

► Li e	et al.	. (20	007	'): fi	ive	larc	10-9		a Li		- הי ר			
► Li e	et al.	. (20 d by	007	'): fi	ve	larc	10-9	col	<u>~ Ц</u>			-1		
ins = 1 360	1,, 0, ar des l	5. I nd e loca	Nur eacl	nbe nbe h ca d in	en e er o ase coi	f cu ha: nce	i., a isto s a ntri	me geo c ci	rs is ome rcle	s be etric es ar	u a twe syr our	s LI en 2 nme nd th	_/, \ 200 etry ne (with <i>i</i> and with depo
no														
	nstance	Q _A	m _A	Q _B	m _B	Qc	m _c	Q _D	m _D	Q _E	m _E	Q _F	m _F	%
	nstance H1	Q _A 50	m _A 8	Q_в 100	т _в б	Q c 200	m _c 4	Q _D 500	m _D	Q_E 1000	m _e 1	Q _F	m _F	% 93.02
	nstance H1 H2	Q _A 50 50	m _A 8 10	Q _В 100 100	т _в 6 5	Q c 200 200	m c 4 5	Q _D 500 500	m _D 3 4	Q _E 1000 1000	т _е 1 1	Q _F	m _F	% 93.02 96.00
	nstance H1 H2 H3	Q _A 50 50 50	m _A 8 10 10	Q _B 100 100 100	т _в 6 5 5	Q c 200 200 200	m _c 4 5 5	Q _D 500 500 500	m _D 3 4 4	Q _E 1000 1000 1000	т _е 1 1 2	Q _F	m _F	% 93.02 96.00 94.76
	nstance H1 H2 H3 H4	Q _A 50 50 50 50	m _A 8 10 10 10	Q _B 100 100 100 100	т _в 6 5 5 8	Q c 200 200 200 200	m c 4 5 5 5	Q _D 500 500 500 500	m _D 3 4 4 2	Q _E 1000 1000 1000 1000	m _E 1 1 2 2	Q _F 1500	m _F	% 93.02 96.00 94.76 94.12

POM		R	eal A	pp	licat	ion		
Ð	1							
	► Gru	p Aliment	ari Gu	iisso	na RF	SUI	TS	Grup Alimentari
					Diatrik			
	• F	leet Compo	Sition	or the	Distric	Jution	Comp	bany
		Vehicle Type	Q _k	m _k	MQ _k	AM _k	MQM _k	
		Vehicle Type A	Q _k 222	m _k 8	MQ_k 1.776	AM _k 1	MQM_k 1.776	
		Vehicle Type A B	Q _k 222 414	т _к 8 5	MQ _k 1.776 2.070	AM _k 1 1	MQM _k 1.776 2.070	
		Vehicle Type A B C	Q _k 222 414 482	m _k 8 5 139	MQ _k 1.776 2.070 66.998	AM _k 1 1 2	MQM _k 1.776 2.070 133.996	
		Vehicle Type A B C D	Q _k 222 414 482 550	<mark>т</mark> к 8 5 139 3	MQ _k 1.776 2.070 66.998 1.650	AM _k 1 1 2 1	MQM _k 1.776 2.070 133.996 1.650	
		Vehicle Type A B C D E	Q _k 222 414 482 550 616	<mark>т</mark> к 8 5 139 3 6	MQ _k 1.776 2.070 66.998 1.650 3.696	AM _k 1 2 1 1	MQM _k 1.776 2.070 133.996 1.650 3.696	
		Vehicle Type A B C D E F	Q _k 222 414 482 550 616 676	m _k 8 5 139 3 6 3	MQ _k 1.776 2.070 66.998 1.650 3.696 2.028	AM _k 1 2 1 1 1	MQM _k 1.776 2.070 133.996 1.650 3.696 2.028	
		Vehicle Type A B C D E F G	Q _k 222 414 482 550 616 676 752	<mark>т</mark> к 8 5 139 3 6 3 4	MQ _k 1.776 2.070 66.998 1.650 3.696 2.028 3.008	AM _k 1 1 2 1 1 1 1	MQM _k 1.776 2.070 133.996 1.650 3.696 2.028 3.008	
		Vehicle Type A B C D E F G H	Q _k 222 414 482 550 616 676 752 1.210	m _k 8 5 139 3 6 3 4 1	MQ _k 1.776 2.070 66.998 1.650 3.696 2.028 3.008 1.210	AM _k 1 2 1 1 1 1 1 1	MQM _k 1.776 2.070 133.996 1.650 3.696 2.028 3.008 1.210	

			Company Solution	cws	-Prins(*)	Randomized CWS-Prins								
	Stor es	Total	Cost	Cost	Time	Gap	Best	Time	Gap	Gap	Average	Gap	Gap		
	Visit ed	Deman d	(1)	(2)	(sec)	(2-1)	Cost	(sec)	(3-1)	(3-2)	10 Seeds	(4-1)	(4-2)		
Instance	,	Deliver ed					(3)				(4)				
А	372	77913	45302.4	40001.86	3.02	-11.70%	39534.11	63.22	-12.73%	-1.17%	39841.99	- 12.05%	-0.40%		
В	366	79130	47184.35	41821.23	2.41	-11.37%	41072.46	55.2	-12.95%	-1.79%	41399.65	۔ 12.26%	-1.01%		
с	371	91901	53941.43	50337.9	2.9	-6.68%	49669.31	66.48	-7.92%	-1.33%	50082.32	-7.15%	-0.51%		
D	364	63078	36897.29	31697.62	1.73	-14.09%	31378.63	58.94	-14.96%	-1.01%	31543.09	- 14.51%	-0.49%		
Е	372	83571	50872.8	46372.77	2.7	-8.84%	45485.83	29.73	-10.59%	-1.91%	45836.63	-9.90%	-1.16%		
F	373	85773	51315.4	46327.54	2.76	-9.72%	45275.62	7.67	-11.77%	-2.27%	45681.39	- 10.98%	-1.39%		
G	372	84023	50492.74	45939.7	2.6	-9.02%	45165.12	28.53	-10.55%	-1.69%	45493.28	-9.90%	-0.97%		
н	374	85539	51427.1	45070.87	2.76	-12.36%	44386.64	65.94	-13.69%	-1.52%	44909.39	12.67%	-0.36%		
I	370	89596	54446.01	49613.35	2.88	-8.88%	49053.97	59.57	-9.90%	-1.13%	49354.83	-9.35%	-0.52%		
J	372	76846	45056.4	39712.54	2.25	-11.86%	38973.19	29.33	-13.50%	-1.86%	39252.86	12.88%	-1.16%		
Average			48693.59	43689.54	2.6	-10.45%	42999.49	46.46	-11.86%	-1.57%	43339.54	11.17%	-0.80%		

