search.) One might think that the better the local search, the better
the corresponding ILS. Often this is true. For instance in the context of the
TSP, Lin-Kernighan [54] is a better local search than 3-opt which itself is
better than 2-opt [46]. Using a fixed type of perturbation such as the double-
bridge move, one finds that iterated Lin-Kernighan gives better solutions than
iterated 3-opt which itself gives better solutions than iterated 2-opt [46, 81].
But if we assume that the total computation time is fixed, it might be better
to apply more frequently a faster but less effective local search algorithm
than a slower and more powerful one. Clearly which choice is best depends
on just how much more time is needed to run the better heuristic. If the speed
difference is not large, for instance if it is independent of the instance size,
then it usually worth using the better heuristic. This is the most frequent case;
for instance in the TSP, 3-opt is a bit slower than 2-opt, but the improvement
in quality of the tours is well worth the extra CPU time, be-it using random
restart or iterated local search. The same comparison applies to using L-K
rather than 3-opt. However, there are other cases where the increase in CPU
time is so large compared to the improvement in solution quality that it is
best not to use the “better” local search. For example, again in the context
of the TSP, it is known that 4-opt gives slightly better solutions than 3-opt,
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but in standard implementations it is O(n) times slower (n being the number
of cities). It is then better not to use 4-opt as the local search embedded in
ILS.

There are also other aspects that should be considered when selecting a
local search. Clearly, there is not much point in having an excellent local
search if it will systematically undo the perturbation; however this issue is
one of globally optimizing iterated local search, so it will be postponed till
the next sub-section. Another important aspect is whether one can really get
the speed-ups that were mentioned in sub-section 3.2. There we saw that a
standard trick for LocalSearch was to introduce don’t look bits. These give a
large gain in speed if the bits can be reset also after the application of the
perturbation. This requires that the developper be able to access the source
code of LocalSearch. A state of the art ILS will take advantage of all possible
speed-up tricks, and thus the LocalSearch most likely will not be a true black
box.

Finally, there may be some advantages in allowing LocalSearch to some-
times generate worse solutions. For instance, if we replace the local search
heuristic by tabu search or short simulated annealing runs, the correspond-
ing ILS may perform better. This seems most promising when standard lo-
cal search methods perform poorly. Such is indeed the case in the job-shop
scheduling problem: the use of tabu search as the embedded heuristic gives
rise to a very effective iterated local search [57].

3.5 Global optimization of ILS

So far, we have considered representative issues arising when optimizing sep-
arately each of the four components of an iterated local search. In particular,
when illustrating various important characteristics of one component, we kept
the other components fixed. But clearly the optimization of one component
depends on the choices made for the others; as an example, we made it clear
that a good perturbation must have the property that it cannot be easily
undone by the local search. Thus, at least in principle, one should tackle the
global optimization of an ILS. Since at present there is no theory for analyzing
a metaheuristic such as iterated local search, we content ourselves here with
just giving a rough idea of how such a global optimization can be approached
in practice.

If we reconsider the sub-section on the effect of the initial solution, we see
that GenerateInitialSolution is to a large extent irrelevant when the ILS per-
forms well and rapidly looses the memory of its starting point. Hereafter we
assume that this is the case; then the optimization of GenerateInitialSolution

can be ignored and we are left with the joint optimization of the three other
components. Clearly the best choice of Perturbation depends on the choice
of LocalSearch while the best choice of AcceptanceCriterion depends on the
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choices of LocalSearch and Perturbation. In practice, we can approximate this
global optimization problem by successively optimizing each component, as-
suming the others are fixed until no improvements are found for any of the
components [26]. Thus the only difference with what has been presented in
the previous sub-sections is that the optimization has to be iterative. This
does not guarantee global optimization of the ILS, but it should lead to an
adequate optimization of the overall algorithm.

Given these approximations, we should make more precise what in fact
we are to optimize. For most users, it will be the mean (over starting solu-
tions) of the best cost found during a run of a given length. Then the “best”
choice for the different components is a well posed problem, though it is in-
tractable without further restrictions. Furthermore, in general, the detailed
instance that will be considered by the user is not known ahead of time, so
it is important that the resulting ILS algorithm be robust. Thus it is prefer-
able not to optimize it to the point where it is sensitive to the details of
the instance. This robustness seems to be achieved in practice: researchers
implement versions of iterated local search with a reasonable level of global
optimization, and then test with some degree of success the performance on
standard benchmarks.

