
USING ITERATED LOCAL SEARCH FOR
SOLVING THE FLOW-SHOP PROBLEM:

PARALLELIZATION, PARAMETRIZATION,
AND RANDOMIZATION ISSUES

Juan, A.; Lourenço, H.R.; Mateo, M.; Luo, R.; Castella, Q. (2013)
“Using Iterated Local Search for solving the Flow-Shop Problem:
parametrization, randomization and parallelization issues”. (in press)
International Transactions in Operational Research.

ISSN: 0969-6016. Link to publication

USING ITERATED LOCAL SEARCH FOR SOLVING THE FLOW-SHOP PROBLEM:
PARALLELIZATION, PARAMETRIZATION, AND RANDOMIZATION ISSUES

Angel A. Juan1, Helena R. Lourenço2, Manuel Mateo3, Rachel Luo1, Quim Castella1

(1) {ajuanp, rachel.s.luo, quim.castella}@gmail.com – Computer Science Dept., IN3-Open University of Catalonia, Spain
(2) helena.ramalhinho@upf.edu – Dept. of Economics and Business, Universitat Pompeu Fabra, Spain
(3) manel.mateo@upc.edu – Dept. of Management, Universitat Politecnica Catalunya, Spain

ABSTRACT

Iterated Local Search (ILS) is a powerful framework for developing efficient algorithms for the
Permutation Flow Shop Problem (PFSP). These algorithms are relatively simple to implement
and use very few parameters, which facilitates the associated fine-tuning process. Therefore,
they constitute an attractive solution for real-life applications. In this paper, we discuss some
parallelization, parametrization, and randomization issues related to ILS-based algorithms for
solving the PFSP. In particular, the following research questions are analyzed: (a) is it possible
to simplify even more the parameter setting in an ILS framework without affecting
performance? (b) how do parallelized versions of these algorithms behave as we simultaneously
vary the number of different runs and the computation time? (c) for a parallelized version of
these algorithms, is it worthwhile to randomize the initial solution so that different starting
points are considered?; and (d) are these algorithms affected by the use of a ‘good-quality’
pseudo-random number generator? In this paper, we introduce the new ILS-ESP algorithm
which is specifically designed to take advantage of parallel computing, allowing us to obtain
competitive results in ‘real-time’ for all tested instances. The ILS-ESP also uses ‘natural’
parameters, which simplifies the calibration process. An extensive set of computational
experiments has been carried out in order to answer the aforementioned research questions.

Keywords: Flow-Shop Problem, Scheduling, Iterated Local Search, Parallelizable algorithms,
Biased-randomized heuristics, Metaheuristics, Parameters setting.

1. INTRODUCTION

The Permutation Flowshop Sequencing Problem (PFSP) is a well-known scheduling problem
that can be described as follows: a set J of k independent jobs has to be processed on a set M of
m independent machines. Each job jJ requires a given fixed processing time pij ≥ 0 on each
machine iM. Each machine can execute at most one job at a time, and all jobs are processed
by the machines in the same order. The classical goal is to find a single sequence for processing
the jobs in the shop so that a given criterion is optimized. The criterion most commonly used is
the minimization of the maximum completion time, or makespan, denoted by Cmax. Figure 1
illustrates this problem for the simple case of k = 3 jobs and m = 3 machines.

The described problem is usually denoted as Fm|prmu|Cmax, and it is a combinatorial
problem with k! possible sequences. As is the case with other combinatorial problems, a large
number of different approaches have been developed to deal with the PFSP. These approaches
range from the use of exact optimization methods, such as mixed integer programming or
branch and bound algorithms for solving small-sized problems, to heuristics and metaheuristics
that provide near-optimal solutions for medium and large-sized problems (Ruiz and Maroto,
2005). Most of these methods focus on minimizing makespan. Some of them have reached
outstanding efficiency levels, often using several parameters that require a fine-tuning process.
This fine-tuning process is important, as the proper selection of these parameters has a
significant impact on the performance of the algorithms, i.e.: the efficiency of these methods
tends to be quite sensitive to the values assigned to each parameter (Gendreau and Potvin,

2005; Matsui and Yamada, 2007; Zobolas et al., 2009; Zheng and Yamashiro, 2010; Engin
et al., 2011; Alabas and Dengiz, 2011; Cooren et al., 2011).

Figure 1: Flowshop Sequencing Problem

In this article, we discuss several issues regarding the use of an Iterated Local Search (ILS)
framework (Lourenço et al., 2010) to develop efficient and parallelizable algorithms for the
PFSP. Typically, these algorithms also use a reduced number of parameters with few setting
requirements. In addition, ILS-based algorithms are easy to understand and to implement in a
computer, which make them quite suitable for real-life applications and commercial software.
Apart from considering parallelization and randomization issues in ILS-based approaches for
the PFSP, in this paper we also propose a new Efficient, Simple, and Parallelizable (ESP)
algorithm which moreover does not require advanced fine-tuning techniques – e.g. Design of
Experiments (DOE) – which are also time consuming. The ILS-ESP algorithm employs basic
‘common sense’ rules for the local search, perturbation, and acceptance criterion stages of the
ILS metaheuristic. In particular, a new operator which combines a swap (interchange)
movement with a classical ‘shift-to-left’ movement is introduced for the perturbation process,
thus avoiding any complex operators. Also, instead of using a traditional Simulated Annealing
type acceptance criterion – which introduces a real-valued parameter that needs to be set –, a
simpler acceptance-criterion rule is defined for this stage. A distinctive contribution of our
approach is the introduction of a biased (non-uniform) randomization process during the
construction of the initial solution. This process employs a skewed probability distribution to
randomly generate different alternative initial solutions based on the well-known heuristic from
Nawaz, Enscore and Ham (NEH) (Nawaz et al., 1983). Thus, diversification of the local search
starting point is attained in a simple, fast, and efficient manner. This diversification stage aims
at avoiding poorly designed starting points and can provide benefits when applying parallel and
distributed computing techniques. This randomization approach has similarities with the one
proposed in Greedy Randomized Adaptive Search Procedure (GRASP) metaheuristics
(Resende and Ribeiro, 2005). In fact, the algorithm presented here can be seen as a hybrid ILS-
GRASP approach. However, while GRASP algorithms typically employs a uniform distribution
and a restricted list of candidates during the construction process of a new solution, our
approach proposes the use of a skewed distribution and considers the entire list of candidates.

The paper is organized as follows: Section 2 offers a basic literature review on the flowshop
problem. Section 3 briefly describes the main ideas characterizing the GRASP and ILS
metaheuristics, since our approach can be considered a hybridization of both types of
algorithms. Section 4 describes the ILS-ESP algorithm. Sections 5 and 6 discuss three extensive
computational experiments, which have been carried out to test the efficiency of the proposed
algorithm, compare it against state-of-the-art approaches, and test the effects of increasing the
computation time and number of parallel agents used in the ILS-ESP. Finally, Section 7
contains the conclusions of the paper.

