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ABSTRACT 

Iterated Local Search (ILS) is a powerful framework for developing efficient algorithms for the 
Permutation Flow Shop Problem (PFSP). These algorithms are relatively simple to implement 
and use very few parameters, which facilitates the associated fine-tuning process. Therefore, 
they constitute an attractive solution for real-life applications. In this paper, we discuss some 
parallelization, parametrization, and randomization issues related to ILS-based algorithms for 
solving the PFSP. In particular, the following research questions are analyzed: (a) is it possible 
to simplify even more the parameter setting in an ILS framework without affecting 
performance? (b) how do parallelized versions of these algorithms behave as we simultaneously 
vary the number of different runs and the computation time? (c) for a parallelized version of 
these algorithms, is it worthwhile to randomize the initial solution so that different starting 
points are considered?; and (d) are these algorithms affected by the use of a ‘good-quality’ 
pseudo-random number generator? In this paper, we introduce the new ILS-ESP algorithm 
which is specifically designed to take advantage of parallel computing, allowing us to obtain 
competitive results in ‘real-time’ for all tested instances. The ILS-ESP also uses ‘natural’ 
parameters, which simplifies the calibration process. An extensive set of computational 
experiments has been carried out in order to answer the aforementioned research questions.  
 
Keywords: Flow-Shop Problem, Scheduling, Iterated Local Search, Parallelizable algorithms, 
Biased-randomized heuristics, Metaheuristics, Parameters setting. 
 
 
1. INTRODUCTION 

The Permutation Flowshop Sequencing Problem (PFSP) is a well-known scheduling problem 
that can be described as follows: a set J of k independent jobs has to be processed on a set M of 
m independent machines. Each job jJ requires a given fixed processing time pij ≥ 0 on each 
machine iM. Each machine can execute at most one job at a time, and all jobs are processed 
by the machines in the same order. The classical goal is to find a single sequence for processing 
the jobs in the shop so that a given criterion is optimized. The criterion most commonly used is 
the minimization of the maximum completion time, or makespan, denoted by Cmax. Figure 1 
illustrates this problem for the simple case of k = 3 jobs and m = 3 machines. 

The described problem is usually denoted as Fm|prmu|Cmax, and it is a combinatorial 
problem with k! possible sequences. As is the case with other combinatorial problems, a large 
number of different approaches have been developed to deal with the PFSP. These approaches 
range from the use of exact optimization methods, such as mixed integer programming or 
branch and bound algorithms for solving small-sized problems, to heuristics and metaheuristics 
that provide near-optimal solutions for medium and large-sized problems (Ruiz and Maroto, 
2005). Most of these methods focus on minimizing makespan. Some of them have reached 
outstanding efficiency levels, often using several parameters that require a fine-tuning process. 
This fine-tuning process is important, as the proper selection of these parameters has a 
significant impact on the performance of the algorithms, i.e.: the efficiency of these methods 
tends to be quite sensitive to the values assigned to each parameter (Gendreau and Potvin, 



2005; Matsui and Yamada, 2007; Zobolas et al., 2009; Zheng and Yamashiro, 2010; Engin 
et al., 2011; Alabas and Dengiz, 2011; Cooren et al., 2011).  
 

 
Figure 1:  Flowshop Sequencing Problem 

 
In this article, we discuss several issues regarding the use of an Iterated Local Search (ILS) 
framework (Lourenço et al., 2010) to develop efficient and parallelizable algorithms for the 
PFSP. Typically, these algorithms also use a reduced number of parameters with few setting 
requirements. In addition, ILS-based algorithms are easy to understand and to implement in a 
computer, which make them quite suitable for real-life applications and commercial software. 
Apart from considering parallelization and randomization issues in ILS-based approaches for 
the PFSP, in this paper we also propose a new Efficient, Simple, and Parallelizable (ESP) 
algorithm which moreover does not require advanced fine-tuning techniques – e.g. Design of 
Experiments (DOE) – which are also time consuming. The ILS-ESP algorithm employs basic 
‘common sense’ rules for the local search, perturbation, and acceptance criterion stages of the 
ILS metaheuristic. In particular, a new operator which combines a swap (interchange) 
movement with a classical ‘shift-to-left’ movement is introduced for the perturbation process, 
thus avoiding any complex operators. Also, instead of using a traditional Simulated Annealing 
type acceptance criterion – which introduces a real-valued parameter that needs to be set –, a 
simpler acceptance-criterion rule is defined for this stage. A distinctive contribution of our 
approach is the introduction of a biased (non-uniform) randomization process during the 
construction of the initial solution. This process employs a skewed probability distribution to 
randomly generate different alternative initial solutions based on the well-known heuristic from 
Nawaz, Enscore and Ham (NEH) (Nawaz et al., 1983). Thus, diversification of the local search 
starting point is attained in a simple, fast, and efficient manner. This diversification stage aims 
at avoiding poorly designed starting points and can provide benefits when applying parallel and 
distributed computing techniques. This randomization approach has similarities with the one 
proposed in Greedy Randomized Adaptive Search Procedure (GRASP) metaheuristics 
(Resende and Ribeiro, 2005). In fact, the algorithm presented here can be seen as a hybrid ILS-
GRASP approach. However, while GRASP algorithms typically employs a uniform distribution 
and a restricted list of candidates during the construction process of a new solution, our 
approach proposes the use of a skewed distribution and considers the entire list of candidates. 

The paper is organized as follows: Section 2 offers a basic literature review on the flowshop 
problem. Section 3 briefly describes the main ideas characterizing the GRASP and ILS 
metaheuristics, since our approach can be considered a hybridization of both types of 
algorithms. Section 4 describes the ILS-ESP algorithm. Sections 5 and 6 discuss three extensive 
computational experiments, which have been carried out to test the efficiency of the proposed 
algorithm, compare it against state-of-the-art approaches, and test the effects of increasing the 
computation time and number of parallel agents used in the ILS-ESP. Finally, Section 7 
contains the conclusions of the paper.  
 