At the risk of repeating ourselves, let us highlight the main dependencies
of the components:

1. the perturbation should not be easily undone by the local search; if the
local search has obvious short-comings, a good perturbation should com-
pensate for them.

2. the combination Perturbation–AcceptanceCriterion determines the relative
balance of intensification and diversification; large perturbations are only
useful if they can be accepted, which occurs only if the acceptance criterion
is not too biased towards better solutions.

As a general guideline, LocalSearch should be as powerful as possible as long
as it is not too costly in CPU time. Given such a choice, then find a well
adapted perturbation following the discussion in Section 3.2; to the extent
possible, take advantage of the structure of the problem. Finally, set the
AcceptanceCriterion routine so that S∗ is sampled adequately. With this point
of view, the overall optimization of the ILS is nearly a bottom-up process,
but with iteration. Perhaps the core issue is what to put into Perturbation:
can one restrict the perturbations to be weak? From a theoretical point of
view, the answer to this question depends on whether the best solutions
“cluster” in S∗. In some problems (and the TSP is one of them), there is
a strong correlation between the cost of a solution and its “distance” to
the optimum: in effect, the best solutions cluster together, i.e., have many
similar components. This has been referred to in many different ways: “Massif
Central” phenomenon [31], principle of proximate optimality [36], and replica
symmetry [64]. If the problem under consideration has this property, it is not
unreasonable to hope to find the true optimum using a biased sampling of
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S∗. In particular, it is clear that it is useful to use intensification to improve
the probability of hitting the global optimum.

There are, however, other types of problems where the clustering is in-
complete, i.e., where very distant solutions can be nearly as good as the
optimum. Examples of combinatorial optimization problems in this category
are QAP, graph bi-section, and MAX-SAT. When the space of solutions has
this property, new strategies have to be used. Clearly, it is still necessary to
use intensification to get the best solution in one’s current neighborhood, but
generally this will not lead to the optimum. After an intensification phase, one
must go explore other regions of S∗. This can be attempted by using “large”
perturbations whose strength grows with the instance. Other possibilities are
to restart the algorithm from scratch and repeat another intensification phase
or by oscillating the acceptance criterion between intensification and diversi-
fication phases. Additional ideas on the tradeoffs between intensification and
diversification are well discussed in the context of (see, for example, [36]).
Clearly, the balance intensification – diversification is very important and is
a challenging problem.

4 Selected applications of ILS

ILS algorithms have been applied successfully to a variety of combinatorial
optimization problems. In some cases, these algorithms achieve extremely
high performance and even constitute the current state-of-the-art metaheuris-
tics, while in other cases the ILS approach is merely competitive with other
metaheuristics. In this section we give an overview of interesting ILS applica-
tions, presenting the core ideas of these algorithms to illustrate possible uses
of ILS. We put a particular emphasis on the traveling salesman problem,
given its central role in the development of ILS algorithms.

4.1 ILS for the TSP

The TSP is probably the best-known combinatorial optimization problem.
De facto, it is a standard test-bed for the development of new algorithmic
ideas: a good performance on the TSP is taken as evidence of the value of
such ideas. Like for many metaheuristic algorithms, some of the first ILS
algorithms were introduced and tested on the TSP, the oldest case of this
being due to Baum [8, 7]. He coined his method iterated descent ; his tests
used 2-opt as the embedded heuristic, random 3-changes as the perturbations,
and imposed the tour length to decrease (thus the name of the method). His
results were not impressive, in part because he considered the non-Euclidean
TSP, which is substantially more difficult in practice than the Euclidean TSP.
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A major improvement in the performance of ILS algorithms came from
the large-step Markov chain (LSMC) algorithm proposed by Martin, Otto,
and Felten [61]. They used a simulated annealing like acceptance criterion
(LSMC) from which the algorithm’s name is derived and considered both the
application of 3-opt local search and the Lin-Kernighan heuristic (LK), which
is the best performing local search algorithm for the TSP. But probably
the key ingredient of their work is the introduction of the double-bridge
move for the perturbation. This choice made the approach very powerful for
the Euclidean TSP and encouraged much more work along these lines. In
particular, Johnson [45, 46] coined the term “iterated Lin-Kernighan” (ILK)
for his implementation of ILS using the Lin-Kernighan as the local search.
The main differences with the LSMC implementation are: (i) double-bridge
moves are random rather than biased; (ii) the costs are improving (only better
tours are accepted, corresponding to the choice Better in our notation).
Since these initial studies, other ILS variants have been proposed; Johnson
and McGeoch [46] give a summary of the situation as of 1997 and several
additional ILS variants are covered in the 2002 book chapter [47], which also
summarizes results from the 8th DIMACS implementation challenge on the
TSP.