2. LITERATURE REVIEW ON THE PFSP

A large number of heuristics and metaheuristics have been proposed to solve the PFSP, since it
is very difficult to solve medium or large instances of the problem with exact methods. Most
existing approaches focus on minimizing the makespan. Johnson (1954) proposed a simple
procedure to obtain optimal sequences for the PFSP with two machines and three machines.
Campbell et al. (1970) developed the CDS heuristic for solving the PFSP with more than two
machines. Dannenbring (1977) also proposed several constructive heuristics for the general
problem. Nawaz et al. (1983) introduced the NEH heuristic, which is commonly considered the
best performing constructive heuristic for the PFSP. Basically, the NEH heuristic proposes
calculating the total processing time required for each job –i.e. the total time each job requires to
be processed by the set of machines– and then creating an ‘efficiency list’ of jobs sorted in
descending order according to this total processing time. At each step, the job at the top of the
efficiency list is selected and used to construct the solution. That is: the ‘common sense’ rule is
to select first those jobs with the highest total processing time. Once selected, the job is inserted
into the sorted set of jobs at a position that will minimize the makespan of this ongoing solution
by using a ‘shift-to-left’ movement. Taillard (1990) introduced a data structure that reduces the
NEH complexity. Some other interesting heuristics include those from Suliman (2000) or
Framinan and Leisten (2003), which consider several extensions of the NEH heuristic when
facing objectives other than makespan. It should be noticed that NEH is the most commonly
accepted method for the PFSP under the makespan minimization criterion, and it has been
frequently used to provide an initial upper bound for the best branch-and-bound algorithms
(Ladhari and Haouari, 2005; Companys and Mateo, 2007).
Several metaheuristic approaches have also been proposed for the PFSP. Osman and Potts
(1989) used Simulated Annealing (SA). Widmer and Hertz (1989) proposed a Tabu Search
(TS) algorithm known as SPIRIT. Other Tabu Search algorithms also make use of the NEH
heuristic (Reeves, 1993; Moccellin, 1995). Also, Genetic Algorithms (GA) based on the NEH
heuristic have been proposed for solving the PFSP (Chen et al., 1995; Reeves, 1995;
Aldowaisan and Allahvedi, 2003). Other metaheuristics, such as Ant Colony Optimization
(ACO), have been used to obtain competitive or near-optimal solutions as well
(Chandrasekharan and Ziegler, 2004). Ravetti et al. (2006) propose hybrid heuristics that
combine elements from the Greedy Randomized Adaptive Search Procedure (GRASP), Iterated
Local Search (ILS), Path Relinking (PR) and Memetic Algorithm (MA). Their results are quite
competitive when compared with existing algorithms. The efficiency of these procedures can be
checked by comparing them against the best known solutions for the Taillard’s benchmark
instances (Taillard, 1993).

What all of the aforementioned works have in common is that the algorithms proposed are
relatively easy to code, and therefore the results can be reproduced without too much difficulty.
In addition, many of the above algorithms can be adapted to other more realistic flowshop
environments (Ruiz and Maroto, 2005). There are other highly elaborate hybrid techniques for
solving the PFSP. However, as Ruiz and Stützle (2007) point out, “...they are very
sophisticated and an arduous coding task is necessary for their implementation.” In other words,
it is unlikely that they can be used for solving realistic scenarios without direct support from the
researchers that developed them. For a complete description of heuristics and metaheuristics for
the PFSP, we refer to the reader to more specialized references (Framinan et al., 2004; Hejazi
and Saghafian, 2005; Ruiz and Maroto, 2005).

In this paper, we will mainly focus on ILS-related approaches. The ILS metaheuristic has
been applied successfully to a variety of combinatorial optimization problems. In certain cases,
ILS algorithms achieve extremely high performance and even constitute the current state-of-the-
art metaheuristics for some optimization problems. According to Burke et al. (2010), who
compared ILS against several hyper-heuristics, “...the implementation of Iterated Local Search
produced the best overall performance. Interestingly, this is one of the most conceptually simple
competing algorithms, its advantage as a robust algorithm is due to two factors: (i) the simple
yet powerful exploration/exploitation balance achieved by systematically combining a
perturbation followed by local search; and (ii) its parameter-less nature.” For a detailed review

of existing ILS applications we refer to Lourenço et al. (2010). Several algorithms based on the
ILS framework have been applied to solve the PFSP. In particular, Stützle (1998) proposed a
simple yet efficient ILS approach for this problem. Some years later, Ruiz and Stützle (2007)
developed the Iterated Greedy (IG) method, which can be seen as an improved version of the
Stützle’s ILS metaheuristic. IG provides outstanding (state-of-the-art) results in terms of
accuracy and speed and, for that reason, it deserves special attention. Despite its relative
simplicity, it is one of the most efficient algorithms developed so far for the PFSP. In their
work, Ruiz and Stützle (2007) tested IG against 11 different approaches –including various
GA, TS, and SA. The experimental results showed that IG was the best-performing approach.
Some other recent works relating the ILS method to the PFSP can be found in Ravetti et al
(2006), Pan et al. (2008), Burke et al. (2010), and Ribas et al. (2010). However, to the best of
our knowledge, IG has performed better than any other algorithm (ILS-based or not) in all PFSP
articles using the Taillard’s benchmarks. During the last years, IG has become the method of
reference in the PFSP field. Thus, for instance, in Zobolas et al. (2009) the authors show that
their hybrid GA algorithm, NEGA-VNS, is able to compete with HGA-RMA, another hybrid
GA algorithm previously developed by Ruiz et al. (2006). However, as Ruiz and Stützle
(2007) show in their work, IG is simpler and far superior to HGA-RMA. Also, Ribas et al.
(2010) proposed several SA-based algorithms to compete with IG, but their results show that IG
uses fewer parameters and performs better than their algorithms in all classical benchmarks.
Finally, Nagano et al. (2008) tested their GA approach against a number of GA-based
approaches. Some of the results in their paper are directly comparable to the results in Ruiz and
Stützle (2007) (shared authors, same CPU, same maximum computing times, etc.). A
comparison of both results shows that IG outperforms all considered metaheuristics.

As a relatively simple and yet extremely efficient algorithm, IG has inspired other
approaches for different combinatorial optimization problems. For instance, Kahraman et al.
(2010) developed a parallel greedy algorithm for the hybrid flow shop scheduling problem
which uses the destruction-construction operator proposed in IG. Another example is the IG-
based algorithm of Pan et al. (2008) for the no-wait flow shop scheduling problem.

3. OVERVIEW OF THE GRASP AND ILS METAHEURISTICS

Since the algorithm presented in this paper is inspired both in the GRASP and ILS
metaheuristics –and to some extent it can be seen as a hybridization of both– these two methods
are briefly described next. For a recent review of the GRASP and ILS methodologies the reader
is referred to Festa and Resende (2009a, 2009b) and Lourenço et al. (2010), respectively.

GRASP is a multi-start method designed to solve hard combinatorial optimization problems
(Feo and Resende, 1995). The basic methodology consists of two phases: (a) a constructive
phase that builds a good but not necessarily locally optimal solution, and (b) a second phase
which consists of a local search procedure. These two phases are repeated until a stopping
criterion is reached, all the while keeping track of the best solution found overall in the search.
The constructive phase builds step by step by adding an element to a partial solution following a
greedy function. The selection of the element to be added, in each iteration, is not deterministic,
but rather subject to a randomization process. That way, the repetition of both phases leads to
different solutions. The randomization process is usually controlled by a parameter that in the
simplest versions of GRASP is fixed along the execution of the algorithm. A particularly
interesting GRASP is the so-called Reactive GRASP (Prais and Ribeiro, 2000). In this version
of the methodology, the parameter is not fixed along the running of the algorithm, but instead
selected randomly from a set of discrete values. Initially, all values have the same probability of
being chosen. After each iteration, we keep the value of the solutions which were obtained for
each value of the parameter. After a certain number of iterations, the probabilities are modified.
Those corresponding to values of the parameter which have produced good solutions are
increased and, conversely, those corresponding to values producing low quality solutions are
decreased.