 



2. LITERATURE REVIEW ON THE PFSP 
 
A large number of heuristics and metaheuristics have been proposed to solve the PFSP, since it 
is very difficult to solve medium or large instances of the problem with exact methods. Most 
existing approaches focus on minimizing the makespan. Johnson (1954) proposed a simple 
procedure to obtain optimal sequences for the PFSP with two machines and three machines. 
Campbell et al. (1970) developed the CDS heuristic for solving the PFSP with more than two 
machines. Dannenbring (1977) also proposed several constructive heuristics for the general 
problem. Nawaz et al. (1983) introduced the NEH heuristic, which is commonly considered the 
best performing constructive heuristic for the PFSP. Basically, the NEH heuristic proposes 
calculating the total processing time required for each job –i.e. the total time each job requires to 
be processed by the set of machines– and then creating an ‘efficiency list’ of jobs sorted in 
descending order according to this total processing time. At each step, the job at the top of the 
efficiency list is selected and used to construct the solution. That is: the ‘common sense’ rule is 
to select first those jobs with the highest total processing time. Once selected, the job is inserted 
into the sorted set of jobs at a position that will minimize the makespan of this ongoing solution 
by using a ‘shift-to-left’ movement. Taillard (1990) introduced a data structure that reduces the 
NEH complexity. Some other interesting heuristics include those from Suliman (2000) or 
Framinan and Leisten (2003), which consider several extensions of the NEH heuristic when 
facing objectives other than makespan. It should be noticed that NEH is the most commonly 
accepted method for the PFSP under the makespan minimization criterion, and it has been 
frequently used to provide an initial upper bound for the best branch-and-bound algorithms 
(Ladhari and Haouari, 2005; Companys and Mateo, 2007).  
Several metaheuristic approaches have also been proposed for the PFSP. Osman and Potts 
(1989) used Simulated Annealing (SA). Widmer and Hertz (1989) proposed a Tabu Search 
(TS) algorithm known as SPIRIT. Other Tabu Search algorithms also make use of the NEH 
heuristic (Reeves, 1993; Moccellin, 1995). Also, Genetic Algorithms (GA) based on the NEH 
heuristic have been proposed for solving the PFSP (Chen et al., 1995; Reeves, 1995; 
Aldowaisan and Allahvedi, 2003). Other metaheuristics, such as Ant Colony Optimization 
(ACO), have been used to obtain competitive or near-optimal solutions as well 
(Chandrasekharan and Ziegler, 2004). Ravetti et al. (2006) propose hybrid heuristics that 
combine elements from the Greedy Randomized Adaptive Search Procedure (GRASP), Iterated 
Local Search (ILS), Path Relinking (PR) and Memetic Algorithm (MA). Their results are quite 
competitive when compared with existing algorithms. The efficiency of these procedures can be 
checked by comparing them against the best known solutions for the Taillard’s benchmark 
instances (Taillard, 1993). 

What all of the aforementioned works have in common is that the algorithms proposed are 
relatively easy to code, and therefore the results can be reproduced without too much difficulty. 
In addition, many of the above algorithms can be adapted to other more realistic flowshop 
environments (Ruiz and Maroto, 2005). There are other highly elaborate hybrid techniques for 
solving the PFSP. However, as Ruiz and Stützle (2007) point out, “...they are very 
sophisticated and an arduous coding task is necessary for their implementation.” In other words, 
it is unlikely that they can be used for solving realistic scenarios without direct support from the 
researchers that developed them. For a complete description of heuristics and metaheuristics for 
the PFSP, we refer to the reader to more specialized references (Framinan et al., 2004; Hejazi 
and Saghafian, 2005; Ruiz and Maroto, 2005). 

In this paper, we will mainly focus on ILS-related approaches. The ILS metaheuristic has 
been applied successfully to a variety of combinatorial optimization problems. In certain cases, 
ILS algorithms achieve extremely high performance and even constitute the current state-of-the-
art metaheuristics for some optimization problems. According to Burke et al. (2010), who 
compared ILS against several hyper-heuristics, “...the implementation of Iterated Local Search 
produced the best overall performance. Interestingly, this is one of the most conceptually simple 
competing algorithms, its advantage as a robust algorithm is due to two factors: (i) the simple 
yet powerful exploration/exploitation balance achieved by systematically combining a 
perturbation followed by local search; and (ii) its parameter-less nature.” For a detailed review 



of existing ILS applications we refer to Lourenço et al. (2010). Several algorithms based on the 
ILS framework have been applied to solve the PFSP. In particular, Stützle (1998) proposed a 
simple yet efficient ILS approach for this problem. Some years later, Ruiz and Stützle (2007) 
developed the Iterated Greedy (IG) method, which can be seen as an improved version of the 
Stützle’s ILS metaheuristic. IG provides outstanding (state-of-the-art) results in terms of 
accuracy and speed and, for that reason, it deserves special attention. Despite its relative 
simplicity, it is one of the most efficient algorithms developed so far for the PFSP. In their 
work, Ruiz and Stützle (2007) tested IG against 11 different approaches –including various 
GA, TS, and SA. The experimental results showed that IG was the best-performing approach. 
Some other recent works relating the ILS method to the PFSP can be found in Ravetti et al 
(2006), Pan et al. (2008), Burke et al. (2010), and Ribas et al. (2010). However, to the best of 
our knowledge, IG has performed better than any other algorithm (ILS-based or not) in all PFSP 
articles using the Taillard’s benchmarks. During the last years, IG has become the method of 
reference in the PFSP field. Thus, for instance, in Zobolas et al. (2009) the authors show that 
their hybrid GA algorithm, NEGA-VNS, is able to compete with HGA-RMA, another hybrid 
GA algorithm previously developed by Ruiz et al. (2006). However, as Ruiz and Stützle 
(2007) show in their work, IG is simpler and far superior to HGA-RMA. Also, Ribas et al. 
(2010) proposed several SA-based algorithms to compete with IG, but their results show that IG 
uses fewer parameters and performs better than their algorithms in all classical benchmarks. 
Finally, Nagano et al. (2008) tested their GA approach against a number of GA-based 
approaches. Some of the results in their paper are directly comparable to the results in Ruiz and 
Stützle (2007) (shared authors, same CPU, same maximum computing times, etc.). A 
comparison of both results shows that IG outperforms all considered metaheuristics. 

As a relatively simple and yet extremely efficient algorithm, IG has inspired other 
approaches for different combinatorial optimization problems. For instance, Kahraman et al. 
(2010) developed a parallel greedy algorithm for the hybrid flow shop scheduling problem 
which uses the destruction-construction operator proposed in IG. Another example is the IG-
based algorithm of Pan et al. (2008) for the no-wait flow shop scheduling problem. 
 
 
3. OVERVIEW OF THE GRASP AND ILS METAHEURISTICS 
 
Since the algorithm presented in this paper is inspired both in the GRASP and ILS 
metaheuristics –and to some extent it can be seen as a hybridization of both– these two methods 
are briefly described next. For a recent review of the GRASP and ILS methodologies the reader 
is referred to Festa and Resende (2009a, 2009b) and Lourenço et al. (2010), respectively. 

