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Abstract

Economists have recently argued that time inconsistency may play a central role in explaining inter-

temporal behavior, particularly among poor households. However, time-preference parameters are typ-

ically not identified in standard dynamic choice models and little is known about the fraction of in-

consistent agents in the population. We formulate a dynamic discrete choice model in an unobservedly

heterogeneous population of possibly time-inconsistent agents motivated by specifically collected infor-

mation combined with a field intervention in rural India. We identify and estimate all time-preference

parameters as well as the population fractions of time-consistent and “näıve” and “sophisticated” time-

inconsistent agents. We estimate that time-inconsistent agents account for more than half of the pop-

ulation and that “sophisticated” inconsistent agents are considerably more present-biased than their

“näıve” counterparts. We also examine whether there are other differences across types (e.g. in risk and

cost preferences) and find that these differences are small relative to the differences in time preferences.
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1 Introduction

One of the constitutive tenets of standard neoclassical economics is that individuals pursue constrained

utility maximization. In models where agents take decisions over time, it is usually assumed that indi-

viduals maximize expected future utility flows under an intertemporal budget constraint. Such models

have provided invaluable insights in understanding economic decisions such as savings, asset allocation or

investment in health and education. On the other hand, a number of studies have proposed alternative

models to explain behavior that is hard to reconcile with standard models of individual optimization. Ex-

amples of such behavior are addiction, preference reversals in intertemporal choices and under-investment

in activities with apparent low cost and high expected returns.1 In several cases, insights from psychology

and behavioral economics have suggested that such behavior may be better explained by models where

individuals exhibit self-control or time inconsistency problems.

These theories have played an increasing role in explaining “inefficient” choices among poor indi-

viduals in developing countries, a context where such choices may have particularly dire consequences

(Mullainathan, 2004). In recent work, non-standard preferences displaying bias towards the present have

been proposed to explain poverty traps (Banerjee and Mullainathan, 2010), the existence of demand for

commitment devices in savings or health-protecting technologies (Ashraf, Karlan, and Yin, 2006; Tarozzi,

Mahajan, Yoong, and Blackburn, 2009; Tarozzi, Mahajan, Yoong, Blackburn, Kopf, and Krishnan, 2011)

and low demand for immunization and fertilizer (Banerjee, Duflo, Glennerster, and Kothari, 2010; Duflo,

Kremer, and Robinson, 2009).

Present bias is typically modeled assuming that preferences are characterized by “hyperbolic discount-

ing” (Laibson, 1997). In such models, the standard inter-temporally separable utility function is modified

so that, at each time t, future utility at time s (> t) is discounted not by the usual geometric factor δs−t

but by a factor βδs−t. As a consequence, while δ is the only discount factor entering the intertemporal

rate of substitution between any two future periods, the rate of substitution between current time t and

any future period also depends on β. This model generates a declining rate of time preferences and has

been used to explain the “preference reversal” that is commonly observed in laboratory experiments2 —

individuals choose a reward at date t over a larger one at date t+ s, but instead choose the later reward if

the two dates are shifted forward by an equal time period. Such choices are not consistent with standard

expected utility models.

A consequence of hyperbolic preferences is that an individual who maximizes intertemporal utility at

time t will have an incentive to deviate from this solution at time t+ 1, when the present bias will induce

an increase in consumption relative to what previously decided, even if no change in prices has taken

place. While such models promise to help in explaining the often observed inability of the poor to save or

invest even when the budget constraint would allow it, structural estimation of the discount factors that

characterize hyperbolic preferences is non-trivial.

In fact, time preference parameters are generically not identified in standard dynamic choice models

(Rust, 1994; Magnac and Thesmar, 2002). In this paper, we propose a dynamic discrete choice model

with unobserved types and time varying utilities, and provide identification results for all time preference

1See Frederick, Loewenstein, and O’Donoghue (2002) and DellaVigna (2009) for reviews.
2See Andreoni and Sprenger (2010) for an alternative explanation for these findings.
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parameters. We overcome the previous non-identification results in the literature (and allow for unobserved

types) by (i) adding more information in the form of elicited beliefs about state occurrences and elicited

responses to time preference questions and (ii) designing a product appealing to particular types of agent

and offering it for sale in a field intervention.