The essential idea of Iterated Local Search (ILS) lies in focusing the search not on the full
space of solutions but on a smaller subspace defined by the solutions that are locally optimal for
a given optimization engine. Figure 2 shows the general framework of the ILS procedure. To
apply an ILS algorithm to an optimization problem, the four main components of the method
must be specified in detail. These four components or processes are: generate initial solution,
local search, perturbation, and acceptance criterion. For many applications, it is
straightforward to first develop a basic version of ILS, since many of the components are
common to other metaheuristics. For example, (i) one can start with a random solution; (ii) for
most problems a local search algorithm is readily available; (iii) for the perturbation stage, a
random move in a neighborhood of higher order than the one used by the local search algorithm
can be effective; and (iv) a first-improvement acceptance criterion can be used. However, a
state-of-the-art implementation requires the definition of more advanced components and
operators. Also, the interaction among these components must be taken into account to improve
the quality of the method.

procedure IteratedLocalSearch

01 initSol = generateInitialSolution // initial solution generation process
02 baseSol = localSearch(initSol) // local search process
03 bestSol = baseSol

04 while stopping condition not met do
05 aSol = perturbation(baseSol, history) // perturbation process
06 aSol = localSearch(aSol) // local search process
07 bestSol = updateBestSol(aSol)
08 baseSol = acceptanceCriterion(baseSol, aSol, history) // acceptance
process
09 end while

10 return bestSol

end

Figure 2: IteratedLocalSearch general framework

In the next sections, we propose, and test the ILS-ESP algorithm for solving the PFSP. With this
algorithm, we show how it is possible to use only parameters with ‘natural’ values –which do
not require calibration analyses– in an ILS-based framework without loosing performance with
respect to a state-of-the-art algorithm such as IG. Our method, which will be described later in
detail, introduces some GRASP principles inside the initial solution generation process of the
ILS framework. One motivation that guided the design of the ILS-ESP method was to achieve
many of the desirable features of a metaheuristic as described by Cordeau et al. (2002):
accuracy, speed, simplicity and flexibility. Most of the metaheuristics in the literature are
measured against accuracy –the degree of departure of the obtained solution value from the
optimal value–, and against speed –the computation time. However, there are two other
important attributes to be considered in any metaheuristic: simplicity and flexibility. The
simplicity is related to the number of parameters to be set and the facility of implementation.
This is an important feature since the method can be applied to instances other than the ones
tested without losing quality or performance and without the need of performing a long test run.
Finally, flexibility is related to the possibility of accommodating new side constraints and also
to the adaptation to other similar problems. Another fundamental motivation for developing the
ILS-ESP was to design an easily parallelizable, yet easy-to-implement, method. That way, it
could benefit from current multi-core processors and multi-thread programming techniques.
Despite parallelization issues are critical in every modern method, as stated in Ravetti et al.
(2012) these issues have been rarely considered in the existing PFSP literature. In fact, these
authors propose a parallel hybrid search approach –combining a Memetic Algorithm and several
IG algorithms– to efficiently solve the PFSP in a multi-threaded environment. Using an

optimized computer implementation of this hybrid approach, they run a set of experiments to
obtain excellent results for most Taillard’s instances. Their approach is complementary to ours
in different ways, in particular: (a) while they analyze the effects of parallelization in long runs
using a moderated number of threads (6 and 18), we focus on the effects of parallelization in
short runs –i.e. ‘real-time’ solutions– using a larger number of threads (up to 50); (b) while we
focus on developing a simpler-as-possible approach, their approach proposes a collaboration
strategy between different algorithms; and (c) while our algorithm uses just a few parameters
which can be easily calibrated, the Memetic Algorithm and the proposed parallelization
architecture in their approach introduce many parameters which require from advanced fine-
tuning processes. All in all, these two approaches are similar in the sense that they both show
the importance of hybridization and parallelization issues in designing modern algorithms for
the PFSP.

As will be discussed in the next section, the ILS-ESP method can also be related to Monte
Carlo simulation or, simply, random sampling from a non-uniform distribution. In some
previous works, Juan et al. (2010, 2011b) described the application of biased-randomized
heuristics to solve the Capacitated Vehicle Routing Problem (CVRP). In particular, they
employed a geometric distribution in order to introduce a skewed (biased) random behavior in a
classical routing heuristic. Using biased randomization they were able to transform a
deterministic (greedy) heuristic into a probabilistic algorithm without losing the logic behind the
heuristic. Accordingly, a new heuristic-based solution is generated each time the randomized
algorithm is run. Notice that this methodology could be seen as a kind of biased GRASP, where
the uniform distribution is substituted by non-uniform (skewed) distributions in order to
maintain most of the heuristic criteria. The aforementioned authors commented on the
convenience of using similar approaches for combinatorial problems other than the CVRP: “it is
convenient to highlight that the introduced methodology can be used beyond the CVRP
scenario: similar hybrid algorithms based on the combination of Monte Carlo simulation with
already existing heuristics can be developed for other routing problems and, in general, for other
combinatorial optimization problems.”

4. THE ILS-ESP ALGORITHM

The ILS-ESP algorithm uses the ILS metaheuristic as a framework, and combines it with a
GRASP-like procedure. Therefore we will define the four components of any ILS-based
algorithm (generate initial solution, local search, perturbation, and acceptance criterion) with
emphasis on three original points (Figure 3) that make our algorithm significantly different
from previous ILS-based algorithms such as those described in Stützle (1998) and Ruiz and
Stützle (2007).

Figure 3: Scheme on the differences among different ILS-based approaches

The first of these three critical points is related to the perturbation component. During the
perturbation process, the so-called ‘enhanced-swap’ operator is used. This is a very simple, fast,
and efficient operator which basically does the following: (a) randomly selects (using a uniform
distribution) two different jobs from the current solution; (b) interchanges both jobs, that is,
interchanges their positions in the permutation; and (c) applies a classical ‘shift-to-left
movement’ (like the one proposed in the NEH heuristic) to each of these jobs following a left-
to-right order. The idea here is that we first consider a subset of the sequence of jobs by looking
at the left-most swapped job and all elements to its left. Then we shift the right-most job of this
subset and tentatively insert it into all possible positions of this sequence of jobs. Next, we
select the sequence that results in the minimum makespan. Afterwards, we take this sequence
and reinsert it into the full set of jobs. We then apply this idea again for the other swapped job.
This ‘shift-to-left movement’ takes advantage of Taillard’s accelerations (Taillard, 1990) to
quickly determine the best position for each job when only the partial solution up to its position
is considered. Figure 4 shows the pseudo-code associated with this perturbation operator.
Notice that the proposed operator is really simple and does not require any further parameter
setting.

procedure enhancedSwap(aSol)

01 posA = selectRandomPosition(aSol) // selects a random job position in aSol
02 posB = selectRandomPosition(aSol)

03 aSol = swapJobs(aSol, posA, posB) // interchanges jobs at given positions

04 aSol = shiftToLeft(aSol, posA) // applies the NEH shiftToLeft operator
05 aSol = shiftToLeft(aSol, posB)

06 return aSol

end

Figure 4: enhancedSwap procedure to perform the ILS-ESP perturbation stage

A second critical difference of our algorithm is the acceptance criterion. The algorithm does not
use a SA-based process like most other ILS-based algorithms, but instead uses a Demon-like
process. As stated in Talbi (2009, pp. 138), a Demon-like acceptance criterion is
computationally simpler than a SA-like one since the former does not use pseudo-random
numbers or real-valued parameters –which require specific calibration. This Demon-like
acceptance criterion, together with the perturbation process, is designed to help avoid local
minima during the algorithm execution. In order to do so, the criterion simply states the
following basic principles: (a) any time a newly generated solution, aSol, improves the current
base solution, baseSol, the base solution is updated (improved) to this new solution –likewise,
this new solution is compared against the best-known solution, bestSol, to see if it must also be
updated; and (b) even if a newly generated solution is worse than the base solution, the base
solution will be updated (deteriorated) to this new solution as long as no consecutive
deteriorations take place and the degradation does not exceed the last improvement. Notice that
by allowing the base solution to degrade up to a certain level, the probability that the algorithm
gets trapped at a local minimum is greatly reduced. Figure 5 shows the pseudo-code associated
with this acceptance criterion process.