GRASP is a multi-start method designed to solve hard combinatorial optimization problems 
(Feo and Resende, 1995). The basic methodology consists of two phases: (a) a constructive 
phase that builds a good but not necessarily locally optimal solution, and (b) a second phase 
which consists of a local search procedure. These two phases are repeated until a stopping 
criterion is reached, all the while keeping track of the best solution found overall in the search. 
The constructive phase builds step by step by adding an element to a partial solution following a 
greedy function. The selection of the element to be added, in each iteration, is not deterministic, 
but rather subject to a randomization process. That way, the repetition of both phases leads to 
different solutions. The randomization process is usually controlled by a parameter that in the 
simplest versions of GRASP is fixed along the execution of the algorithm. A particularly 
interesting GRASP is the so-called Reactive GRASP (Prais and Ribeiro, 2000). In this version 
of the methodology, the parameter is not fixed along the running of the algorithm, but instead 
selected randomly from a set of discrete values. Initially, all values have the same probability of 
being chosen. After each iteration, we keep the value of the solutions which were obtained for 
each value of the parameter. After a certain number of iterations, the probabilities are modified. 
Those corresponding to values of the parameter which have produced good solutions are 
increased and, conversely, those corresponding to values producing low quality solutions are 
decreased. 



The essential idea of Iterated Local Search (ILS) lies in focusing the search not on the full 
space of solutions but on a smaller subspace defined by the solutions that are locally optimal for 
a given optimization engine. Figure 2 shows the general framework of the ILS procedure. To 
apply an ILS algorithm to an optimization problem, the four main components of the method 
must be specified in detail. These four components or processes are: generate initial solution, 
local search, perturbation, and acceptance criterion. For many applications, it is 
straightforward to first develop a basic version of ILS, since many of the components are 
common to other metaheuristics. For example, (i) one can start with a random solution; (ii) for 
most problems a local search algorithm is readily available; (iii) for the perturbation stage, a 
random move in a neighborhood of higher order than the one used by the local search algorithm 
can be effective; and (iv) a first-improvement acceptance criterion can be used. However, a 
state-of-the-art implementation requires the definition of more advanced components and 
operators. Also, the interaction among these components must be taken into account to improve 
the quality of the method. 
 
 
procedure IteratedLocalSearch 
 
01  initSol = generateInitialSolution  // initial solution generation process 
02  baseSol = localSearch(initSol)  // local search process 
03  bestSol = baseSol 
 
04  while stopping condition not met do   
05    aSol = perturbation(baseSol, history)  // perturbation process 
06    aSol = localSearch(aSol)  // local search process 
07    bestSol = updateBestSol(aSol) 
08  baseSol = acceptanceCriterion(baseSol, aSol, history) // acceptance 
process 
09  end while 
 
10  return bestSol 
 
end 
 

Figure 2: IteratedLocalSearch general framework 
 
In the next sections, we propose, and test the ILS-ESP algorithm for solving the PFSP. With this 
algorithm, we show how it is possible to use only parameters with ‘natural’ values –which do 
not require calibration analyses– in an ILS-based framework without loosing performance with 
respect to a state-of-the-art algorithm such as IG. Our method, which will be described later in 
detail, introduces some GRASP principles inside the initial solution generation process of the 
ILS framework. One motivation that guided the design of the ILS-ESP method was to achieve 
many of the desirable features of a metaheuristic as described by Cordeau et al. (2002): 
accuracy, speed, simplicity and flexibility. Most of the metaheuristics in the literature are 
measured against accuracy –the degree of departure of the obtained solution value from the 
optimal value–, and against speed –the computation time. However, there are two other 
important attributes to be considered in any metaheuristic: simplicity and flexibility. The 
simplicity is related to the number of parameters to be set and the facility of implementation. 
This is an important feature since the method can be applied to instances other than the ones 
tested without losing quality or performance and without the need of performing a long test run. 
Finally, flexibility is related to the possibility of accommodating new side constraints and also 
to the adaptation to other similar problems. Another fundamental motivation for developing the 
ILS-ESP was to design an easily parallelizable, yet easy-to-implement, method. That way, it 
could benefit from current multi-core processors and multi-thread programming techniques. 
Despite parallelization issues are critical in every modern method, as stated in Ravetti et al. 
(2012) these issues have been rarely considered in the existing PFSP literature. In fact, these 
authors propose a parallel hybrid search approach –combining a Memetic Algorithm and several 
IG algorithms– to efficiently solve the PFSP in a multi-threaded environment. Using an 



optimized computer implementation of this hybrid approach, they run a set of experiments to 
obtain excellent results for most Taillard’s instances. Their approach is complementary to ours 
in different ways, in particular: (a) while they analyze the effects of parallelization in long runs 
using a moderated number of threads (6 and 18), we focus on the effects of parallelization in 
short runs –i.e. ‘real-time’ solutions– using a larger number of threads (up to 50); (b) while we 
focus on developing a simpler-as-possible approach, their approach proposes a collaboration 
strategy between different algorithms; and (c) while our algorithm uses just a few parameters 
which can be easily calibrated, the Memetic Algorithm and the proposed parallelization 
architecture in their approach introduce many parameters which require from advanced fine-
tuning processes. All in all, these two approaches are similar in the sense that they both show 
the importance of hybridization and parallelization issues in designing modern algorithms for 
the PFSP. 

As will be discussed in the next section, the ILS-ESP method can also be related to Monte 
Carlo simulation or, simply, random sampling from a non-uniform distribution. In some 
previous works, Juan et al. (2010, 2011b) described the application of biased-randomized 
heuristics to solve the Capacitated Vehicle Routing Problem (CVRP). In particular, they 
employed a geometric distribution in order to introduce a skewed (biased) random behavior in a 
classical routing heuristic. Using biased randomization they were able to transform a 
deterministic (greedy) heuristic into a probabilistic algorithm without losing the logic behind the 
heuristic. Accordingly, a new heuristic-based solution is generated each time the randomized 
algorithm is run. Notice that this methodology could be seen as a kind of biased GRASP, where 
the uniform distribution is substituted by non-uniform (skewed) distributions in order to 
maintain most of the heuristic criteria. The aforementioned authors commented on the 
convenience of using similar approaches for combinatorial problems other than the CVRP: “it is 
convenient to highlight that the introduced methodology can be used beyond the CVRP 
scenario: similar hybrid algorithms based on the combination of Monte Carlo simulation with 
already existing heuristics can be developed for other routing problems and, in general, for other 
combinatorial optimization problems.” 
 
 
4. THE ILS-ESP ALGORITHM 
 
The ILS-ESP algorithm uses the ILS metaheuristic as a framework, and combines it with a 
GRASP-like procedure. Therefore we will define the four components of any ILS-based 
algorithm (generate initial solution, local search, perturbation, and acceptance criterion) with 
emphasis on three original points (Figure 3) that make our algorithm significantly different 
from previous ILS-based algorithms such as those described in Stützle (1998) and Ruiz and 
Stützle (2007). 
 



