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Outline of the Presentation

► Introduction► Introduction
 Motivation: The Blood Sample Collection at a 

Clinical Laboratory

 Problem description

 Literature review

►Bias Random Key Genetic Algorithm
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►Bias Random Key Genetic Algorithm

►Real application

►Conclusions and directions of future work.
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Introduction- Motivation

►The Blood Sample►The Blood Sample 
Collection at a 
Clinical Laboratory
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Introduction- Motivation

►The Blood Sample Collection at a Clinical►The Blood Sample Collection at a Clinical 
Laboratory

* Health Care Management Problem

 Redesign collection routes
* Daily Routes (5 days/week)

* Application Lab 1: 43 collection points

* A li ti L b 2 74 ll ti i t
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* Application Lab 2: 74 collection points

* The transport is subcontracted

* Constraints on travel time (2 hours) & capacity

* Minimize transportation costs
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Introduction- The Problem

►Time-Constraint Capacity Open VRP (1/2)►Time-Constraint Capacity Open VRP (1/2)
 A direct graph G = (V, A) is given, where V = {0, 1, 

…, n) is the set of n + 1 nodes and A is the set of 
arcs. 

 Node 0 represents the depot (laboratory), while 
the remaining nodes V’ = V \ {0} corresponds to 
the n collecting points
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the n collecting points. 

 Each collection point i V’ has qi boxes to be 
transported to the depot (assume q0 = 0).

 Distance and travel times between each node.

Introduction- The Problem

►Time-Constraint Capacity Open VRP (2/2)►Time-Constraint Capacity Open VRP (2/2)
 Open routes (start at the first collecting point and 

finish at the laboratory)

 The vehicle fleet is composed M = {1,…, m} 
identical vehicles with capacity Qk.

 The travel maximum time between the first 
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collecting point to the laboratory is 2 hours.

 Minimize the total distance (or 
transportation costs)
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Introduction- The Problem

►Applications of the Time-Constraint Capacity►Applications of the Time-Constraint Capacity 
Open VRP
 Blood Collection Sample at a Clinical Laboratory

 Patients transportation to medical exams (1 hour)

 School Bus (1 hour time constraint)

 Retailing with subcontracted distribution 
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g
transportation (8 hours working time)

 Etc.

Introduction- Review
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Bias Random Key Genetic 
Algorithm

►GAs and random keys►GAs and random keys
 Introduced by Bean (1994) for sequencing 

problems.

 Individuals are strings of real-valued numbers 
(random keys) in the interval [0,1].

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
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 Sorting random keys results in a sequencing 
order.

s(1)   s(2)   s(3)   s(4)    s(5)

S' = ( 0.05, 0.19, 0.25, 0.67, 0.89 )
s(4)   s(2)   s(1)   s(3)    s(5)

Sequence: 4 – 2 – 1 – 3 – 5

Bias Random Key Genetic 
Algorithm

►Random-keys vs biased random-keys►Random-keys vs biased random-keys
 How do random-key GAs (Bean, 1994) and biased 

random-key GAs differ?
* A random-key GA selects both parents at random from 

the entire population for crossover: some pairs may not 
have any elite solution

* A biased random-key GA always has an elite parent 
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y y p
during crossover 

* Parametrized uniform crossover makes it more likely that 
child inherits characteristics of elite parent in biased 
random-key GA while it does not in random key GA 
(survival of the fittest)
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Bias Random Key Genetic 
Algorithm
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Bias Random Key Genetic 
Algorithm
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Bias Random Key Genetic 
Algorithm

►Framework for biased random-key genetic►Framework for biased random-key genetic 
algorithms

* Gonçalves, J. F., & Resende,  M. G. C. (2011)
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Bias Random Key Genetic 
Algorithm

14
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Bias Random Key Genetic 
Algorithm

►Decoders►Decoders
 A decoder is a deterministic algorithm that takes 

as input a random-key vector and returns a 
feasible solution of the optimization problem and 
its cost.

 Bean (1994) proposed decoders based on sorting 
the random key vector to produce a sequence
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the random-key vector to produce a sequence.

 A random-key GA searches the solution space 
indirectly by searching the space of random keys 
and using the decoder to evaluate fitness of the 
random key.
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Bias Random Key Genetic 
Algorithm

►Decoder for the Time-Constraint Capacity►Decoder for the Time-Constraint Capacity 
Open VRP
 Suppose each collection points has one bag and 

the capacity of the vehicles is 2.

 A solution: S= ( 0.05, 0.19, 0.25, 0.67, 0.89 )
s(4)   s(2)   s(1)   s(3)    s(5)

17

 Means that 3 routes are obtained: 
* 4-2-lab

* 1-3-lab

* 5-lab

Sequence: 4 – 2 – 1 – 3 – 5

Real Application

►The Blood Sample Collection at a Clinical►The Blood Sample Collection at a Clinical 
Laboratory
 Application Lab 1: 43 collection points

 Actually 10 routes

 Data: 
* Laboratory

18

* Distances and time matrix by google maps

– vrp.upf.edu

 Two scenarios & two different truck capacities
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Real Application

►The Blood Sample Collection at a Clinical►The Blood Sample Collection at a Clinical 
Laboratory

Number of Routes using BRKGA for Lab 1

Number of Routes

19

Vehicle Capacity = 16 Vehicle Capacity = 25

Scenario I 3 + 5 3 + 4

Scenario II 7 7

Real Application

►The Blood Sample Collection at a Clinical►The Blood Sample Collection at a Clinical 
Laboratory
 Application Lab 2: 74 collection points

 Actually 12 routes

 Data: 
* Laboratory
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* Distances and time matrix by google maps

– vrp.upf.edu

 Three different truck capacities
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Real Application

►The Blood Sample Collection at a Clinical►The Blood Sample Collection at a Clinical 
Laboratory

Number of Routes using BRKGA for Lab 2

Number of Routes
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Vehicle Capacity = 

10

Vehicle Capacity = 

16

Vehicle Capacity = 

25

10 9 9

Real Application

►The Blood Sample Collection at a Clinical►The Blood Sample Collection at a Clinical 
Laboratory
 Lab 1: saving 30% of total annual routing costs 

(around 45.000€)

 Lab 2: saving around 20% of total annual routing 
costs.
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 Better management if there are new collection 
points or changes in the address.

 Better service quality (2 hours transportation).

 Better planning in the case of laboratory merging 
strategy.



EURO 2012

© Helena Ramalhinho-Lourenço (Barcelona, 2012))
12

Conclusions

►Research should focus on solving real►Research should focus on solving real 
problems, with a great impact on Public 
Health Care System.

►The Bias Random Key Genetic Algorithm is 
easily adapted to new constraints or 
management issues.
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management issues.

►Also, it can be adapted to other routing 
problems.

►Companies require no fine-tunning or 
parameters to be set.

Future Research

►Application to well known instances in COVRP►Application to well-known instances in COVRP 
and compare results.

►Application of the CTCOVRP
 School Bus at Barcelona

►More VRP real applications (fashion industry)
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 MANGO

 DESIGUAL

► Improve the vrp.upf.edu web so the user can 
optimize the routes via internet.
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Thank you for yourThank you for your 
attention

25