We first show that the model is identified and then estimate it to test several hypotheses of interest.

First, we ask whether time-inconsistent preferences provide a better fit for the data than alternative

proposed explanations. In particular, we examine alternative explanations that stress differences in per-

period utilities (e.g. Banerjee and Mullainathan, 2010, propose a model without hyperbolic time preferences

as an alternative to standard models of time-inconsistency) as well as information-based explanations. We

find that while per-period utilities do vary across agent types, they are not substantively important in

explaining outcomes in our sample. Second, we also identify and estimate the distribution of types in

the population which provides a quantitative measure of the importance of time-inconsistent agents in the

economy.3 We estimate that approximately 40% of the population from which our sample is drawn is time

consistent, while 50% are “näıve” inconsistent and the remaining 10% are “sophisticated” inconsistent.

Further, we find that “sophisticated” agents are considerably more present-biased than “näıve” agents.

This finding is possible because we show identification for separate hyperbolic parameters for each type.

In particular, we find that “näıve” agents have a hyperbolic parameter close to 1 and that in a set of

counterfactual simulations, “näıve” agent choices are similar to those made by consistent agents.

Finally, we can evaluate to what extent “sophisticated” agents are more likely to choose commitment

products by comparing the type distribution among product purchasers to that of the general population.

We find that commitment products are not particularly appealing to “sophisticated” agents and that the

purchase of these products is in fact higher among wealthier (and even “naive”) households. Note that this

finding contradicts a deterministic mapping from the take-up of commitment products into agent type. In

this latter framework, the choice of a commitment product reveals an agent to be “sophisticated.” One of

our key identification results allows product choice to only imperfectly predict type which in turn allows

for a much richer analysis of preferences.4

In drawing links to the extensive literature on time-inconsistency and on structural estimation with

unknown types we restrict ourselves here to work that is closest in spirit to our approach.5 Our work is

closely related to Fang and Wang (2010) who outline methods for estimating time preference parameters

by imposing exclusion restrictions on the standard model.6 In our context, elicited beliefs are a natural

candidate for such restrictions. Van der Klaauw (2000) and van der Klaauw and Wolpin (2008) use

information about expected future choices to improve precision in the context of a structural dynamic

models. Our work instead uses expectations about state transitions and focuses on using this information

to achieve identification. Our identification results are also closely related to Kasahara and Shimotsu

3See p.10 for a description of the types of agent considered. Briefly, “näıve” inconsistent agents do not take their fu-
ture present-bias into consideration while formulating their dynamic plans. In contrast, “sophisticated” inconsistent agents
incorporate their future present-bias in their planning.

4Previous work (e.g Fang and Silverman, 2009; Paserman, 2008) does not address these questions directly since agent type
heterogeneity is typically ruled out by assumption. In these models agents usually have identical (“sophisticated” inconsistent)
preferences. Fang and Wang (2010) also deal with identical preferences across agents but allow for partially “näıve” agents.

5See Aguirregabiria and Mira (2010) for a recent survey of work on dynamic discrete choice structural models.
6Our approach differs from theirs in that we allow for unobserved agent types who differ in both time-preference as well as

per-period utility parameters (though we do not allow for partially “näıve”agents).
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(2009), who consider an environment with unknown agent types. One way to understand the distinction

between our work and this previous work on identification of unobserved types in dynamic discrete choice

models is that we impose an exclusion restriction by requiring a variable that affects type probabilities but

not the choice probabilities.7 Our approach is also similar to Ashraf, Karlan, and Yin (2006) as we use

elicited time preferences to predict behavior and we design a product that should appeal to “sophisticated”

inconsistent agents. In addition, our estimation can be viewed as a structurally based field version of the

laboratory approach of Andersen, Harrison, Lau, and Rutström (2008) since we jointly estimate discount

and utility curvature parameters based on multiple price lists as well as elicited risk preferences.8

The paper is organized as follows. Section 2 provides an overview of the project design and data

collected. Section 3 outlines the basic elements of the dynamic discrete choice model with different types

and describes the model primitives in some detail. Section 4 provides the identification results for the model.