 

Figure 3: Scheme on the differences among different ILS-based approaches 
 
The first of these three critical points is related to the perturbation component. During the 
perturbation process, the so-called ‘enhanced-swap’ operator is used. This is a very simple, fast, 
and efficient operator which basically does the following: (a) randomly selects (using a uniform 
distribution) two different jobs from the current solution; (b) interchanges both jobs, that is, 
interchanges their positions in the permutation; and (c) applies a classical ‘shift-to-left 
movement’ (like the one proposed in the NEH heuristic) to each of these jobs following a left-
to-right order. The idea here is that we first consider a subset of the sequence of jobs by looking 
at the left-most swapped job and all elements to its left. Then we shift the right-most job of this 
subset and tentatively insert it into all possible positions of this sequence of jobs. Next, we 
select the sequence that results in the minimum makespan. Afterwards, we take this sequence 
and reinsert it into the full set of jobs. We then apply this idea again for the other swapped job. 
This ‘shift-to-left movement’ takes advantage of Taillard’s accelerations (Taillard, 1990) to 
quickly determine the best position for each job when only the partial solution up to its position 
is considered. Figure 4 shows the pseudo-code associated with this perturbation operator. 
Notice that the proposed operator is really simple and does not require any further parameter 
setting. 
 
 
procedure enhancedSwap(aSol) 
 
01  posA = selectRandomPosition(aSol) // selects a random job position in aSol 
02  posB = selectRandomPosition(aSol) 
 
03  aSol = swapJobs(aSol, posA, posB) // interchanges jobs at given positions 
 
04  aSol = shiftToLeft(aSol, posA) // applies the NEH shiftToLeft operator 
05  aSol = shiftToLeft(aSol, posB) 
 
06  return aSol 
 
end 
 

Figure 4: enhancedSwap procedure to perform the ILS-ESP perturbation stage 
 



A second critical difference of our algorithm is the acceptance criterion. The algorithm does not 
use a SA-based process like most other ILS-based algorithms, but instead uses a Demon-like 
process. As stated in Talbi (2009, pp. 138), a Demon-like acceptance criterion is 
computationally simpler than a SA-like one since the former does not use pseudo-random 
numbers or real-valued parameters –which require specific calibration. This Demon-like 
acceptance criterion, together with the perturbation process, is designed to help avoid local 
minima during the algorithm execution. In order to do so, the criterion simply states the 
following basic principles: (a) any time a newly generated solution, aSol, improves the current 
base solution, baseSol, the base solution is updated (improved) to this new solution –likewise, 
this new solution is compared against the best-known solution, bestSol, to see if it must also be 
updated; and (b) even if a newly generated solution is worse than the base solution, the base 
solution will be updated (deteriorated) to this new solution as long as no consecutive 
deteriorations take place and the degradation does not exceed the last improvement. Notice that 
by allowing the base solution to degrade up to a certain level, the probability that the algorithm 
gets trapped at a local minimum is greatly reduced. Figure 5 shows the pseudo-code associated 
with this acceptance criterion process. 
 
 
01  delta = cost(currentSol) – cost(baseSol) 
 
02  if delta < 0 then  // Case A: Improvement 
03    credit = - delta 
04    baseSol = currentSol 
05    if cost(baseSol) < cost(bestSol) then bestSol = baseSol end if 
06  end if 
 
07  if 0 < delta <= credit then  // Case B: Deterioration 
08    credit = 0 
09    baseSol = currentSol 
10  end if 
 

Figure 5: pseudo-code for the ILS-ESP acceptance criterion stage 
 
A third critical point of our approach –which contributes to make the algorithm parallelizable– 
is related to the starting solution used inside the ILS framework, generate initial solution. 
Usually, this starting solution is the one provided by the NEH heuristic, which generally 
produces a relatively good initial solution. Using the NEH solution instead of a randomly 
generated solution is typically considered good practice in order to accelerate the convergence 
of algorithms. However, it seems reasonable to think that when multiple runs of the same 
instance are executed –either in sequential or in parallel mode– using always the same starting 
point can be a severe drawback for fast convergence in those cases in which the NEH solution 
provides relatively ‘poor’ solutions. In this context, the term ‘poor’ does not necessarily refer to 
the makespan value of the solution, but rather to the number of movements or transformations 
that must be applied to the initial solution in order to arrive at a competitive or near-optimal 
solution. Since we are especially interested in running multiple iterations of any given instance, 
which can be seen as a form of biased (skewed) GRASP, we designed a way to generate 
different randomized NEH solutions with similar properties. As described before, the NEH 
heuristic is an iterative algorithm which uses a list of jobs sorted by their total completion time 
on all the machines to construct a solution for the PFSP. At each step of this iterative process, 
the NEH removes the job at the top of that list (with maximum completion time) and adds to it a 
new list at the position that results in the best partial solution with respect to makespan. As a 
result, the NEH provides a ‘common sense’ deterministic solution, by trying to schedule the 
most demanding jobs first. Our method instead assigns a probability to selecting each job in the 
list. According to our design, this probability should be coherent with the total time that each 
job needs to be processed by all the machines, i.e. jobs with higher total times will be more 
likely to be selected from the list before those with lower total times (biased distribution of 
probabilities). Figure 6 shows the main pseudo-code associated with this process. 



 
 
procedure RandNEH 
 
01  nehJobsList = sortJobsUsingNehCriterion 
02  nehSol = nehAlgorithm(nehJobsList) // NEH solution 
03  baseSol = nehSol 
04  nIter = 0 
 
05  while cost(baseSol) >= cost(nehSol) and nIter < nJobs do 
06    nIter = nIter + 1 
07    newJobsList = biasedRandomization(nehJobList, triangular) 
08    newSol = nehAlgorithm(newJobsList) 
09    if getCost(newSol) < getCost(baseSol) then baseSol = newSol end if 
10  end while 
 
11  return baseSol 
 
end 
 

Figure 6: RandNEH procedure to perform the NEH biased randomization 
 
To satisfy all of the aforementioned requirements, we employ a discretized version of the 
decreasing triangular distribution during the solution-construction process: each time a new job 
has to be selected from the list, a triangular distribution that assigns linearly diminishing 
probabilities to each eligible job according to its corresponding total-processing-time value is 
employed. Other skewed probability distributions –like the geometric one– have been 
successfully employed in routing problems by Juan et. al (2010) to generate multiple 
alternative solutions by inducing a similar biased-randomizaton process into a classical 
heuristic. In the case of the PFSP, the decreasing triangular probability distribution was chosen 
since it contains no parameters to be set and provides satisfactory results. That way, jobs with 
higher processing times are always more likely to be selected from the list first, but the assigned 
probabilities are variable and they depend upon the number of eligible jobs at each step. By 
iterating this procedure, a biased random search process is started. As a consequence, in most 
cases it is possible to obtain in just a few iterations (milliseconds for most tested instances) a 
randomized solution whose makespan is almost equal or even better than the original NEH 
solution (see Figure 7). Notice that similar biased randomization processes can be developed 
for generating alternative initial solutions in other ILS-based metaheuristics, either in the 
context of the PFSP or in other combinatorial optimization problems. As the experimental 
section will show, this might be especially interesting when parallelization approaches are used 
to simultaneously run multiple instances of the algorithm. As a matter of fact, we consider this 
hybridization of ILS with GRASP-like metaheuristics as one of the major contributions of this 
paper, and one that should be explored in other combinatorial optimization problems. 
 



