

POMPEU FABRA

Outline of the Presentation

- ▶ Introduction
 - Motivation
 - Problem description
 - Literature review
- ► Savings-Based Randomized Heuristic
 - The method
 - Computational results
- ► Real application
- ► Conclusions and directions of future work.

Introduction- Motivation

3

UNIVERSITAT

Introduction- Motivation

- ► Actual Project Grup Alimentari Guissona
 - * Food Industry
 - * Integrated logistics network
 - Redesign the Vehicle Distribution Problem
 - * 370 stores in Spain
 - * Revenue 1,156 million euros
 - * Three types of products (dry, fresh, frozen)
 - * Centralized warehouse (La Closa, Guissona, Catalonia)
 - * Daily distribution (Monday to Saturday)

UNIVERSITAT

Introduction- Motivation

► Routing Problem

- Heterogeneous fleet (7 different truck capacities)
- Time windows in the stores
- Constraints of assigning some trucks to some stores.
- Maximum driving hours
- Multitrip for some vehicles
- Etc.
- ► Minimize operative costs

http://img.europapress.net/

5

POMPEU FABRA

Introduction- Motivation

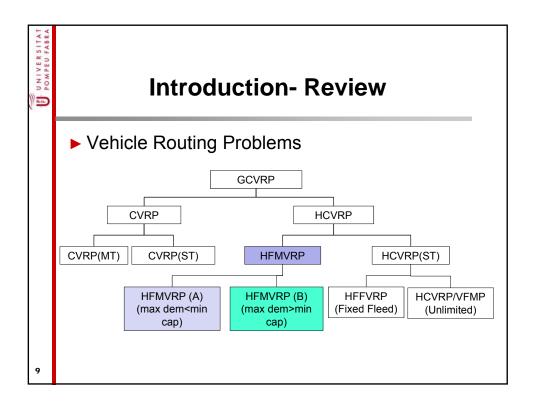
▶ Distribution System

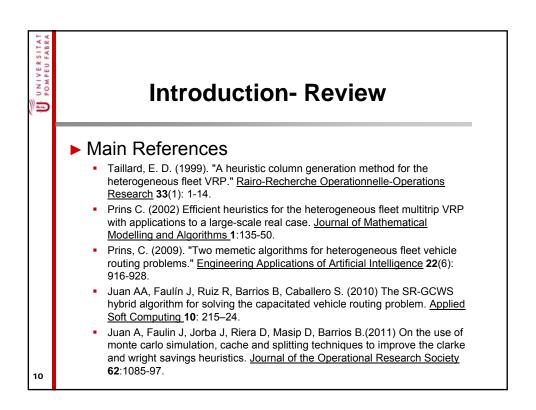
- Stores place orders
- Order planning (adjust orders according inventory)
- Route planning
 - * Actually is planned manually, adjusting master routes according to the demand.
 - * Order planning (adjust orders according truck capacity)
- Load trucks
- Start delivery
- ► The new algorithm should run in less than 20 minutes...

PUNIVERSITA

Introduction- The Problem

- ► Heterogeneous Fleet Multitrip VRP (1/2)
 - A direct graph G = (V, A) is given, where V = {0, 1, ..., n} is the set of n + 1 nodes and A is the set of arcs.
 - Node 0 represents the depot, while the remaining nodes V' = V \ {0} corresponds to the n customers.
 - Each customer i $\in V'$ requires a supply of q_i units from the depot (assume $q_0 = 0$).


7


UNIVERSITAT

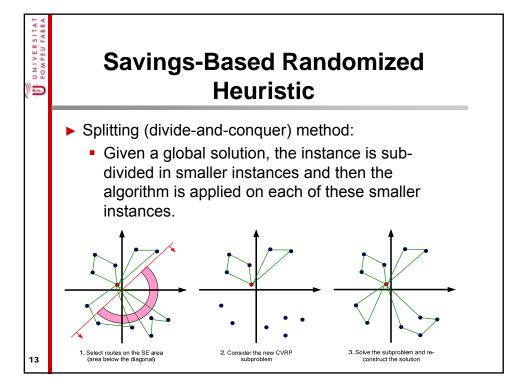
Introduction- The Problem

- ► Heterogeneous Fleet Multitrip VRP (2/2)
 - The vehicle fleet is composed by m different vehicle types, with M = {1,..., m}.
 - For each vehicle type $k \in M$, the capacity is Q_k .
 - There is a limited number of vehicles of each type (m_k)
 - It is allowed to do multitrip.
 - Some vehicles cannot go to some customers
 * (max dem>min cap)
 - Minimize the total distance