Section 4.1 contains results for the simple, but useful, case where observables reveal type completely while

Section 4.4 derives corresponding results for the more realistic case where type is only imperfectly observed.

Section 5 reports the results from a series of Monte-Carlo simulations detailing the finite sample properties

of the estimation methods that follow from the identification strategy. Sections 6–8 estimate the model

on the intervention data and report the results. Section 9 reports the results of a set of counterfactual

exercises and Section 10 concludes.

2 Data

The data used in this paper have been collected as part of the evaluation of a large-scale randomized

controlled trial (RCT) carried out in Orissa (India) between spring 2007 and winter 2009. The main

purpose of the study was the evaluation of alternative mechanisms of providing insecticide treated nets

(ITNs) on health and socio-economic outcomes of potential users. The broader project has been conducted

in 166 villages in five districts in state of Orissa: Bargarh, Balangir, Keonjhar, Kandhamal (Phulbani),

and Sambalpur. Figure 1 shows the location of the districts within India. Orissa is the most highly malaria

endemic state in the country: despite containing less than 4% of India’s population, Orissa accounts for

25% of reported malaria cases, 40% of P. falciparum malaria, and 30% of malaria-related deaths (Kumar,

Valecha, Jain, and Dash, 2007, citing figures from the Indian National Vector Borne Disease Control

Programme). Study locations were selected randomly from a list of 878 villages provided by our local

partner, Bharat Integrated Social Welfare Agency (BISWA), a micro-lender with a large presence in Orissa

and elsewhere in India.9 This paper uses data collected in a randomly determined subset of 47 villages

where, in the fall of 2007, BISWA offered all it’s clients the opportunity to purchase high quality ITNs on

credit, with repayment over one year.

A baseline, pre-intervention survey of 627 randomly sampled households was carried out in March-

April 2007. Households were selected from client rosters provided by BISWA. In each village, up to 15

households were selected at random from these lists, while interviews were attempted with all households

7In contrast, Kasahara and Shimotsu (2009) do not impose such exclusion restrictions, placing assumptions instead on the
length of the panel available to the researcher.

8The risk preferences measures are based on Holt and Laury (2002). This “dual elicitation” is referred by Andreoni and
Sprenger (2010) as the Double Multiple Price List approach.

9For more information about BISWA see www.biswa.org.
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in villages with fewer than 15 listed clients. Between September and November, 2007, all villages were

exposed to a short but intensive community-based information campaign (IC) about the importance and

rationale for ITN use, advice on proper use and retreatment, and a clear explanation of the micro-loans

offered for ITN purchase.10 BISWA clients were not offered money to be used for ITN purchase, but they

were offered the opportunity to purchase as many ITNs as they wished, choosing one of two alternative

loan contracts (described in detail below). Net distribution and recording of loan contracts for BISWA

members who decided to purchase were completed 2–3 days after the IC. The time interval between the IC

and the purchase decision was introduced to ensure that the households had an opportunity to consider the

offer carefully. A second visit was scheduled approximately one month later, and nets were offered again

with the same contracts. No further ITNs were offered after this second visit was completed. The first net

re-treatment was completed approximately six months after the ITN sale, in March–April 2008, while the

second and final retreatment took place approximately another six months later, in September–November

2008.

Two alternative contracts were offered to BISWA clients. With the first offer (referred to as C1

henceforth), single (double) nets were sold on credit for Rs. 173 (223), and repaid with twelve monthly

installments of Rs. 16 (21).11 Nets were immediately treated with insecticide, with a chemical concentration

that makes re-treatment optimal after approximately six months. Survey personnel would re-visit the

villages after six and twelve months and offer retreatment for Rs. 15 (single) or Rs. 18 (double). With

the second offer (referred to as C2 henceforth), the household purchased not only the treated net but also

a sequence of two re-treatments. The price in this case was Rs. 203 (259), to be paid as twelve monthly

installments of Rs. 19 (23). With this second option, no cash payment would be required for re-treatment