 

 Figure 7: Diversification of initial solutions throughout biased randomization 
 
Figure 8 shows the final pseudo-code of the ILS-EPS algorithm, which integrates the 
aforementioned perturbation operator, acceptance criterion, and randomization process into an 
ILS framework. The local search process that our algorithm uses is the traditional local search 
process used by most other authors, e.g. Ruiz and Stützle (2007).  
 
 
Procedure ILS-ESP 
 
01  baseSol = RandNEH  // DIVERSIFICATION (NEH biased randomization) 
02  baseSol = localSearch(baseSol)  // CLASSICAL LOCAL SEARCH 
03  bestSol = baseSol 
 
04  while stopping condition not met do  // ITERATED LOCAL SEARCH 
 
05    currentSol = enhancedSwap(baseSol)  // PERTURBATION 
06    currentSol = localSearch(currentSol)  // CLASSICAL LOCAL SEARCH 
 
07    delta = cost(currentSol) – cost(baseSol)  // ACCEPTANCE CRITERION 
08    if delta < 0 then  // Case A: Improvement 
09      credit = - delta 
10      baseSol = currentSol 
11      if cost(baseSol) < cost(bestSol) then bestSol = baseSol end if 
12    end if 
13    if 0 < delta <= credit then  // Case B: Deterioration 
14      credit = 0 
15      baseSol = currentSol 
16    end if 
 
17  end while 
 
18  return bestSol 
 
end 
 

Figure 8: ILS-ESP general procedure 
 
The computational complexity of the ILS-ESP algorithm is discussed next. First of all, notice 
that the complexity of the RandNEH procedure is the same as the complexity of the NEH 
heuristic, which is employed in most modern meta-heuristics to generate an initial solution. 
Using Taillard’s accelerations, its relative speed is O(n2m) (Taillard, 1990). As described 



before, the local search procedure is the same classical process employed in other similar ILS-
based approaches. As discussed in Ruiz and Stützle (2007), using Taillard’s accelerations the 
complexity of evaluating the whole neighborhood of one solution is O(n2m). Although this 
evaluation is iteratively applied during the local search until the current solution cannot be 
improved any further, the number of iterations tends to be relatively low: each iteration is 
associated with a new improvement and that is something unusual, especially as we get closer to 
an optimal solution. In our opinion, however, the number of iterations is not a big issue since it 
could be limited to n-1 without affecting the performance of the algorithm in a significant way. 
Finally, the perturbation procedure, which is also performed using Taillard’s accelerations, is 
O(n2m). Since the stopping criterion we use in practice limits the computation time to some 
factor of n·m, it can be considered that the complexity of the ILS-ESP algorithm is O(n3m2), i.e. 
polynomial, as in other ILS-based algorithms. 

Finally, notice that it seems reasonable to question whether or not using a ‘high-quality’ 
(pseudo-) Random Number Generator (RNG) can somewhat enhance the performance of ILS-
based algorithms. In order to answer this natural question, we have run some tests using 
different RNGs as suggested by L’Ecuyer (2001). These results will be discussed in Section 6.  
 
 
5. TESTING THE ILS-ESP USING THE BEST AND AVERAGE METRICS 
 
The ILS-ESP algorithm described in this paper was implemented as a Java application. Java was 
chosen for several reasons. First, it generates portable code which can run, without 
modifications, over different operating systems. This can be a significant advantage when 
executing a randomized algorithm in a parallel or distributed environment. Secondly, as one of 
the simplest object-oriented languages, it facilitates the rapid development of prototypes. 
Thirdly, according to Luke (2009, pp. 196) it is easier to guarantee duplicability of results in 
Java than in other languages such as C/C++. The expected counterpart is that, since Java code 
runs over a virtual machine, a Java version of an algorithm will execute somewhat slower than 
the corresponding C/C++ version. 

An Intel Xeon at 2.0 GHz and 4 GB RAM was used to perform all tests, which were run 
directly on the Netbeans IDE platform for Java over Windows 7. In order to compare our ILS-
ESP algorithm with other state-of-the-art ILS-based approaches, the following parameterized 
algorithms (with parameters D and T) were also coded in Java by the same programmers: 

 The ILS98-T04, which is the algorithm proposed in Stützle (1998) using T = 0.4. 
According to the algorithm’s author, this parameter value is the one offering the best 
performance, and it was obtained after a fine-tuning process. 

 The IG-D4T04 and IG-D2T03, which represent two different parameterizations (D = 4, 
T = 0.4 and D = 2, T = 0.3) of the well-known IG algorithm proposed in Ruiz and 
Stützle (2007). The first set of parameters was obtained by the authors of IG after 
completing a DOE fine-tuning process. The second set of parameters was selected by us 
in order to show how performance of IG can be affected if other parameter values are 
selected instead of the ‘optimal’ ones. At this point, it is worthwhile to remember that in 
multiple experiments carried out by different authors (Ruiz and Stützle, 2007; Zobolas 
et al., 2009; Ribas et al., 2010), the IG-D4T04 algorithm has outperformed any other 
algorithm so far, including GA and TS, which have more parameters than IG. Thus, the 
IG algorithm is a highly cited reference in the PFSP literature and, to the best of our 
knowledge, it is one of the most efficient algorithms in this field. 

 The RandIG-D4T04, which is our proposal for a randomized version of the IG-D4T04, 
i.e. we have incorporated the GRASP-inspired biased randomization process developed 
for the ILS-ESP algorithm into the IG algorithm. 

 
It is worthy to summarize at this point the main differences between our approach, ILS-ESP, 
and other existing ILS-based approaches can be summarized as follows: 

 The GRASP-inspired biased randomization process, which is able to generate 
alternative initial solutions of ‘good’ quality. As will be shown in the experimental 



section, this can be especially useful when multiple instances of the algorithm are run in 
parallel. 