A very high performing ILS algorithm is offered as part of the con-
corde software package and it is available for download at http://www.tsp.
gatech.edu/concorde/. This chained LK code has been developed by Ap-
plegate, Bixby, Chvatal, and Cook and a detailed description of the code is
given in their recent book on TSP solving [2]; this book also contains details
on an extensive computational study of this code. Noteworthy is also the ex-
perimental study by Applegate, Cook, and Rohe [1] who performed also tests
on very large TSP instances with up to 25 million cities. Recently, a new ILS
variant has been proposed that further illustrates the impressive performance
of ILS algorithms on very large TSP instances. The iterated Lin-Kernighan
variant of Merz and Huhse [63] appears to currently be the best performing
algorithms for very large TSP instances with several millions of cities when
the computation times are relatively short (in the range of a few hours on a
modern PC as of 2008).

A major leap in TSP solving stems from Helsgaun’s LK implementa-
tion and its iterated version [40]. The main novelty of Helsgaun’s algo-
rithm lies on the local search side: the LK variant developed is based on
more complex basic moves than previous implementations. His iterated ver-
sion of the LK algorithm is actually not really an ILS algorithm along the
lines presented in this chapter since the generation of new starting solu-
tions is through a solution construction method. However, the construc-
tive mechanism is very strongly biased by the incumbent solution, which
makes this approach somehow similar to an ILS algorithm. The most re-
cent version of this algorithm, along with an accompanying technical re-
port describing the recent developments, is available for download at http:
//www.akira.ruc.dk/∼keld/research/LKH/.
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There are a number of other ILS algorithms for the TSP that not necessar-
ily offer the ultimate state-of-the-art performance but that illustrate various
ideas that may be useful in ILS algorithms. One algorithm, which has al-
ready been mentioned before, is the one by Codenotti et al. [18]. It gives an
example of a complex perturbation scheme that is based on the modification
of the instance data. Various perturbation sizes as well as population-based
extensions of ILS algorithms for the TSP have been studied by Hong et al.
[41]. The perturbation mechanism is also the focus of the work by Katayama
and Narisha [48]. They introduce a new perturbation mechanism, which they
called a genetic transformation. The genetic transformation mechanism uses
two tours, the best found so far, s∗best, and a second, current local optimum,
s′. First a random 4-opt move is performed on s∗best, resulting in s∗′. Then the
subtours that are shared among s∗′ and s′ are enumerated and the resulting
parts are reconnected with a greedy algorithm. Computational experiments
with an iterated LK algorithm using the genetic transformation method in-
stead of the standard double-bridge move have shown that the approach is
very effective.

An analysis of the run-time behavior of various ILS algorithms for the
TSP is done by Stützle and Hoos in [81, 82]; this analysis clearly shows
that ILS algorithms with the Better acceptance criterion show a type of
stagnation behavior for long run-times. To avoid such stagnation, restarts
and a particular acceptance criterion to diversify the search were proposed.
The goal of this latter strategy is to force, once search stagnation is detected,
the search to continue from a high quality solution that is beyond a certain
minimal distance from the current one [81]. As shown in [42], also current
state-of-the-art algorithms such as Helsgaun’s iterated LK can suffer from
stagnation behavior and, hence, their performance can be further improved
by similar ideas.

Finally, let us mention that ILS algorithms have been used as components
of more complex algorithms. A clear example is the tour merging approach
[21, 2]. The central idea is to generate a set G of high quality tours by using
ILS and then to post-process these solutions further. In particular, in tour
merging the optimal (or, if this is not feasible in reasonable computation
time, an as good as possible) tour composed of fragments of tours occurring
in G is determined.

4.2 ILS for other problems

ILS algorithms have been applied to a large number of other problems, where
often they achieve state-of-the-art performance or are at least very close to
it.

Single machine total weighted tardiness problem. Congram, Potts
and van de Velde have presented an ILS algorithm for the single machine to-
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tal weighted tardiness problem (SMTWTP) [20] based on a dynasearch local
search. Their ILS algorithm applies as perturbation a series of random inter-
change moves and additionally exploits specific properties of the SMTWTP.
In the acceptance criterion, Congram et al. introduce a backtrack step: after
β iterations in which every new local optimum is accepted, the algorithm
restarts with the best solution found so far. In our notation, the backtrack
step is a particular choice for the history dependence incorporated into the
acceptance criterion. The performance of this ILS algorithms was excellent,
solving almost all available benchmark instances in few seconds on the then
available hardware. A further improvement over this algorithm, mainly based
on an enlarged neighborhood being searched in the dynasearch local search
was presented by Grosso, Della Croce, and Tadei [37], outperforming the first
iterated dynasearch algorithm and, hence, defining the current state of the
art for solving the SMTWTP.