01 delta = cost(currentSol) – cost(baseSol)

02 if delta < 0 then // Case A: Improvement
03 credit = - delta
04 baseSol = currentSol
05 if cost(baseSol) < cost(bestSol) then bestSol = baseSol end if
06 end if

07 if 0 < delta <= credit then // Case B: Deterioration
08 credit = 0
09 baseSol = currentSol
10 end if

Figure 5: pseudo-code for the ILS-ESP acceptance criterion stage

A third critical point of our approach –which contributes to make the algorithm parallelizable–
is related to the starting solution used inside the ILS framework, generate initial solution.
Usually, this starting solution is the one provided by the NEH heuristic, which generally
produces a relatively good initial solution. Using the NEH solution instead of a randomly
generated solution is typically considered good practice in order to accelerate the convergence
of algorithms. However, it seems reasonable to think that when multiple runs of the same
instance are executed –either in sequential or in parallel mode– using always the same starting
point can be a severe drawback for fast convergence in those cases in which the NEH solution
provides relatively ‘poor’ solutions. In this context, the term ‘poor’ does not necessarily refer to
the makespan value of the solution, but rather to the number of movements or transformations
that must be applied to the initial solution in order to arrive at a competitive or near-optimal
solution. Since we are especially interested in running multiple iterations of any given instance,
which can be seen as a form of biased (skewed) GRASP, we designed a way to generate
different randomized NEH solutions with similar properties. As described before, the NEH
heuristic is an iterative algorithm which uses a list of jobs sorted by their total completion time
on all the machines to construct a solution for the PFSP. At each step of this iterative process,
the NEH removes the job at the top of that list (with maximum completion time) and adds to it a
new list at the position that results in the best partial solution with respect to makespan. As a
result, the NEH provides a ‘common sense’ deterministic solution, by trying to schedule the
most demanding jobs first. Our method instead assigns a probability to selecting each job in the
list. According to our design, this probability should be coherent with the total time that each
job needs to be processed by all the machines, i.e. jobs with higher total times will be more
likely to be selected from the list before those with lower total times (biased distribution of
probabilities). Figure 6 shows the main pseudo-code associated with this process.

procedure RandNEH

01 nehJobsList = sortJobsUsingNehCriterion
02 nehSol = nehAlgorithm(nehJobsList) // NEH solution
03 baseSol = nehSol
04 nIter = 0

05 while cost(baseSol) >= cost(nehSol) and nIter < nJobs do
06 nIter = nIter + 1
07 newJobsList = biasedRandomization(nehJobList, triangular)
08 newSol = nehAlgorithm(newJobsList)
09 if getCost(newSol) < getCost(baseSol) then baseSol = newSol end if
10 end while

11 return baseSol

end

Figure 6: RandNEH procedure to perform the NEH biased randomization

To satisfy all of the aforementioned requirements, we employ a discretized version of the
decreasing triangular distribution during the solution-construction process: each time a new job
has to be selected from the list, a triangular distribution that assigns linearly diminishing
probabilities to each eligible job according to its corresponding total-processing-time value is
employed. Other skewed probability distributions –like the geometric one– have been
successfully employed in routing problems by Juan et. al (2010) to generate multiple
alternative solutions by inducing a similar biased-randomizaton process into a classical
heuristic. In the case of the PFSP, the decreasing triangular probability distribution was chosen
since it contains no parameters to be set and provides satisfactory results. That way, jobs with
higher processing times are always more likely to be selected from the list first, but the assigned
probabilities are variable and they depend upon the number of eligible jobs at each step. By
iterating this procedure, a biased random search process is started. As a consequence, in most
cases it is possible to obtain in just a few iterations (milliseconds for most tested instances) a
randomized solution whose makespan is almost equal or even better than the original NEH
solution (see Figure 7). Notice that similar biased randomization processes can be developed
for generating alternative initial solutions in other ILS-based metaheuristics, either in the
context of the PFSP or in other combinatorial optimization problems. As the experimental
section will show, this might be especially interesting when parallelization approaches are used
to simultaneously run multiple instances of the algorithm. As a matter of fact, we consider this
hybridization of ILS with GRASP-like metaheuristics as one of the major contributions of this
paper, and one that should be explored in other combinatorial optimization problems.

 Figure 7: Diversification of initial solutions throughout biased randomization

Figure 8 shows the final pseudo-code of the ILS-EPS algorithm, which integrates the
aforementioned perturbation operator, acceptance criterion, and randomization process into an
ILS framework. The local search process that our algorithm uses is the traditional local search
process used by most other authors, e.g. Ruiz and Stützle (2007).

Procedure ILS-ESP

01 baseSol = RandNEH // DIVERSIFICATION (NEH biased randomization)
02 baseSol = localSearch(baseSol) // CLASSICAL LOCAL SEARCH
03 bestSol = baseSol

04 while stopping condition not met do // ITERATED LOCAL SEARCH

05 currentSol = enhancedSwap(baseSol) // PERTURBATION
06 currentSol = localSearch(currentSol) // CLASSICAL LOCAL SEARCH

07 delta = cost(currentSol) – cost(baseSol) // ACCEPTANCE CRITERION
08 if delta < 0 then // Case A: Improvement
09 credit = - delta
10 baseSol = currentSol
11 if cost(baseSol) < cost(bestSol) then bestSol = baseSol end if
12 end if
13 if 0 < delta <= credit then // Case B: Deterioration
14 credit = 0
15 baseSol = currentSol
16 end if

17 end while

18 return bestSol

end

Figure 8: ILS-ESP general procedure

The computational complexity of the ILS-ESP algorithm is discussed next. First of all, notice
that the complexity of the RandNEH procedure is the same as the complexity of the NEH
heuristic, which is employed in most modern meta-heuristics to generate an initial solution.
Using Taillard’s accelerations, its relative speed is O(n2m) (Taillard, 1990). As described

before, the local search procedure is the same classical process employed in other similar ILS-
based approaches. As discussed in Ruiz and Stützle (2007), using Taillard’s accelerations the
complexity of evaluating the whole neighborhood of one solution is O(n2m). Although this
evaluation is iteratively applied during the local search until the current solution cannot be
improved any further, the number of iterations tends to be relatively low: each iteration is
associated with a new improvement and that is something unusual, especially as we get closer to
an optimal solution. In our opinion, however, the number of iterations is not a big issue since it
could be limited to n-1 without affecting the performance of the algorithm in a significant way.
Finally, the perturbation procedure, which is also performed using Taillard’s accelerations, is
O(n2m). Since the stopping criterion we use in practice limits the computation time to some
factor of n·m, it can be considered that the complexity of the ILS-ESP algorithm is O(n3m2), i.e.
polynomial, as in other ILS-based algorithms.

Finally, notice that it seems reasonable to question whether or not using a ‘high-quality’
(pseudo-) Random Number Generator (RNG) can somewhat enhance the performance of ILS-
based algorithms. In order to answer this natural question, we have run some tests using
different RNGs as suggested by L’Ecuyer (2001). These results will be discussed in Section 6.

5. TESTING THE ILS-ESP USING THE BEST AND AVERAGE METRICS

The ILS-ESP algorithm described in this paper was implemented as a Java application. Java was
chosen for several reasons. First, it generates portable code which can run, without
modifications, over different operating systems. This can be a significant advantage when
executing a randomized algorithm in a parallel or distributed environment. Secondly, as one of
the simplest object-oriented languages, it facilitates the rapid development of prototypes.
Thirdly, according to Luke (2009, pp. 196) it is easier to guarantee duplicability of results in
Java than in other languages such as C/C++. The expected counterpart is that, since Java code
runs over a virtual machine, a Java version of an algorithm will execute somewhat slower than
the corresponding C/C++ version.

