A Polynomial Algorithm for a Special Case of the One-Machine Scheduling Problem with Time-Lags

Helena Ramalhinho Lourenço

Barcelona, Spain
helena.ramalhinho@upf.edu
http://www.econ.upf.edu/~ramalhin/

Outline of the Presentation

► Introduction
► The one machine scheduling problem with time-lags
► The early-late algorithm
► Computational results
► Conclusions
► Directions of future work.
Introduction

► We consider a one-machine scheduling problem minimizing the maximum lateness.
► Each job is associated with
 ▪ a release date,
 ▪ a processing time
 ▪ a delivery time.
► There are precedence constraints between some pairs of jobs as well as a time interval, the finish-start time-lags.

In presence of these constraints, the problem is *NP*-hard even if preemption is allowed.
► We consider a special case of the one-machine preemption scheduling problem with time-lags in chain form.
► And we propose a polynomial algorithm to solve it.
► One of the applicability is to obtain lower bounds for *NP*-hard one-machine and job-shop scheduling problems.
The one machine scheduling problem

- The one-machine scheduling problem:
 - a set of jobs have to be scheduled on one machine.
 - each job has a release date, a processing time, and a delivery time.
 - Each job cannot be processed before its release time.
 - At most one job can be processed at a time, all jobs can be simultaneously delivered.
 - Preemption is allowed.

- There also can exists precedence constrains, <, between the jobs.
 - In presence of precedence constraints, a job cannot start processing before the previous one has been finished.
 - the completion time of the first job and the starting time of the second job there must exists a time interval known as finish-start time-lags.
 - These time lags have a chain form:
 \[J_i < J_k < ... < J_l \]
The one machine scheduling problem

► Notation
 - n jobs $J = \{J_1, J_2, ..., J_n\}$
 - r_j: release date
 - d_j: due date
 - q_j: delivery time
 - C_j: completion time
 - Lateness $L_j = C_j - d_j$

► The objective is to minimize the maximum lateness (L_{max})

The Early-Late Algorithm

► Previous...
 - The Longest Tail Rule (LTRTL) schedules the jobs sequentially choosing at each step the job with the longest delivery time among those not scheduled yet.
 - * Can easily be adapted to allow preemption (pLTRTL).
 - * Obtains a feasible solution for the problem.
 - The Horn’s algorithm, Horn (1974) is similar to the LTRTL but considers preemption and no time-lags.
The Early-Late Algorithm

- The early-late algorithm finds the optimal solution of the problem.
- It is a particular case of the enumeration method proposed by Lourenço (1993) to the general one-machine scheduling problem with time lags (in a general form).
- It considers only polynomial number of tree nodes of the previous enumeration method.

The Early-Late Algorithm

- The basic idea of the algorithm is to obtain a lower bound and an upper bound at each node i of the tree.
- The lower bound is obtained by applying the Horn’s rule to a modified instance (ignoring the time lags).
- The upper bound is obtained by applying the pLTRTL (considering the time lags).
The Early-Late Algorithm

► If the upper bound is equal to the lower bound the algorithm stops because that optimal solution was found.
 ▪ Node i, instance I_i

$$L_{\text{max}}(\sigma_i, I_i) = LB(I_i)$$

► Otherwise some job is scheduled late or early…

The Early-Late Algorithm

$$L_{\text{max}}(\sigma_i, I_i) = \min_{j \in K} \bar{r}_j + \sum_{j \in K} p_j + q_c > LB(I_i) \geq \min_{j \in K} r_j + \sum_{j \in K} p_j + \min_{j \in K} q_j = L(K)$$

► One chain job is scheduled late if:

$$\min_{j \in K} \bar{r}_j > \min_{j \in K} r_j$$

► One chain job is schedule early if:

$$q_c > \min_{j \in K} q_j$$
The Early-Late Algorithm

► Then the instance I_i is modified by applying some dominance rules.
► The only modifications needed are the release dates and delivery times (priorities) of the chain jobs.
► When a modification is made, it means that we are changing from one node to another in the search tree of the enumerative method.
► The algorithm runs in polynomial time.

Computational Results

► We consider 10 instances of the one-machine scheduling problem obtained by relaxations of the job-shop scheduling problem.
► The results obtained are lower bounds for the job-shop scheduling problem.
The Job-Shop Scheduling

Example:

* J₁: M₁ / 1; M₃ / 2; M₂ / 1;
* J₂: M₃ / 1; M₁ / 1; M₂ / 2;
* J₃: M₁ / 1; M₂ / 3

Computational Results

- Horn’s Rule. Problem: No time lags, pmtn.
- Early-Late algorithm. Problem: Chain time-lags, pmtn.
- Enumerative method. Problem: All time lags, pmtn.
- Carlier’s algorithm. Problem: No time lags, no pmtn.
- Enumerative method. Problem: Chain time-lags, no pmtn.
- Enumerative method. Problem: All time lags, no pmtn.
Computational Results

<table>
<thead>
<tr>
<th>Examples</th>
<th>Polynomial</th>
<th>Enumerative methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>(LA19)</td>
<td>798 807</td>
<td>813 807 807 832</td>
</tr>
<tr>
<td>(MT10)</td>
<td>911 911</td>
<td>911 911 911 911</td>
</tr>
<tr>
<td>(MT10)</td>
<td>917 917</td>
<td>917 917 917 917</td>
</tr>
<tr>
<td>(MT10)</td>
<td>836 836</td>
<td>836 836 836 836</td>
</tr>
<tr>
<td>(MT10)</td>
<td>884 884</td>
<td>884 892 892 892</td>
</tr>
<tr>
<td>(ABZ5)</td>
<td>1101 1116</td>
<td>1116 1108 1116</td>
</tr>
<tr>
<td>(LA19)</td>
<td>735 752</td>
<td>752 747 755 755</td>
</tr>
<tr>
<td>(ABZ5)</td>
<td>1147 1157</td>
<td>1157 1147 1157</td>
</tr>
<tr>
<td>(MT10)</td>
<td>884 884</td>
<td>884 892 892 892</td>
</tr>
<tr>
<td>(MT10)</td>
<td>918 918</td>
<td>918 918 918 918</td>
</tr>
</tbody>
</table>

Conclusions

► In this work, we considered a special case of the one-machine scheduling with time-lags in a chain form and allowing preemption.

► The main contribution of this work is the presentation of a polynomial algorithm, the early-late algorithm.

► This algorithm can be used to obtain lower-bounds within branch-and-bound methods to other complex scheduling problems, as the job-shop problem.
Future Research

▷ Consider precedence constraints in a
 bipartite graph form and study how to solve
 such problems.

▷ Apply the early-late algorithm within a
 Matheuristic method to solve complex
 scheduling problems.
 ▪ Apply search heuristics combined with exact
 methods.