Single and parallel machine scheduling. Brucker, Hurink, and Werner
[12, 13] apply the principles of ILS to a number of one-machine and parallel-
machine scheduling problems. They introduce a local search method which
is based on two types of neighborhoods. At each step one goes from one
feasible solution to a neighboring one with respect to the secondary neigh-
borhood. The main difference with standard local search methods is that
this secondary neighborhood is defined on the set of locally optimal solu-
tions with respect to the first neighborhood. Thus, this is an ILS with two
nested neighborhoods; searching in their primary neighborhood corresponds
to our local search phase; searching in their secondary neighborhood is like
our perturbation phase. The authors also note that the second neighborhood
is problem specific; this is what arises in ILS where the perturbation should
be adapted to the problem. The search at a higher level reduces the search
space and at the same time leads to better results.

Flow shop scheduling. Stützle [79] applied ILS to the flow shop problem
(FSP) under the makespan criterion. The algorithm is based on a straight-
forward first-improvement local search using the insert neighborhood while
the perturbation is composed of swap moves, which exchange the positions of
two adjacent jobs, and interchange moves, which have no constraint on adja-
cency. Experimentally, it was found that perturbations with just a few swap
and interchange moves were sufficient to obtain very good results. Several ac-
ceptance criteria have been compared; the best performing was ConstTemp,
which corresponds to choosing a constant temperature in the LSMC criterion.
This ILS algorithm was shown to be among the top performing metaheuris-
tic algorithms for the FSP [74]; an adaptation of this ILS algorithm has also
shown very good performance on the flow shop problem with the flowtime
objective criterion [27]. The ILS algorithm has also been extended to an it-
erated greedy (IG) algorithm [75]. The essential idea in IG is to perturb
the current solution by a destruction / construction mechanism. In the solu-
tion destruction phase, a complete solution is reduced to a partial solution
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sp by removing solution components; in the following construction phase,
a complete problem solution is reconstructed starting from sp by a greedy
construction heuristic. Despite the simplicity of the underlying idea, this IG
algorithm is a current state-of-the-art algorithm for the FSP [75].

ILS has also been used to solve a flow-shop problem with several stages in
series. Yang, Kreipl and Pinedo [88] presented such a method; at each stage,
instead of a single machine, there is a group of identical parallel machines.
Their metaheuristic has two phases that are repeated iteratively. In the first
phase, the operations are assigned to the machines and an initial sequence is
constructed. The second phase uses an ILS to find better schedules for each
machine at each stage by modifying the sequence of each machine. Yang,
Kreipl and Pinedo also proposed a “hybrid” metaheuristic: they first apply
a decomposition procedure that solves a series of single stage sub-problems;
then they follow this by their ILS. The process is repeated until a satisfactory
solution is obtained.

Job shop scheduling. Lourenço [55] and Lourenço and Zwijnenburg [57]
used ILS to tackle the job shop scheduling problem (JSP) under the makespan
criterion. They performed extensive computational tests, comparing different
ways to generate initial solutions, various local search algorithms, different
perturbations, and three acceptance criteria. While they found that the initial
solution had only a very limited influence, the other components turned out
to be very important. Perhaps the heart of their work is the way they perform
the perturbations, which has already been described in Section 3.2.

Balas and Vazacopoulos [4] presented a variable depth search heuristic
which they called guided local search (GLS). GLS is based on the concept of
neighborhood trees, proposed by the authors, where each node corresponds to
a solution and the child nodes are obtained by performing an interchange on
some critical arc. They developed ILS algorithms by embedding GLS within
the shifting bottleneck (SB) procedure and by replacing the reoptimization
cycle of SB with a number of cycles of the GLS procedure. They call this
procedure SB-GLS1. The later SB-GLS2 variant works as follows. Once all
machines have been sequenced, they iteratively remove one machine and ap-
ply GLS to a smaller instance defined by the remaining machines. Then again
GLS is applied on the initial instance containing all machines. Hence, both
heuristics are similar in spirit to the one proposed by Lourenço [55] in the
sense that they are based on re-optimizing a part of the instance and then
reapplying local search to the full one.