An Intel Xeon at 2.0 GHz and 4 GB RAM was used to perform all tests, which were run
directly on the Netbeans IDE platform for Java over Windows 7. In order to compare our ILS-
ESP algorithm with other state-of-the-art ILS-based approaches, the following parameterized
algorithms (with parameters D and T) were also coded in Java by the same programmers:

 The ILS98-T04, which is the algorithm proposed in Stützle (1998) using T = 0.4.
According to the algorithm’s author, this parameter value is the one offering the best
performance, and it was obtained after a fine-tuning process.

 The IG-D4T04 and IG-D2T03, which represent two different parameterizations (D = 4,
T = 0.4 and D = 2, T = 0.3) of the well-known IG algorithm proposed in Ruiz and
Stützle (2007). The first set of parameters was obtained by the authors of IG after
completing a DOE fine-tuning process. The second set of parameters was selected by us
in order to show how performance of IG can be affected if other parameter values are
selected instead of the ‘optimal’ ones. At this point, it is worthwhile to remember that in
multiple experiments carried out by different authors (Ruiz and Stützle, 2007; Zobolas
et al., 2009; Ribas et al., 2010), the IG-D4T04 algorithm has outperformed any other
algorithm so far, including GA and TS, which have more parameters than IG. Thus, the
IG algorithm is a highly cited reference in the PFSP literature and, to the best of our
knowledge, it is one of the most efficient algorithms in this field.

 The RandIG-D4T04, which is our proposal for a randomized version of the IG-D4T04,
i.e. we have incorporated the GRASP-inspired biased randomization process developed
for the ILS-ESP algorithm into the IG algorithm.

It is worthy to summarize at this point the main differences between our approach, ILS-ESP,
and other existing ILS-based approaches can be summarized as follows:

 The GRASP-inspired biased randomization process, which is able to generate
alternative initial solutions of ‘good’ quality. As will be shown in the experimental

section, this can be especially useful when multiple instances of the algorithm are run in
parallel.

 The new perturbation operator, which according to our experiments is able to compete
with the extremely efficient destruction-construction operator proposed in the IG
algorithm. The latter operator, however, contains a fine-tuned parameter (D = 4) which
determines how many jobs must be extracted during the destruction phase.

 A simple acceptance criterion component, which is based on a Demon-like process.
This ‘white-box’ approach replaces the ‘black-box’ SA-like approach employed in other
ILS-based algorithms, which also uses a fine-tuned parameter (T = 0.4).

For each one of the aforementioned algorithms, we designed and performed extensive tests –
using the same machine, same programming language, same execution time, and same program
developer – on the 120 Taillard’s benchmark instances (Taillard, 1993). These instances, which
are available from http://mistic.heigvd.ch/taillard/default.htm, are grouped in 12 sets of 10
instances each according to the number of jobs and the number of machines, i.e.: set 20x5, set
20x10, set 20x20, set 50x5, set 50x10, set 50x20, set 100x5, set 100x10, set 100x20, set 200x10,
set 200x20, and set 500x20. Thus, for each ILS implementation and for each tested instance, 10
independent iterations (replicas) were run. Each replica was run for a maximum time tmax =
0.01s×k×m, where k is the number of jobs, and m is the number of machines. Then, for each set
of replicas, the best experimental solution found (BEST10) as well as the average value of the
different replicas (AVG10) were registered. Also, the best-known solution (BKS) associated
with each instance was obtained either from the aforementioned website or from Zobolas et al.
(2009). Notice that the tmax we are employing is really a small value in terms of computational
times. Thus, for the smallest instances tmax = 1s, while for the largest ones tmax =100s. While
analyzing the results it is important to keep in mind these short computational times and the real
difficulty of the selected benchmarks. As stated by Zobolas et al. (2009): “It should be
mentioned that the best known solutions in difficult instances are usually found with branch and
bound techniques or other exact methods in powerful workstations run for extended time
periods, and thus are not directly comparable to metaheuristic methods designed or intended to
run on single processor PCs and provide high-quality solutions in short computational times.”

In the following subsections, the results associated with the BEST10 values and those
associated with the AVG10 values are respectively analyzed and discussed.

5.1. A COMPARISON USING THE BEST10 METRIC

Table 1 shows, for each tested algorithm and set of instances, a summary of the experimental
results when considering the gap between the BKS and the best-found solution in 10 runs.

From the averages in the last row of the table, we can see that all tested ILS-based algorithms
perform quite well on the average –taking into account the maximum time each instance is
executed. However, it seems that our randomized version of the IG algorithm with optimal
parameter settings, the RandIG-D4T04, is the one showing the best performance (average gap =
0.33%). Just a slightly worse than this randomized version, both the optimally parameterized
IG-D4T04 and our ILS-ESP seem to perform equally well (average gap = 0.36%). Then, we
have the parameterized ILS98-T04 (average gap = 0.37%). Finally, far from the rest, we find the
non-optimally parameterized IG-D2T03 (average gap = 0.44%). Notice that this result seems to
imply that the IG algorithm offers some degree of sensitivity with respect to its parameters, i.e.
its performance can be greatly reduced when non-optimal values are assigned to its parameters.
Figure 9 shows a multiple-boxplot which allows for a visual comparison of the performance of
the algorithms. This figure reinforces the idea that results from the first four approaches are
quite equivalent, although maybe the RandIG-D4T04 performs slightly better than the rest. It
also seems clear from this figure that the non-optimized version of the IG algorithm performs
slightly worse than the rest.

Table 1: Gaps between Best Known Solution and BEST10. Java code running on an Intel Xeon at 2.0 GHz.

Taillard set RandIG-D4T04 IG-D4T04 ILS-ESP ILS98-T04 IG-D2T03 Max. Time (s)

20_5 0.00% 0.04% 0.00% 0.04% 0.00% 1

20_10 0.00% 0.00% 0.00% 0.00% 0.04% 2

20_20 0.00% 0.01% 0.00% 0.00% 0.03% 4

50_5 0.00% 0.00% 0.00% 0.00% 0.00% 2.5

50_10 0.38% 0.48% 0.47% 0.45% 0.53% 5

50_20 0.62% 0.66% 0.71% 0.74% 1.00% 10

100_5 0.00% 0.01% 0.00% 0.01% 0.00% 5

100_10 0.10% 0.07% 0.10% 0.07% 0.10% 10

100_20 0.94% 1.04% 1.13% 1.07% 1.25% 20

200_10 0.08% 0.08% 0.09% 0.11% 0.14% 20

200_20 1.18% 1.29% 1.24% 1.32% 1.48% 40

500_20 0.62% 0.63% 0.63% 0.67% 0.71% 100

Averages 0.33% 0.36% 0.36% 0.37% 0.44% --

Figure 9: Multiple box-plot for the BEST10 metric

An ANOVA test for comparing the average performance of each algorithm using the BEST10
metric was also performed. According to the test results (p-value = 0.984) and the overlapping
95% confidence intervals, no statistically significant difference has been found among the
various algorithms’ means. In this case, however, the normality assumption has not been met
and, therefore, we also completed a Kruskal-Wallis non-parametric test. The test results (p-
value = 0.949) confirmed the absence of statistically significant differences among the average
performance of the considered algorithms.

It is worthwhile to note that, in our opinion, the BEST10 metric is of great relevance since it
is strongly related to the use of multi-process capabilities of current (and future) computers. In
fact, most current workstations include multi-core processors. Therefore, different instances of
randomized algorithms –like the ones compared in this paper– can be run in parallel in a single
machine without increasing the total clock time employed after conveniently setting the initial
seeds for the RNG. Of course, by using a computer cluster instead of a single machine, even

more instances of a randomized algorithm can be run for a given clock time. Traditionally,
however, the metric against which to compare sequential algorithms in the PFSP literature is the
one referred to as the average of several iterations. This average value helps to reduce somewhat
the ‘randomness effect’, due to which a different solution is likely to be obtained each time a
randomized algorithm is run. The next subsection analyzes the results of our tests using the
average metric.