 The new perturbation operator, which according to our experiments is able to compete 
with the extremely efficient destruction-construction operator proposed in the IG 
algorithm. The latter operator, however, contains a fine-tuned parameter (D = 4) which 
determines how many jobs must be extracted during the destruction phase. 

 A simple acceptance criterion component, which is based on a Demon-like process. 
This ‘white-box’ approach replaces the ‘black-box’ SA-like approach employed in other 
ILS-based algorithms, which also uses a fine-tuned parameter (T = 0.4). 

 
For each one of the aforementioned algorithms, we designed and performed extensive tests – 
using the same machine, same programming language, same execution time, and same program 
developer – on the 120 Taillard’s benchmark instances (Taillard, 1993). These instances, which 
are available from http://mistic.heigvd.ch/taillard/default.htm, are grouped in 12 sets of 10 
instances each according to the number of jobs and the number of machines, i.e.: set 20x5, set 
20x10, set 20x20, set 50x5, set 50x10, set 50x20, set 100x5, set 100x10, set 100x20, set 200x10, 
set 200x20, and set 500x20. Thus, for each ILS implementation and for each tested instance, 10 
independent iterations (replicas) were run. Each replica was run for a maximum time tmax = 
0.01s×k×m, where k is the number of jobs, and m is the number of machines. Then, for each set 
of replicas, the best experimental solution found (BEST10) as well as the average value of the 
different replicas (AVG10) were registered. Also, the best-known solution (BKS) associated 
with each instance was obtained either from the aforementioned website or from Zobolas et al. 
(2009). Notice that the tmax we are employing is really a small value in terms of computational 
times. Thus, for the smallest instances tmax = 1s, while for the largest ones tmax =100s. While 
analyzing the results it is important to keep in mind these short computational times and the real 
difficulty of the selected benchmarks. As stated by Zobolas et al. (2009): “It should be 
mentioned that the best known solutions in difficult instances are usually found with branch and 
bound techniques or other exact methods in powerful workstations run for extended time 
periods, and thus are not directly comparable to metaheuristic methods designed or intended to 
run on single processor PCs and provide high-quality solutions in short computational times.” 

In the following subsections, the results associated with the BEST10 values and those 
associated with the AVG10 values are respectively analyzed and discussed. 
 
5.1. A COMPARISON USING THE BEST10 METRIC 
 
Table 1 shows, for each tested algorithm and set of instances, a summary of the experimental 
results when considering the gap between the BKS and the best-found solution in 10 runs. 
 
From the averages in the last row of the table, we can see that all tested ILS-based algorithms 
perform quite well on the average –taking into account the maximum time each instance is 
executed. However, it seems that our randomized version of the IG algorithm with optimal 
parameter settings, the RandIG-D4T04, is the one showing the best performance (average gap = 
0.33%). Just a slightly worse than this randomized version, both the optimally parameterized 
IG-D4T04 and our ILS-ESP seem to perform equally well (average gap = 0.36%). Then, we 
have the parameterized ILS98-T04 (average gap = 0.37%). Finally, far from the rest, we find the 
non-optimally parameterized IG-D2T03 (average gap = 0.44%). Notice that this result seems to 
imply that the IG algorithm offers some degree of sensitivity with respect to its parameters, i.e. 
its performance can be greatly reduced when non-optimal values are assigned to its parameters. 
Figure 9 shows a multiple-boxplot which allows for a visual comparison of the performance of 
the algorithms. This figure reinforces the idea that results from the first four approaches are 
quite equivalent, although maybe the RandIG-D4T04 performs slightly better than the rest. It 
also seems clear from this figure that the non-optimized version of the IG algorithm performs 
slightly worse than the rest. 
 



Table 1: Gaps between Best Known Solution and BEST10. Java code running on an Intel Xeon at 2.0 GHz. 

Taillard set RandIG-D4T04 IG-D4T04 ILS-ESP ILS98-T04 IG-D2T03 Max. Time (s) 

20_5 0.00% 0.04% 0.00% 0.04% 0.00% 1 

20_10 0.00% 0.00% 0.00% 0.00% 0.04% 2 

20_20 0.00% 0.01% 0.00% 0.00% 0.03% 4 

50_5 0.00% 0.00% 0.00% 0.00% 0.00% 2.5 

50_10 0.38% 0.48% 0.47% 0.45% 0.53% 5 

50_20 0.62% 0.66% 0.71% 0.74% 1.00% 10 

100_5 0.00% 0.01% 0.00% 0.01% 0.00% 5 

100_10 0.10% 0.07% 0.10% 0.07% 0.10% 10 

100_20 0.94% 1.04% 1.13% 1.07% 1.25% 20 

200_10 0.08% 0.08% 0.09% 0.11% 0.14% 20 

200_20 1.18% 1.29% 1.24% 1.32% 1.48% 40 

500_20 0.62% 0.63% 0.63% 0.67% 0.71% 100 

Averages 0.33% 0.36% 0.36% 0.37% 0.44% -- 

 
 
 

 
 

Figure 9: Multiple box-plot for the BEST10 metric 
 
An ANOVA test for comparing the average performance of each algorithm using the BEST10 
metric was also performed. According to the test results (p-value = 0.984) and the overlapping 
95% confidence intervals, no statistically significant difference has been found among the 
various algorithms’ means. In this case, however, the normality assumption has not been met 
and, therefore, we also completed a Kruskal-Wallis non-parametric test. The test results (p-
value = 0.949) confirmed the absence of statistically significant differences among the average 
performance of the considered algorithms.  

It is worthwhile to note that, in our opinion, the BEST10 metric is of great relevance since it 
is strongly related to the use of multi-process capabilities of current (and future) computers. In 
fact, most current workstations include multi-core processors. Therefore, different instances of 
randomized algorithms –like the ones compared in this paper– can be run in parallel in a single 
machine without increasing the total clock time employed after conveniently setting the initial 
seeds for the RNG. Of course, by using a computer cluster instead of a single machine, even 



more instances of a randomized algorithm can be run for a given clock time. Traditionally, 
however, the metric against which to compare sequential algorithms in the PFSP literature is the 
one referred to as the average of several iterations. This average value helps to reduce somewhat 
the ‘randomness effect’, due to which a different solution is likely to be obtained each time a 
randomized algorithm is run. The next subsection analyzes the results of our tests using the 
average metric. 
 
5.2. A COMPARISON USING THE AVG10 METRIC 
 
Table 2 shows, for each tested algorithm and set of instances, a summary of the experimental 
results when considering the gap between the BKS and the average solution in 10 runs. 
 

Table 2: Gaps between Best Known Solution and AVG10. Java code running on an Intel Xeon at 2.0 GHz. 