Kreipl applied ILS to the total weighted tardiness job shop scheduling
problem (TWTJSP) [52]. His ILS algorithm uses a RW acceptance criterion
and the local search consists in reversing critical arcs and arcs adjacent to
these. One original aspect of this ILS is the perturbation step: Kreipl applies
a few steps of a simulated annealing type algorithm with constant tempera-
ture and in the perturbation phase a smaller neighborhood than the one used
in the local search phase is taken. The number of iterations performed in the
perturbation depends how good the incumbent solution is. In promising re-
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gions, only a few steps are applied to stay near good solutions, otherwise, a
”large” perturbation is applied to escape from a poor region. Computational
results with the ILS algorithm on a set of benchmark instances has shown a
very promising performance. In fact, the algorithm performs roughly similar
to the later proposed, much more complex algorithm by Essafi et al. [29]. In-
terestingly, this latter approach integrates an ILS algorithm as a local search
operator into an evolutionary algorithm, illustrating the fact that ILS can
also be used as an improvement method inside other metaheuristics.

Graph bipartitioning. Among the early ILS applications is also the
graph bipartitioning problem. Martin and Otto [59, 60] introduced an ILS
for this problem following their earlier work on the TSP. For the local search,
they used the Kernighan-Lin variable depth local search algorithm (KL) [50]
which is the analog for this problem of the LK algorithm. When considering
possible perturbations, they noticed a particular weakness of the KL local
search: KL frequently generates partitions with many “islands”, i.e., the two
sets A and B are typically highly fragmented (disconnected). Thus they in-
troduced perturbations that exchanged vertices between these islands rather
than between the whole sets A and B. Finally, for the acceptance criterion,
Martin and Otto used the Better acceptance criterion. The overall algo-
rithm significantly improved over the embedded local search (random restart
of KL); it also improved over simulated annealing if the acceptance criterion
was optimized.

MAX-SAT. Battiti and Protasi present an application of reactive search

to the MAX-SAT problem [5]. Their algorithm consists of two phases: a lo-
cal search phase and a diversification (perturbation) phase. Because of this,
their approach fits perfectly into the ILS framework. Their perturbation is
obtained by running a tabu search on the current local minimum so as to
guarantee that the modified solution s′ is sufficiently different from the cur-
rent solution s∗. Their measure of difference is just the Hamming distance;
the minimum distance is set by the length of a tabu list that is adjusted dur-
ing the run of the algorithm. For the LocalSearch, they use a standard greedy
descent local search appropriate for the MAX-SAT problem. Depending on
the distance between s∗′ and s∗, the tabu list length for the perturbation
phase is dynamically adjusted. The next perturbation phase is then started
based on solution s∗′ — corresponding to the RW acceptance criterion. This
work illustrates very nicely how one can adjust dynamically the perturbation
strength in an ILS run. We conjecture that similar schemes will be useful to
adapt the perturbation size while running an ILS algorithm. In later work,
Smyth et al. [78] have developed an ILS algorithm that is based on a robust
tabu search algorithm that is used in both, the local search phase and the
perturbation phase. The main difference in the two phases is that in the per-
turbation the tabu list length is strongly increased to drive the search away
from the current solution. Extensive computational tests showed that this
algorithm reaches state-of-the-art performance for a number of MAX-SAT
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instance classes [78, 42]. Noteworthy is also the ILS algorithm of Yagiura
and Ibaraki, which is based on large neighborhoods for MAX-SAT that are
searched in the local search phase [87].

Quadratic assignment problem. ILS algorithms have reached also re-
markable performance on the quadratic assignment problem (QAP) [80].
Based on the insights gained through an analysis of the run-time behavior of
a basic ILS algorithm with the Better acceptance criterion, Stützle has pro-
posed a number of different ILS algorithms. Among the highest performing
variants have been population-based extensions of ILS that use additional cri-
teria for maintaining diversity of the solutions and restart-type criteria. An
extensive experimental campaign has identified this population-based ILS
variant as a state-of-the-art algorithm for structured QAP instances.