5.2. A COMPARISON USING THE AVG10 METRIC

Table 2 shows, for each tested algorithm and set of instances, a summary of the experimental
results when considering the gap between the BKS and the average solution in 10 runs.

Table 2: Gaps between Best Known Solution and AVG10. Java code running on an Intel Xeon at 2.0 GHz.

Taillard set RandIG-D4T04 IG-D4T04 ILS-ESP ILS98-T04 IG-D2T03 Max. Time (s)

20_5 0.04% 0.04% 0.05% 0.05% 0.07% 1

20_10 0.05% 0.05% 0.06% 0.05% 0.17% 2

20_20 0.04% 0.05% 0.06% 0.05% 0.17% 4

50_5 0.00% 0.01% 0.01% 0.01% 0.02% 2.5

50_10 0.71% 0.69% 0.78% 0.69% 0.84% 5

50_20 1.02% 1.04% 1.08% 1.11% 1.48% 10

100_5 0.02% 0.01% 0.02% 0.04% 0.03% 5

100_10 0.28% 0.27% 0.32% 0.31% 0.37% 10

100_20 1.46% 1.47% 1.55% 1.46% 1.68% 20

200_10 0.23% 0.23% 0.26% 0.26% 0.28% 20

200_20 1.57% 1.52% 1.57% 1.57% 1.73% 40

500_20 0.78% 0.80% 0.79% 0.83% 0.84% 100

Averages 0.52% 0.52% 0.55% 0.54% 0.64% --

From the last row in the table, it can be seen that both RandIG-D4T04 and IG-D4T04 perform
equally well for this metric (average gap = 0.52%) while our ILS-ESP and the ILS98-T04 are
just slightly behind (average gaps = 0.55% and 0.54% respectively). Lower results are obtained
for the non-optimally parameterized IG-D2T03 (average gap = 0.64%). Again, this result seems
to imply that performance of the IG algorithm greatly depends on the proper selection of its
parameters. Figure 10 shows a multiple-boxplot comparing the performance of the considered
algorithms. The visual comparison reinforces the idea that results from the first four approaches
are quite equivalent, although maybe the RandIG-D4T04 and the IG-D4T04 perform slightly
better for the AVG10 metric than the ILS-ESP and the ILS98-T04. It seems also clear from the
figure that the non-optimized version of the IG algorithm performs slightly worse than the rest.

Figure 10: Multiple box-plot for the AVG10 metric

An ANOVA test for comparing the average performance of each algorithm, using the AVG10
metric, was also completed. According to the test results (p-value = 0.985) and the overlapping
95% confidence intervals, no statistically significant difference was found among the various
algorithms’ means. Again, the normality assumption was not met, and a Kruskal-Wallis test was
also carried out (p-value = 0.895) to support the lack of significant differences among the
algorithms’ average performance.

To conclude this section, it is important to notice that despite its simplicity and lack of non-
trivial fine-tuning processes, the proposed ILS-ESP algorithm shows itself to be quite efficient,
both with respect to the BEST10 and the AVG10 metrics. This is quite interesting in our
opinion since, as noted before, some of the most efficient metaheuristics are not used in practice
because of the difficulties they present when trying to implement them and because of the fact
that they can sometimes seem like “black-boxes” to non-experts. On the contrary, simple
approaches like the one introduced here tend to be more flexible and transparent which, in turn,
makes them seem more credible and therefore, as some authors suggest, more likely to be used
in real-life scenarios (Robinson, 1997). Finally, with regard to the BEST10 metric, notice that
RandIG-D4T04, our randomized version of IG, seems to slightly outperform the original IG-
D4T04 version. To the best of our knowledge, it is the first time the IG algorithm has been
outperformed. The result also suggests the convenience of introducing GRASP-like approaches
into ILS metaheuristics to diversify the generation of initial solutions.

6. ANALYZING THE EFFECT OF RANDOMIZATION AND PARALLELIZATION

In order to test whether or not the selection of a specific random number generator (RNG) has a
significant effect on the performance of the ILS-based algorithms, the experiment described
next was carried out. We considered three different RNGs to generate the continuous random
numbers employed in the SA-like acceptance criterion of both IG and ILS98. The three RNGs
selected were the two Java native generators (java.util.Random and Math.random()), and the
LFSR113 generator proposed by L’Ecuyer (2001). Then, for each of these RNGs, all 120
Taillard’s instances were run using a maximum time tmax = 0.01s×k×m (where k is the number
of jobs, and m is the number of machines). Finally, an ANOVA test was used to compare the
three sets of outputs (one per RNG). The ANOVA test showed no significant differences (p-
value = 0.926) among the results obtained with each of these RNGs. Therefore, no statistical

evidence was found to support the idea that selecting one RNG or another could make a
significant difference in the performance of the algorithm.

As previously noted, the ILS-ESP algorithm proposed here can easily be parallelized by
splitting the random-number-generation sequence into different streams and using each stream
in different threads or CPUs. This can be an interesting field to explore, given the current trend
in multi-core processors and parallel computing. Offering competitive solutions to complex
problems in real time and without adjustments beforehand still presents a challenge. However, it
has been empirically observed that it is possible to significantly reduce the execution time that
randomized algorithms need to obtain ‘good’ solutions, depending on the seed that is chosen for
the pseudo-random number generator (Juan et al., 2011a). There are new processor design
paradigms based on gaining computation capacity through the parallel execution of multiple
processes and threads (multi-core). All in all, the idea is to execute multiple instances or replicas
of the algorithm in parallel, each replica using a different seed for the RNG. Each of these
instances can be considered an individual agent that is searching the solution space. In other
words, the idea is that each of these multiple agents will start to search in a different region of
the solution space by using different seeds. Our hypothesis here is that, as a randomized
approach with diversified initial solutions, a parallel version of the algorithm can provide very
competitive results in ‘real time’ for most medium-size PFSP problems.

To test how parallelization could improve our approach and, in particular, how increasing
the number of replicas can potentially enhance the ILS-ESP results, we have carried out two
extensive experiments which are described in the next subsections.

6.1. COMPARING DIFFERENT ALGORITHMS WHEN PARALLEL RUNS ARE
EXECUTED

For the first experiment on parallelization, we considered the Taillard’s 50x20 set of instances.
These instances have been selected because they are among the ones that most of the algorithms
with better performance find difficult to solve –and, therefore, we expect performance
differences to be more significant in this set of instances than in other sets. As with previous
experiments, the termination condition of each execution or replica is given by an instance-size
dependent maximum time tmax = 0.01s×k×m, i.e., we are considering a time factor of 0.01
seconds. Once more, we will use the BEST and AVG metrics defined before and we will
compare the performance of the different ILS-based approaches. The difference now with
regards to previous experiments is that we will analyze how results evolve as the number of
replicas is increased from n = 10 to n = 80. Table 3 and Figure 11 show the results obtained for
the BEST(n) metric.

Table 3: Gaps between Best Known Solution and BEST(n) for Taillard 50x20.