Taillard set RandIG-D4T04 IG-D4T04 ILS-ESP ILS98-T04 IG-D2T03 Max. Time (s) 

20_5 0.04% 0.04% 0.05% 0.05% 0.07% 1 

20_10 0.05% 0.05% 0.06% 0.05% 0.17% 2 

20_20 0.04% 0.05% 0.06% 0.05% 0.17% 4 

50_5 0.00% 0.01% 0.01% 0.01% 0.02% 2.5 

50_10 0.71% 0.69% 0.78% 0.69% 0.84% 5 

50_20 1.02% 1.04% 1.08% 1.11% 1.48% 10 

100_5 0.02% 0.01% 0.02% 0.04% 0.03% 5 

100_10 0.28% 0.27% 0.32% 0.31% 0.37% 10 

100_20 1.46% 1.47% 1.55% 1.46% 1.68% 20 

200_10 0.23% 0.23% 0.26% 0.26% 0.28% 20 

200_20 1.57% 1.52% 1.57% 1.57% 1.73% 40 

500_20 0.78% 0.80% 0.79% 0.83% 0.84% 100 

Averages 0.52% 0.52% 0.55% 0.54% 0.64% -- 

 
From the last row in the table, it can be seen that both RandIG-D4T04 and IG-D4T04 perform 
equally well for this metric (average gap = 0.52%) while our ILS-ESP and the ILS98-T04 are 
just slightly behind (average gaps = 0.55% and 0.54% respectively). Lower results are obtained 
for the non-optimally parameterized IG-D2T03 (average gap = 0.64%). Again, this result seems 
to imply that performance of the IG algorithm greatly depends on the proper selection of its 
parameters. Figure 10 shows a multiple-boxplot comparing the performance of the considered 
algorithms. The visual comparison reinforces the idea that results from the first four approaches 
are quite equivalent, although maybe the RandIG-D4T04 and the IG-D4T04 perform slightly 
better for the AVG10 metric than the ILS-ESP and the ILS98-T04. It seems also clear from the 
figure that the non-optimized version of the IG algorithm performs slightly worse than the rest. 
 



 
 

Figure 10: Multiple box-plot for the AVG10 metric 
 
An ANOVA test for comparing the average performance of each algorithm, using the AVG10 
metric, was also completed. According to the test results (p-value = 0.985) and the overlapping 
95% confidence intervals, no statistically significant difference was found among the various 
algorithms’ means. Again, the normality assumption was not met, and a Kruskal-Wallis test was 
also carried out (p-value = 0.895) to support the lack of significant differences among the 
algorithms’ average performance. 

To conclude this section, it is important to notice that despite its simplicity and lack of non-
trivial fine-tuning processes, the proposed ILS-ESP algorithm shows itself to be quite efficient, 
both with respect to the BEST10 and the AVG10 metrics. This is quite interesting in our 
opinion since, as noted before, some of the most efficient metaheuristics are not used in practice 
because of the difficulties they present when trying to implement them and because of the fact 
that they can sometimes seem like “black-boxes” to non-experts. On the contrary, simple 
approaches like the one introduced here tend to be more flexible and transparent which, in turn, 
makes them seem more credible and therefore, as some authors suggest, more likely to be used 
in real-life scenarios (Robinson, 1997). Finally, with regard to the BEST10 metric, notice that 
RandIG-D4T04, our randomized version of IG, seems to slightly outperform the original IG-
D4T04 version. To the best of our knowledge, it is the first time the IG algorithm has been 
outperformed. The result also suggests the convenience of introducing GRASP-like approaches 
into ILS metaheuristics to diversify the generation of initial solutions. 
 
 
6. ANALYZING THE EFFECT OF RANDOMIZATION AND PARALLELIZATION 
 
In order to test whether or not the selection of a specific random number generator (RNG) has a 
significant effect on the performance of the ILS-based algorithms, the experiment described 
next was carried out. We considered three different RNGs to generate the continuous random 
numbers employed in the SA-like acceptance criterion of both IG and ILS98. The three RNGs 
selected were the two Java native generators (java.util.Random and Math.random()), and the 
LFSR113 generator proposed by L’Ecuyer (2001). Then, for each of these RNGs, all 120 
Taillard’s instances were run using a maximum time tmax = 0.01s×k×m (where k is the number 
of jobs, and m is the number of machines). Finally, an ANOVA test was used to compare the 
three sets of outputs (one per RNG). The ANOVA test showed no significant differences (p-
value = 0.926) among the results obtained with each of these RNGs. Therefore, no statistical 



evidence was found to support the idea that selecting one RNG or another could make a 
significant difference in the performance of the algorithm. 

As previously noted, the ILS-ESP algorithm proposed here can easily be parallelized by 
splitting the random-number-generation sequence into different streams and using each stream 
in different threads or CPUs. This can be an interesting field to explore, given the current trend 
in multi-core processors and parallel computing. Offering competitive solutions to complex 
problems in real time and without adjustments beforehand still presents a challenge. However, it 
has been empirically observed that it is possible to significantly reduce the execution time that 
randomized algorithms need to obtain ‘good’ solutions, depending on the seed that is chosen for 
the pseudo-random number generator (Juan et al., 2011a). There are new processor design 
paradigms based on gaining computation capacity through the parallel execution of multiple 
processes and threads (multi-core). All in all, the idea is to execute multiple instances or replicas 
of the algorithm in parallel, each replica using a different seed for the RNG. Each of these 
instances can be considered an individual agent that is searching the solution space. In other 
words, the idea is that each of these multiple agents will start to search in a different region of 
the solution space by using different seeds. Our hypothesis here is that, as a randomized 
approach with diversified initial solutions, a parallel version of the algorithm can provide very 
competitive results in ‘real time’ for most medium-size PFSP problems. 

To test how parallelization could improve our approach and, in particular, how increasing 
the number of replicas can potentially enhance the ILS-ESP results, we have carried out two 
extensive experiments which are described in the next subsections. 

 
 

6.1. COMPARING DIFFERENT ALGORITHMS WHEN PARALLEL RUNS ARE 
EXECUTED 
 
For the first experiment on parallelization, we considered the Taillard’s 50x20 set of instances. 
These instances have been selected because they are among the ones that most of the algorithms 
with better performance find difficult to solve –and, therefore, we expect performance 
differences to be more significant in this set of instances than in other sets. As with previous 
experiments, the termination condition of each execution or replica is given by an instance-size 
dependent maximum time tmax = 0.01s×k×m, i.e., we are considering a time factor of 0.01 
seconds. Once more, we will use the BEST and AVG metrics defined before and we will 
compare the performance of the different ILS-based approaches. The difference now with 
regards to previous experiments is that we will analyze how results evolve as the number of 
replicas is increased from n = 10 to n = 80. Table 3 and Figure 11 show the results obtained for 
the BEST(n) metric. 
 