Other problems. ILS has been applied to a number of other problems
and we shortly mention here some further ones without attempting to give
an exhaustive overview. A number of ILS approaches for coloring graphs
have been proposed [70, 17, 14]; these approaches generally reach very high
quality colorings and perform particularly well on some structured graphs.
ILS algorithms have also been proposed for various vehicle routing problems
(VRPs), including time-dependent routing problems [39], VRPs with time
penalty functions [44], the prize-collecting VRP [84], and a multiple depot
vehicle scheduling problem [53]. ILS algorithms have also been successfully
applied to the car sequencing problem of the 2005 ROADEF challenge, as
illustrated by at least two such approaches [23, 71]. ILS is used as a local
search procedure inside a GRASP approach by Ribeiro and Urrutia for tack-
ling the mirrored traveling tournament problem [72]. Very high performing
ILS algorithms have also been proposed for problems such as maximum clique
[49], image registration, a problem arising in in the area of image processing,
[24], some loop layout problems [10], linear ordering [19, 76], logistic network
design problems [22], learning the structure of Bayesian networks [25] and a
capacitated hub location problem [73].

4.3 Summary

The examples we have chosen in this section stress several points that have
already been mentioned before. First, the choice of the local search algorithm
is usually quite critical if one is to obtain peak performance. In most of the
applications, the best performing ILS algorithms apply much more sophisti-
cated local search algorithms than simple best- or first-improvement descent
methods. Second, the other components of an ILS also need to be optimized if
the state of the art is to be achieved. This optimization should be global, and
to succeed should involve the use of problem-specific properties. Examples of
this last point were given for instance in the scheduling applications: there
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the good perturbations were not simply random moves, rather they involved
re-optimizations of significant parts of the instance (c.f. the job shop case).

The final picture we reach is one where (i) ILS is a versatile metaheuristic
which can easily be adapted to different combinatorial optimization problems;
(ii) sophisticated perturbation schemes and search space diversification are
the essential ingredients to achieve the best possible ILS performance.

5 Relation to other metaheuristics

In this section we highlight the similarities and differences between ILS and
other well-known metaheuristics. We shall distinguish metaheuristics which
are essentially variants of local search and those which generate solutions
using a mechanism that is not necessarily based on an explicit neighborhood
structure. Among the first class, which we call neighborhood based metaheuris-

tics, are methods like simulated annealing (SA) [51, 16], tabu search (TS) [36]
or guided local search (GLS) [86]. The second class comprises metaheuris-
tics like GRASP [30], ant colony optimization (ACO) [28], evolutionary and
memetic algorithms [3, 65, 67], scatter search [35], variable neighborhood
search (VNS) [38, 66] and ILS. Some metaheuristics of this second class, like
evolutionary algorithms and ant colony optimization, do not necessarily make
use of local search algorithms; however a local search can be embedded in
them, in which case the performance is usually enhanced [28, 68, 67]. The
other metaheuristics in this class explicitly use embedded local search algo-
rithms as an essential part of their structure. For simplicity, we will assume
in what follows that all the metaheuristics of this second class do incorporate
local search algorithms. In this case, such metaheuristics generate iteratively
input solutions that are passed to a local search; they can thus be interpreted
as multi-start algorithms, using the most general meaning of that term. This
is why we call them here multi-start based metaheuristics.

5.1 Neighborhood based metaheuristics

Neighborhood based metaheuristics are extensions of iterative improvement
algorithms and avoid getting stuck in locally optimal solutions by allowing
moves to worse solutions in one’s neighborhood. Different metaheuristics of
this class differ mainly by their move strategies. In the case of simulated
annealing, the neighborhood is sampled randomly and worse solutions are
accepted with a probability which depends on a temperature parameter and
the degree of deterioration incurred; better neighboring solutions are usually
accepted while much worse neighboring solutions are accepted with a low
probability. In the case of (simple) strategies, the neighborhood is explored



30 Helena R. Lourenço, Olivier C. Martin, and Thomas Stützle

in an aggressive way and cycles are avoided by declaring attributes of visited
solutions as tabu. Finally, in the case of guided local search, the evaluation
function is dynamically modified by penalizing certain solution components.
This allows the search to escape from a solution that is a local optimum of
the original objective function.

Obviously, any of these neighborhood based metaheuristics can be used as
the LocalSearch procedure in ILS. In general, however, those metaheuristics
do not halt, so it is necessary to limit their run time if they are to be em-
bedded in ILS. One particular advantage of combining neighborhood based
metaheuristics with ILS is that they often obtain much better solutions than
iterative descent algorithms. But this advantage usually comes at the cost
of larger computation times. Since these metaheuristics allow one to obtain
better solutions at the expense of greater computation times, we are con-
fronted with the following optimization problem when using them within an
ILS: 7 “For how long should one run the embedded search in order to achieve
the best tradeoff between computation time and solution quality?” This is
very analogous to the question of whether it is best to have a fast but not so
effective local search or a slower but more powerful one. The answer depends
of course on the total amount of computation time available, and on how the
costs improve with time.