P. UNIVERSITA

Savings-Based Randomized Heuristic

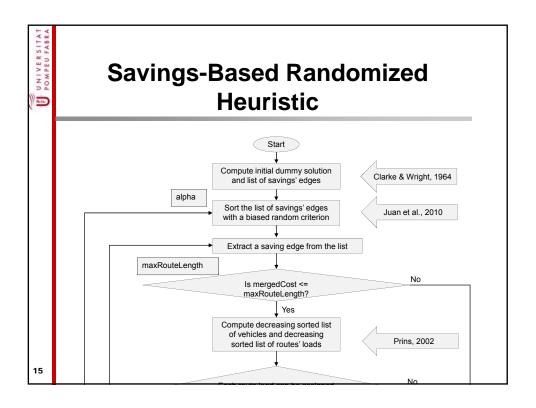
- Our approach will be based on the Clarke and Wright's savings (CWS) algorithm (Clarke & Wright 1964).
 - SR-GCWS-CS: SimoRouting Clarke and Wright's Savings with Cache an Splitting
 - * Reference: Juan, A., Faulin, J., Ruiz, R., Barrios, B., Caballe, S., 2009b. The SR-GCWS hybrid algorithm for solving the capacitated vehicle routing problem. Applied Soft Computing, 10, 215-224.

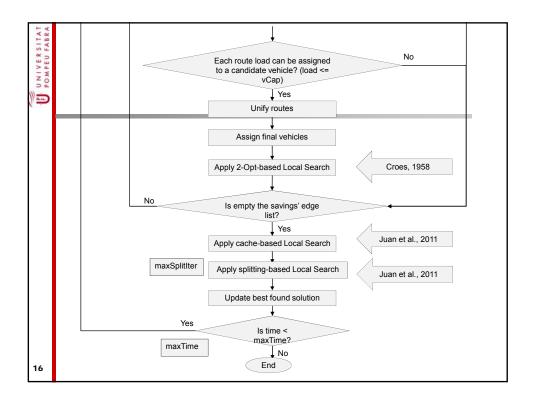

11

UNIVERSITAT

Savings-Based Randomized Heuristic

- ➤ CWS: the first edge (the one with the most savings) is the one selected.
- GCWS introduces randomness in this process by using a quasi-geometric statistical distribution
 - edges with more savings will be more likely to be selected at each step, but all edges in the list are potentially eligible.
- ► Cache method:
 - A hash table is used to save, for each generated route, the best-known sequence of nodes (this will be used to improve new solutions)




UNIVERSITAT

Savings-Based Randomized Heuristic

- Assign vehicles to routes
- Procedure TryToAssign to assign trips to trucks (Prins 2002)
 - When try to join to routes
 - Build a list of pair (route, capacity, vehicle) for the remaining routes;
 - Add the join route pair
 - Sort in decreasing order of vehicle load
 - Sort the vehicles in decreasing order of capacity
 - Assign vehicles to route
 - If no feasible assignment, the routes cannot be join.

UNIVERSITA POMPEU FABR

Computational Results

► Prins' instances

- Proposed in Prins (2002), these are twenty random instances, denoted as Prins_i (i = 1, 2,..., 20).
- Each instance contains 100 customers uniformly distributed in a 200 x 200 km² grid.
- Each customer's demand is uniformly distributed in [1, 100].
- The depot is placed at the center of the grid, and the maximum time allowed per route is 300 minutes (or 350 km at a speed of 70 km/h).
- The fleet is composed by k = 9 types of vehicles with $m_k = 2$ for all k = 1, 2, ..., 9.
- Each type of vehicle has a capacity given by Q_k = 600 − 50(k − 1).