Table 3: Gaps between Best Known Solution and BEST(n) for Taillard 50x20.  

Number of 
replicas RandIG-D4T04 IG-D4T04 ILS-ESP ILS98-T04 IG-D2T03 Max. Time (s) 

10 0.62% 0.66% 0.66% 0.74% 1.00% 10 

20 0.59% 0.62% 0.62% 0.64% 0.88% 10 

30 0.53% 0.59% 0.54% 0.63% 0.83% 10 

40 0.52% 0.58% 0.52% 0.55% 0.80% 10 

50 0.48% 0.58% 0.47% 0.52% 0.75% 10 

60 0.46% 0.56% 0.47% 0.52% 0.75% 10 

70 0.46% 0.55% 0.45% 0.51% 0.73% 10 

80 0.46% 0.51% 0.45% 0.51% 0.71% 10 

 



 
 

Figure 11: Multiple box-plot for the BEST80 metric 
 
Notice that there is a visible difference between the non-optimized version of the IG algorithm 
(the IG-D2T03) and the rest of algorithms. The resulting ANOVA test is quite close to showing 
statistically significant differences among the algorithms (p-value = 0.051). Also, notice that as 
the number of replicas is increased, both the ILS-ESP and the RandIG-T4T04 seem to benefit 
from our randomized NEH process which diversifies the starting solution in the ILS framework. 
Thus, for n = 80 the ILS-ESP provides a 0.45% gap, which is slightly lower than the rest of the 
ILS-based approaches. In our opinion this is an interesting result, especially when considering 
the simplicity of the ILS-ESP algorithm and the fact that it contains no specific-value 
parameters. Finally, Table 4 and Figure 12 show the results obtained for the AVG(n) metric. 
 

Table 4: Gaps between Best Known Solution and AVG(n) for Taillard 50x20.  

Number of 
replicas RandIG-D4T04 IG-D4T04 ILS-ESP ILS98-T04 IG-D2T03 Max. Time (s) 

10 1.06% 1.10% 1.20% 1.12% 1.48% 10 

20 1.05% 1.07% 1.16% 1.13% 1.46% 10 

30 1.04% 1.05% 1.18% 1.12% 1.46% 10 

40 1.03% 1.06% 1.16% 1.12% 1.46% 10 

50 1.03% 1.07% 1.16% 1.11% 1.47% 10 

60 1.03% 1.07% 1.17% 1.12% 1.48% 10 

70 1.03% 1.07% 1.16% 1.12% 1.48% 10 

80 1.03% 1.07% 1.16% 1.12% 1.47% 10 

 



 
 

Figure 12: Multiple box-plot for the AVG80 metric 
 
Once more, there is a noticeable difference between the non-optimized version of the IG 
algorithm and the rest of the approaches. Under this metric, the best performance for n = 80 is 
attained by the RandIG algorithm, that is, our randomized version of the IG algorithm. The 
resulting ANOVA test shows the existence of significant differences among the different 
algorithms (p-value = 0.001). 
 
6.2. COMPARING RESULTS AT DIFFERENT FACTOR TIMES AND NUMBER OF 
RUNS 
 
As a final experiment, we decided to analyze how the quality of the results generated by the 
ILS-ESP will vary when considering different levels of computation time and number of 
parallel agents –i.e. independent runs of the algorithm. These tests were carried out on the 
Taillard’s 50x20 instances as well as the Taillard’s 100x20 and the Taillard’s 200x20 instances. 
For each instance in these sets, 50 runs of our algorithm were executed with different 
randomized starting seeds. The best found solution at each of the following times was then 
registered: tmax = tfactor × k × m, where the time factor, tfactor, took on the values of 0.01, 0.02, 
0.03, 0.04, and 0.05 seconds. For tfactor = 0, we used the solution provided by the NEH heuristic. 
Then, for each combination of time factor and number of parallel runs, the average gap for the 
set of instances was computed as the average percentage difference between our best found 
solution (OBS) and the best known solution for each instance in the set. Figure 13, Figure 14, 
and Figure 15 display the results of our experiments for the 50x20, 100x20 and 200x20 
Taillard’s sets, respectively. Several items are worthy of note in these graphs. First of all, there 
is an enormous improvement from the NEH solution in very little time. With a time factor as 
small as 0.01, we can see a more than 5% improvement, even with only one single agent or run. 
However, after this initial jump, the solution improves slowly with time. Between a time factor 
of 0.01 and 0.05, which is a difference of 40 seconds in tmax for the 50x20 cases, the solution 
improves by less than 0.5%. Another interesting result is that with as few as ten parallel agents, 
we can obtain very good results in a very short amount of time. Notice that with a time factor of 
0.01 for ten parallel agents, the average gap is almost nonexistent. Significantly more time 
would be needed to achieve this result using only one sequential run of the algorithm. In other 
words, parallelization seems to offer clear benefits to these types of algorithms. Even more 
noticeably, through parallelization, it is possible to attain competitive solutions in ‘real-time’ –
just a few seconds for problems of the considered sizes. 

 



 
 

Figure 13: Surface plot for Taillard’s 50x20 set. 
 

 
 

Figure 14: Surface plot for Taillard’s 100x20 set. 
 



 
 

Figure 15: Surface plot for Taillard’s 200x20 set. 
 
 
7. CONCLUSION 
 
In this paper, we have reviewed several algorithms based on the Iterated Local Search (ILS) 
framework for solving the Permutation Flow Shop Problem (PFSP). The paper offers a 
literature review on the PFSP and discusses some of the benefits ILS-based algorithms offer to 
solve this problem, including: (a) their efficiency; and (b) the fact that they can be easily 
implemented without requiring time-consuming fine-tuning processes. The paper also 
introduces our ILS-ESP algorithm, which shows how it is possible to develop an efficient and 
parallelizable ILS-based algorithm without requiring a parameter-calibration analysis. We 
explain how the ILS-ESP algorithm employs a diversification strategy to benefit from 
parallelization techniques. This diversification in the initial solution is attained by employing a 
biased randomized version of the well-known NEH heuristic for the PFSP. In particular, we 
propose the use of a discretized triangular distribution, which allows for the generation of 
alternative initial solutions without losing the ‘common-sense’ ideas behind the NEH heuristic. 
Several extensive tests show that parallelization strategies can greatly contribute to improving 
the performance of ILS-based algorithms. In fact, by using parallelization, we have been able to 
obtain competitive or near-optimal solutions in ‘real-time’ (a few seconds) even for the most 
challenging Taillard’s instances. Finally, we have not observed significant differences when 
employing alternative random number generators to run ILS-based algorithms –although this 
remains an open research topic to be explored in other metaheuristics and optimization 
problems.  
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