A different type of connection between ILS, SA and TS arises from certain
similarities in the algorithms. For example, SA can be seen as an ILS without
a local search phase (SA samples the original space S and not the reduced
space S∗) and where the acceptance criteria is LSMC(s∗, s∗′, history). While
SA does not employ memory, the use of memory is the main feature of TS
which makes a strong use of historical information at multiple levels. Given
its effectiveness, we expect this kind of approach for incorporating memory
to become widespread in future ILS applications.8 Furthermore, TS, as one
prototype of a memory intensive search procedure, can be a valuable source
of inspiration for deriving ILS variants with a more direct usage of memory;
this can lead to a better balance between intensification and diversification
in the search.9 Similarly, TS strategies may also be improved by features of
ILS algorithms and by some insights gained from the research on ILS.

7 This question is not specific to ILS; it arises for all multi-start type metaheuristics.
8 In early TS publications, proposals similar to the use of perturbations were put forward
under the name random shakeup [32]. These procedures where characterized as a “ran-
domized series of moves that leads the heuristic (away) from its customary path” [32]. The
relationship to perturbations in ILS is obvious.
9 Indeed, in [33], Glover uses “strategic oscillation” strategies whereby one cycles over
these procedures: the simplest moves are used till there is no more improvement, and then
progressively more advanced moves are used.
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5.2 Multi-start based metaheuristics

Multi-start based metaheuristics can be classified into constructive meta-
heuristics and perturbation-based metaheuristics.

Well-known examples of constructive metaheuristics are ant colony opti-
mization and GRASP which both use a probabilistic solution construction
phase. An important difference between ACO and GRASP is that ACO has
an indirect memory of the search process which is used to bias the construc-
tion process, whereas GRASP does not have that kind of memory. An obvious
difference between ILS and constructive metaheuristics is that ILS does not
construct soutions. However, both generate a sequence of solutions, and if the
constructive metaheuristic uses an embedded local search, both go from one
local minimum to another. So it might be said that the perturbation phase
of an ILS is replaced by a (memory-dependent) construction phase in these
constructive metaheuristics. But another connection can be made: ILS can be
used instead of the embedded “local search” in an algorithm like ant colony
optimization or GRASP. (This is exactly what is also done, for example in
[72].) This is one way to generalize ILS, but it is not specific to these kinds
of metaheuristics: whenever one has an embedded local search, one can try
to replace it by an iterated local search.

Perturbation-based metaheuristics differ in the techniques they use to ac-
tually perturb solutions. Before going into details, let us introduce one ad-
ditional feature for classifying metaheuristics: we will distinguish between
population-based algorithms and those that use a single current solution (the
population is of size 1). For example, evolutionary algorithms, memetic al-
gorithms, scatter search, and ant colony optimization are population-based,
while ILS uses a single solution at each step. Whether or not a metaheuris-
tics is population-based is important for the type of perturbation that can
be applied. If no population is used, new solutions are generated by applying
perturbations to single solutions; this is what happens for ILS and VNS. If a
population is present, one can also use the possibility of recombining several
solutions into a new one. Such combinations of solutions are implemented by
“crossover” operators in evolutionary algorithms or in the recombination of
multiple solutions in scatter search.

In general, population-based metaheuristics are more complex to use than
those following a single solution: they require mechanisms to manage a popu-
lation of solutions and more importantly it is necessary to find effective oper-
ators for the combination of solutions. Most often, this last task is a real chal-
lenge. The complexity of these population-based local search hybrid methods
can be justified if they lead to better performance than non-population based
methods. Therefore, one question of interest is whether using a population
of solutions is really useful. Clearly for some problems such as the TSP with
high cost-distance correlations, the use of a single element in the population
leads to good results, so the advantage of population-based methods is small
or may become only noticeable if very high computation times are invested.
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However, for other problems (with less cost-distance correlations), the use
of a population can be an appealing way to achieve search space diversifica-
tion. Thus, population based methods may be desirable if their complexity
is not overwhelming. Because of this, population-based extensions of ILS are
promising approaches.

To date, several population-based extensions of ILS have been proposed [41,
82, 80, 85]. The approaches proposed in [41, 82] keep the simplicity of ILS
algorithms by maintaining unchanged the perturbations: one parent is per-
turbed to give one child. More complex population-based ILS extensions with
mechanisms for maintaining diversity in the population are considered in [80].
A population of solutions is used in [85] to restrict the perturbation to ex-
plore only parts of solutions where pairs of solutions differ (similar in spirit to
the genetic transformations [48]) and to reduce the size of the neighborhood
searched in the local search.