17

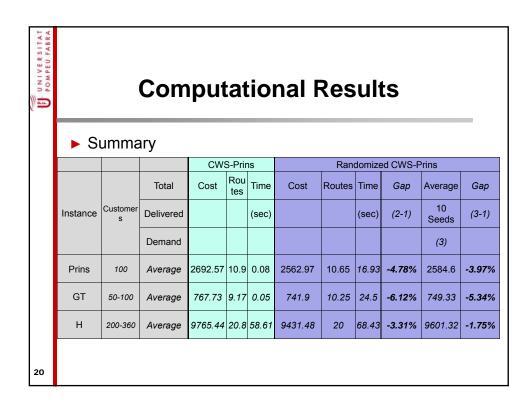
UNIVERSITA

Computational Results

► Golden et al. (1984)

- proposed 20 instances for the Fleet Size and Mix vehicle Routing Problem of different sizes
- Taillard (1999) defined the number of available vehicles of each type.
- the number of customers is in the range of 50 and 100.

Instance	Q_A	m _A	Q_B	m _B	Q_c	m _C	Q_D	m_D	Q_E	m _E	Q_F	m_F	%
GT_13	20	4	30	2	40	4	70	4	120	2	200	1	95.39
GT_14	120	4	160	2	300	1							88.48
GT_15	50	4	100	3	160	2							94.76
GT_16	40	2	80	4	140	3							94.76
GT_17	50	4	120	4	200	2	350	1					95.38
GT_18	20	4	50	4	100	2	150	2	250	1	400	1	95.38
GT_19	100	4	200	3	300	3							76.74
GT_20	60	6	140	4	200	3							95.92



UNIVERSIT

Computational Results

▶ Li et al. (2007): five large-scale HVRP instances, inspired by Golden et al., and denoted as Li_i, with i = 1,..., 5. Number of customers is between 200 and 360, and each case has a geometric symmetry with nodes located in concentric circles around the depot.

Instance	$\mathbf{Q}_{\mathtt{A}}$	m _A	Q _B	m _B	Q _c	m _c	\mathbf{Q}_{D}	m _D	Q _E	m _E	\mathbf{Q}_{F}	m _F	%
H1	50	8	100	6	200	4	500	3	1000	1			93.02
H2	50	10	100	5	200	5	500	4	1000	1			96.00
Н3	50	10	100	5	200	5	500	4	1000	2			94.76
H4	50	10	100	8	200	5	500	2	1000	2	1500	1	94.12
H5	50	10	100	8	200	5	500	1	1000	2	1500	1	92.31

► Grup Alimentari Guissona RESULTS

- 25 daily instances
- Fleet Composition of the Distribution Company

Vehicle Type	Q _k	m _k	MQ _k	AM _k	MQM _k
Α	222	8	1.776	1	1.776
В	414	5	2.070	1	2.070
С	482	139	66.998	2	133.996
D	550	3	1.650	1	1.650
E	616	6	3.696	1	3.696
F	676	3	2.028	1	2.028
G	752	4	3.008	1	3.008
Н	1.210	1	1.210	1	1.210
TOTAL		169	75.691		149.434

Real Application

► Grup Alimentari Guissona RESULTS

▶ Less 6551 Km in average a day!

		Compai Solutio	•	Р		aptation* + 2-opt)	**	Randomized Prins Adaptation*** + 10 seeds + 60 sec + 2-opt + Cache					
Instan ce*	AVE # Custo mers	Cost (1)	Rou tes	Cost (2)	Routes	Time (sec)	Gap (2-1)	Best Cost (3)	Routes	Time (sec)	Gap (3-1)	Gap (3-2)	
25	362	42006	159	35860	157	2.45	-16.38%	35455	156	34.27	-17.34%	-1.15%	

D NOIVERSITA

Real Application

► Grup Alimentari Guissona RESULTS

- Savings more than 17% daily with respect to the actual solutions.
- Savings of 1% compared with Prins Algorithm.
- The average number of routes were similar, with a small reduction for our solutions.
- Important saving in €!

23

POMPEU FABRA

Conclusions

- ► After 50 years research, VRP is still a relevant and interesting problem...
- ► Research should focus on solving real problems, they are more difficult than the classic well-known VRP.
- ► Heuristics and Metaheuristics are an excellent tool to solve real VRP.
- ► Companies require no fine-tunning or parameters to be set.

UNIVERSITAT

Future Research

- ► Heterogeneous Fleet Multitrip VRP
 - Improve the algorithm, in particular the truck assignment
 - Include time windows and cost function.
- ▶ Blood sample collection VRP
 - Interesting and relevant applications in Health Sector
- ► More VRP real applications (fashion industry)
 - MANGO
 - DESIGUAL
- ▶ vrp.upf edu (VRP in Google maps)