Number of
replicas RandIG-D4T04 IG-D4T04 ILS-ESP ILS98-T04 IG-D2T03 Max. Time (s)

10 0.62% 0.66% 0.66% 0.74% 1.00% 10

20 0.59% 0.62% 0.62% 0.64% 0.88% 10

30 0.53% 0.59% 0.54% 0.63% 0.83% 10

40 0.52% 0.58% 0.52% 0.55% 0.80% 10

50 0.48% 0.58% 0.47% 0.52% 0.75% 10

60 0.46% 0.56% 0.47% 0.52% 0.75% 10

70 0.46% 0.55% 0.45% 0.51% 0.73% 10

80 0.46% 0.51% 0.45% 0.51% 0.71% 10

Figure 11: Multiple box-plot for the BEST80 metric

Notice that there is a visible difference between the non-optimized version of the IG algorithm
(the IG-D2T03) and the rest of algorithms. The resulting ANOVA test is quite close to showing
statistically significant differences among the algorithms (p-value = 0.051). Also, notice that as
the number of replicas is increased, both the ILS-ESP and the RandIG-T4T04 seem to benefit
from our randomized NEH process which diversifies the starting solution in the ILS framework.
Thus, for n = 80 the ILS-ESP provides a 0.45% gap, which is slightly lower than the rest of the
ILS-based approaches. In our opinion this is an interesting result, especially when considering
the simplicity of the ILS-ESP algorithm and the fact that it contains no specific-value
parameters. Finally, Table 4 and Figure 12 show the results obtained for the AVG(n) metric.

Table 4: Gaps between Best Known Solution and AVG(n) for Taillard 50x20.

Number of
replicas RandIG-D4T04 IG-D4T04 ILS-ESP ILS98-T04 IG-D2T03 Max. Time (s)

10 1.06% 1.10% 1.20% 1.12% 1.48% 10

20 1.05% 1.07% 1.16% 1.13% 1.46% 10

30 1.04% 1.05% 1.18% 1.12% 1.46% 10

40 1.03% 1.06% 1.16% 1.12% 1.46% 10

50 1.03% 1.07% 1.16% 1.11% 1.47% 10

60 1.03% 1.07% 1.17% 1.12% 1.48% 10

70 1.03% 1.07% 1.16% 1.12% 1.48% 10

80 1.03% 1.07% 1.16% 1.12% 1.47% 10

Figure 12: Multiple box-plot for the AVG80 metric

Once more, there is a noticeable difference between the non-optimized version of the IG
algorithm and the rest of the approaches. Under this metric, the best performance for n = 80 is
attained by the RandIG algorithm, that is, our randomized version of the IG algorithm. The
resulting ANOVA test shows the existence of significant differences among the different
algorithms (p-value = 0.001).

6.2. COMPARING RESULTS AT DIFFERENT FACTOR TIMES AND NUMBER OF
RUNS

As a final experiment, we decided to analyze how the quality of the results generated by the
ILS-ESP will vary when considering different levels of computation time and number of
parallel agents –i.e. independent runs of the algorithm. These tests were carried out on the
Taillard’s 50x20 instances as well as the Taillard’s 100x20 and the Taillard’s 200x20 instances.
For each instance in these sets, 50 runs of our algorithm were executed with different
randomized starting seeds. The best found solution at each of the following times was then
registered: tmax = tfactor × k × m, where the time factor, tfactor, took on the values of 0.01, 0.02,
0.03, 0.04, and 0.05 seconds. For tfactor = 0, we used the solution provided by the NEH heuristic.
Then, for each combination of time factor and number of parallel runs, the average gap for the
set of instances was computed as the average percentage difference between our best found
solution (OBS) and the best known solution for each instance in the set. Figure 13, Figure 14,
and Figure 15 display the results of our experiments for the 50x20, 100x20 and 200x20
Taillard’s sets, respectively. Several items are worthy of note in these graphs. First of all, there
is an enormous improvement from the NEH solution in very little time. With a time factor as
small as 0.01, we can see a more than 5% improvement, even with only one single agent or run.
However, after this initial jump, the solution improves slowly with time. Between a time factor
of 0.01 and 0.05, which is a difference of 40 seconds in tmax for the 50x20 cases, the solution
improves by less than 0.5%. Another interesting result is that with as few as ten parallel agents,
we can obtain very good results in a very short amount of time. Notice that with a time factor of
0.01 for ten parallel agents, the average gap is almost nonexistent. Significantly more time
would be needed to achieve this result using only one sequential run of the algorithm. In other
words, parallelization seems to offer clear benefits to these types of algorithms. Even more
noticeably, through parallelization, it is possible to attain competitive solutions in ‘real-time’ –
just a few seconds for problems of the considered sizes.

Figure 13: Surface plot for Taillard’s 50x20 set.

Figure 14: Surface plot for Taillard’s 100x20 set.

Figure 15: Surface plot for Taillard’s 200x20 set.

7. CONCLUSION

In this paper, we have reviewed several algorithms based on the Iterated Local Search (ILS)
framework for solving the Permutation Flow Shop Problem (PFSP). The paper offers a
literature review on the PFSP and discusses some of the benefits ILS-based algorithms offer to
solve this problem, including: (a) their efficiency; and (b) the fact that they can be easily
implemented without requiring time-consuming fine-tuning processes. The paper also
introduces our ILS-ESP algorithm, which shows how it is possible to develop an efficient and
parallelizable ILS-based algorithm without requiring a parameter-calibration analysis. We
explain how the ILS-ESP algorithm employs a diversification strategy to benefit from
parallelization techniques. This diversification in the initial solution is attained by employing a
biased randomized version of the well-known NEH heuristic for the PFSP. In particular, we
propose the use of a discretized triangular distribution, which allows for the generation of
alternative initial solutions without losing the ‘common-sense’ ideas behind the NEH heuristic.
Several extensive tests show that parallelization strategies can greatly contribute to improving
the performance of ILS-based algorithms. In fact, by using parallelization, we have been able to
obtain competitive or near-optimal solutions in ‘real-time’ (a few seconds) even for the most
challenging Taillard’s instances. Finally, we have not observed significant differences when
employing alternative random number generators to run ILS-based algorithms –although this
remains an open research topic to be explored in other metaheuristics and optimization
problems.

ACKNOWLEDGMENTS

This work has been partially supported by the Spanish Ministry of Science and Innovation
(grants TRA2010-21644-C03, ECO2009-11307, and DPI2007-61371), and by the CYTED-
HAROSA Network (http://dpcs.uoc.edu).

REFERENCES

Alabas-Uslu, C., Dengiz, B., 2011. A self-adaptive local search algorithm for the classical

vehicle routing problem. Expert Systems and Applications 38, 8990-8998.
Aldowaisan, T., Allahvedi, A., 2003. New heuristics for no-wait flowshops to minimize

makespan. Computers and Operations Research 30(8), 1219-1231.
Burke, E., Curtois, T., Hyde, M., Kendall, G., Ochoa, G., Petrovic, S., Vazquez-Rodriguez, J.A.,

Gendreau, M., 2010. Iterated Local Search vs. Hyper-heuristics: Towards General-Purpose
Search Algorithms. In: Proceedings of the IEEE World Congress on Computational
Intelligence, pp. 1-8.

Campbell, H.G., Dudek, R.A., Smith, M.L., 1970. A heuristic algorithm for the n job, m
machine sequencing problem. Management Science 16, B630-B637.

Chandrasekharan, R., Ziegler, H., 2004. Ant-colony algorithms for permutation flowshop
scheduling to minimize makespan/total flowtime of jobs. European Journal of Operational
Research 155(2), 426-438.

Chen, C.L., Vempati, V.S., Aljaber, N., 1995. An application of genetic algorithms for flow
shop problems. European Journal of Operational Research 80(2), 389-396.

Companys, R., Mateo, M., 2007. Different behaviour of a double branch-and-bound algorithm
on Fm|prmu|Cmax and Fm|block|Cmax problems. Computers & Operations Research 34, 938-
953.

Cooren, Y., Clerc, M., Siarry, P., 2011. MO-TRIBES: an adaptive multiobjective particle
swarm optimization algorithm. Computational Optimization and Applications 49(2), 379-
400.

Cordeau, J.F., Gendreau, M., Laporte, G., Potvin, J.Y., Semet, F., 2002. A guide to vehicle
routing heuristics. Journal of the Operational Research Society 53, 512-522.

Dannenbring, D.G., 1977. An evaluation of flowshop sequence heuristics. Management Science
23, 1174-1182.