Finally, let us discuss VNS, which is the metaheuristic closest to ILS. VNS
begins by observing that the concept of local optimality is conditional on the
neighborhood structure used in a local search. Then VNS systemizes the idea
of changing the neighborhood during the search to avoid getting stuck in poor
quality solutions. Several VNS variants have been proposed. The most widely
used one, basic VNS, can, in fact, be seen as an ILS algorithm which uses the
Better acceptance criterion and a systematic way of varying the perturbation
strength. To do so, basic VNS orders neighborhoods as N1, . . . ,Nm where
the order is chosen according to the neighborhood size. Let k be a counter
variable, k = 1, 2, . . . , m, and initially set k = 1. If the perturbation and
the subsequent local search lead to a new best solution, then k is reset to 1,
otherwise k is increased by one. We refer to [38] for a description of other
VNS variants.

A major difference between ILS and VNS is the philosophy underlying the
two metaheuristics: ILS explicitly has the goal of building a walk in the set
of locally optimal solutions, while VNS algorithms are derived from the idea
of systematically changing neighborhoods during the search.

Clearly, there are major points in common between most of today’s high
performance metaheuristics. How can one summarize how iterated local
search differs from the others? We shall proceed by enumeration as the diver-
sity of today’s metaheuristics seems to forbid any simpler approach. When
comparing to ACO and GRASP, we see that ILS uses perturbations to cre-
ate new solutions; this is quite different in principle and in practice from
using construction. When comparing to evolutionary algorithms, memetic
algorithms, and scatter search, we see that ILS, as we defined it, has a pop-
ulation size of 1; therefore no recombination operators need be defined. We
could continue like this, but we cannot expect the boundaries between all
metaheuristics to be so clear-cut. Not only are hybrid methods very often
the way to go, but most often one can smoothly go from one metaheuristic to
another. In addition, as mentioned at the beginning of this chapter, the dis-
tinction between heuristic and metaheuristic is rarely unambiguous. So our
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point of view is not that iterated local search has essential features that are
absent in other metaheuristics; rather, when considering the basic structure
of iterated local search, some simple yet powerful ideas transpire, and these
can be of use in most metaheuristics, being close or not in spirit to iterated
local search.

6 Conclusions

ILS has many of the desirable features of a metaheuristic: it is simple, easy to
implement, robust, and highly effective. The essential idea of ILS lies in fo-
cusing the search not on the full space of solutions but on a smaller subspace
defined by the solutions that are locally optimal for a given optimization en-
gine. The success of ILS lies in the biased sampling of this set of local optima.
How effective this approach turns out to be depends mainly on the choice
of the local search, the perturbations, and the acceptance criterion. Interest-
ingly, even when using the most näıve implementations of these parts, ILS
can do much better than random restart. But with further work so that the
different modules are well adapted to the problem at hand, ILS can often
become a competitive or even state-of-the-art algorithm. This dichotomy is
important because the optimization of the algorithm can be done progres-
sively, and so ILS can be kept at any desired level of simplicity. This, plus the
modular nature of iterated local search, leads to short development times and
gives ILS an edge over more complex metaheuristics in the world of indus-
trial applications. As an example of this, recall that ILS essentially treats the
embedded heuristic as a black box; then upgrading an ILS to take advantage
of a new and better local search algorithm is nearly immediate. Because of all
these features, we believe that ILS is a promising and powerful algorithm to
solve real complex problems in industry and services, in areas ranging from
finance to production management and logistics. Finally, let us note that
although all of the present review was given in the context of tackling com-
binatorial optimization problems, in reality much of what we covered can be
extended in a straight-forward manner to continuous optimization problems.

Looking ahead towards future research directions, we expect ILS to be
applied to new kinds of problems. Some challenging examples are: (i) prob-
lems where the constraints are very severe and so most metaheuristics fail;
(ii) multi-objective problems, bringing one closer to real problems; (iii) dy-
namic or real-time problems where the problem data vary during the solution
process.

The ideas and results presented in this chapter leave many questions
unanswered. Clearly, more work needs to be done to better understand the
interplay between the ILS modules GenerateInitialSolution, Perturbation, Lo-

calSearch, and AcceptanceCriterion. Other directions for improving ILS per-
formance are to consider the intelligent use of memory, explicit intensification
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and diversification strategies, and greater problem-specific tuning. The explo-
ration of these issues will certainly lead to higher performance iterated local
search algorithms.
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