Engin, O., Ceran, G., Yilmaz, M.K., 2011. An efficient genetic algorithm for hybrid flow shop
scheduling with multiprocessor task problems. Applied Soft Computing 11, 3056-3065.

Feo, T.A., Resende, M.G.C., 1995. Greedy randomized adaptive search procedures. Journal of
Global Optimization 6, 109-133.

Festa, P., Resende, M.G.C., 2009a. An annotated bibliography of GRASP Part I: algorithms.
International Transactions in Operational Research 16, 1-24.

Festa, P., Resende, M.G.C., 2009b. An annotated bibliography of GRASP Part II: applications.
International Transactions in Operational Research 16, 131-172.

Framinan, J.M., Gupta, J.N.D., Leisten, R., 2004. A review and classification of heuristics for
permutation flow-shop scheduling with makespan objective. Journal of the Operational
Research Society 55, 1243-1255.

Framinan, J.M., Leisten, R., 2003. An efficient constructive heuristic for flowtime minimisation
in permutation flow shops. OMEGA 31, 311-317.

Gendreau, M., Potvin, J.Y., 2005. Metaheuristics in combinatorial optimization. Annals of
Operations Research 140(1), 189-213.

Hejazi, S.R., Saghafian, S., 2005. Flowshop-scheduling with makespan criterion: a review.
International Journal of Production Research 43, 2895-2929.

Johnson, S.M., 1954. Optimal two- and three-stage production schedules with setup times
included. Naval Research Logistics Quarterly 1, 61-68.

Juan, A., Faulin, J., Jorba, J., Caceres, J., Marques, J., 2011a. Using Parallel & Distributed
Computing for Solving Real-time Vehicle Routing Problems with Stochastic Demands.
Annals of Operations Research, 1-22., doi 10.1007/s10479-011-0918-z.

Juan, A., Faulin, J., Jorba, J., Riera, D., Masip, D., Barrios, B., 2011b. On the Use of Monte
Carlo Simulation, Cache and Splitting Techniques to Improve the Clarke and Wright
Savings Heuristics. Journal of the Operational Research Society 62, 1085-1097.

Juan, A., Faulin, J., Ruiz, R., Barrios, B., Caballe, S., 2010. The SR-GCWS hybrid algorithm
for solving the capacitated vehicle routing problem. Applied Soft Computing 10(1), 215-
224.

Kahraman, C., Engin, O., Kaya, I., Ozturk, R.E., 2010. Multiprocessor task scheduling in
multistage hybrid flow-shops: A parallel greedy algorithm approach. Applied Soft
Computing 10, 1293-1300.

L’Ecuyer, P., 2001. Software for uniform random number generation: Distinguishing the good
and the bad. In: Proceedings of the 2001 Winter Simulation Conference, pp. 95-105.

Ladhari, T., Haouari, M., 2005. A computational study of the permutation flow shop problem
based on a tight lower bound. Computers & Operations Research 32, 1831-1847.

Lourenço, H.R., Martin, O., Stützle, T., 2010. Iterated Local Search: Framework and
Applications. In: Handbook of Metaheuristics, Kluwer Academic Publishers, International
Series in Operations Research & Management Science vol. 146, pp. 363-397.

Luke, S., 2009. Essentials of Metaheuristics. Lulu.
Matsui, S., Yamada, S., 2007. An Empirical Performance Evaluation of a Parameter-free

Genetic Algorithm for Job-Shop Scheduling Problem. In: Proceedings of the 2007 IEEE
Congress on Evolutionary Computation, pp. 3796-3803.

Moccellin, J.V., 1995. A new heuristic method for the permutation flow-shop scheduling
problem. Journal of the Operational Research Society 46, 883-886.

Nagano, M.S., Ruiz, R., Nogueira, L.A., 2008. A Constructive Genetic Algorithm for
permutation flowshop scheduling. Computers & Industrial Engineering 55, 195-207.

Nawaz, M., Enscore, E., Ham, I., 1983. A heuristic algorithm for the m-machine, n-job
flowshop sequencing problem. OMEGA 11, 91-95.

Osman, L., Potts, C., 1989. Simulated annealing for permutation flow-shop scheduling.
OMEGA 17(6), 551-557.

Pan, Q.K., Wang, L., Zhao, B.H., 2008. An improved iterated greedy algorithm for the no-wait
flow shop scheduling problem with makespan criterion. International Journal of Advanced
Manufacturing Technology 38(7-8), 778-786.

Prais, M., Ribeiro, C.C., 2000. Reactive GRASP: An application to a matrix decomposition
problem in TDMA traffic assignment. INFORMS Journal on Computing 12, 164-176.

Ravetti, M.G., Nakamura, F.G., Meneses, C.N., Resende, M.G.C., Mateus, G.R., Pardalos, P-M-
2006. Hybrid heuristics for the permutation flow shop problem, AT&T Labs Research
Technical Report TD-6V9MEV, Shannon Laboratory, Florham Park, NJ 07932 USA.

Ravetti, M.G., Riveros, C., Mendes, A., Resende, M.G.C., Pardalos, P. 2012. Parallel hybrid
heuristics for the permutation flow shop problem. Annals of Operations Research 199, 269-
284.

Reeves, C.R., 1993. Improving the efficiency of tabu search for machine scheduling problems.
Journal of the Operational Research Society 44(4), 375-382.

Reeves, C.R., 1995. A genetic algorithm for flowshop sequencing. Computers and Operations
Research 22(1), 5-13.

Resende, M.G.C., Ribeiro, C.C., 2005. GRASP: Greedy Randomized Adaptive Search
Procedures. In: Search Methodologies, Springer.

Ribas, I., Companys, R., Tort-Martorell, X., 2010. Comparing three-step heuristics for the
permutation flow shop problem. Computers & Operations Research 37-12, 2062-2070.

Robinson, S., 1997. Simulation model verification and validation: increasing the user’s
confidence. In: Proceedings of the 1997 Winter Simulation Conference, pp. 53-59.

Ruiz, R., Maroto, C., 2005. A comprehensive review and evaluation of permutation flowshop
heuristics. European Journal of Operational Research 165, 479-494.

Ruiz, R., Maroto, C., Alcaraz, J., 2006. Two new robust genetic algorithms for the flowshop
scheduling problem. Omega-International Journal of Management Science 34, 461-476.

Ruiz, R., Stützle, T, 2007. A simple and effective iterated greedy algorithm for the permutation
flow-shop scheduling problem. European Journal of Operational Research 177, 2033-2049.

Stützle, T., 1998. Applying Iterated Local Search to the Permutation Flow Shop Problem.
Available at: http://iridia.ulb.ac.be/~stuetzle/publications/AIDA-98-04.pdf

Suliman, S., 2000. A two-phase heuristic approach to the permutation flow-shop scheduling
problem. International Journal of Production Economics 65(1-3), 143-152.

Taillard, E., 1990. Some efficient heuristic methods for the flow shop sequencing problem.
European Journal of Operational Research 47, 65-74.

Taillard, E., 1993. Benchmarks for basic scheduling problems. European Journal of Operations
Research 64, 278-285.

Talbi, E., 2009. Metaheuristics: From Design to Implementation. Wiley.
Widmer, M., Hertz, A., 1989. A new heuristic method for the flow shop sequencing problem.

European Journal of Operational Research 41(2), 186-193.
Zheng, T., Yamashiro, M., 2010. Solving flow shop scheduling problems by quantum

differential evolutionary algorithm. International Journal of Advanced Manufacturing
Technology 49, 643-662.

Zobolas, C., Tarantilis, C., Ioannou, G., 2009. Minimizing makespan in permutation flow shop
scheduling problems using a hybrid metaheuristic algorithm. Computers & Operations
Research 36, 1249-1267.