as the price of the chemicals was already included in the loan amount. In all cases, the interest rate was the

standard annual 20 percent charged by BISWA. BISWA microcredit operations are based on group lending:

loans are offered to borrowers organized in small self-help group averaging 15 members. Each member is

responsible for the repayment of all loans granted to the group, which diffuses responsibility to all group

members. There is no collateral for the loans, but (as is standard in micro-finance) defaulting borrowers

were informed that they would be denied further loans from BISWA. Default is only determined at the

end of the loan period, so clients are allowed some flexibility in the repayment schedule. For instance, a

borrower may miss a few monthly repayments during the “lean” agricultural season while paying current

and past dues after the harvest, and early repayments are allowed.

Table 1 show summary statistics for the households sampled from the 47 villages where ITNs were

offered on credit. Mean monthly total expenditure per head is approximately twice as large as the official

10The ITNs offered within our intervention are composed of white polyester multifilament, mesh size 156, and 75 denier.
The nets have bottom reinforcement of 28 cm, and single nets are 180×150×100 cm; double nets are 180×150×160 cm. The
nets have been supplied by Biotech International Limited and observations in the field suggest that they were of significantly
higher quality than the bednet usually available in local markets. Nets were treated with the insecticide K Othrine flow,
which contain deltamethrin, a highly effective pyrethroid. Pyrethroids have been widely used for bednet impregnation with no
evidence of serious short or long term negative side-effects on human health. The first treatment of the nets supplied, as well
as the subsequent retreatments, followed rules recommended by the World Health Organization (World Health Organization,
2002).

11For perspective, note that daily wages for agricultural labor in the area are around Rs. 50 and the price of one kilogram
of rice is approximately Rs. 10. The official rural poverty line for Orissa in 2004–5 was Rs. 326 per person, per month
(Government of India, 2007).
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poverty line for rural Orissa in 2004–5.12 The nets sold through our program were relatively expensive: for

instance, a purchase of three nets (typically required to cover all household members) would require total

payments close to mean per capita monthly expenditure. Existing net ownership was not uncommon, with

a mean of one bednet every three persons, although one third of households did not own any net. Treated

net ownership was minimal, with only 0.06 ITNs per head on average. 16% of individuals slept under a

net the night before the survey, and the corresponding figure was 3% for ITNs. Reports about bednet

use the night before the interview are unlikely to suffer from significant recall bias. On the other hand,

the baseline survey was completed during the hot and dry season, when mosquitoes are less of a nuisance

and malaria rates are relatively low. For this reason, we also asked about bednets use in periods of high

mosquito activity. During such periods, more than half of the members are reported as sleeping “regularly”

under a bednet. Note, however, that the vast majority of nets in the area are not treated with insecticide,

so that even during the mosquito season the protective power of the available nets remains suboptimal.

Fingerprick blood testing was also completed for a sample of household members and the results show high

prevalence of malaria (11 %) and anemia (46 %), with the latter defined here as occurring when hemoglobin

levels were below 11g/dl.13 Given that the baseline survey was completed during the dry season, malaria

prevalence was expected to be even higher during the rainy and post-monsoon season, a result confirmed

in the winter 2008–9 follow-up survey. The next rows of Table 1 show that respondents were aware of the

role of mosquitoes in transmitting malaria as well as of the high economic cost of malaria episodes.

Awareness about the protective power of bednets is also reflected in the beliefs elicited directly from

respondents. This was done by asking respondents to hold up a number of fingers increasing in the

perceived likelihood that an event will happen, with no fingers representing “no chance” and ten fingers

indicating certainty. We then estimated subjective probabilities by dividing the number of fingers held

by ten.14 Given that most respondents are illiterate and unfamiliar with the concept of probability, the

interviewer discussed first hypothetical examples of certain and uncertain events to explain the rationale.

At baseline, the survey instrument included questions about the probability for an adult, a child under the

age of six (U6) or a pregnant woman (PW) of contracting malaria in the next year depending on whether

the individual slept regularly under an untreated net, an ITN or no net.15

The graphs in Figure 2 show the distribution of elicited beliefs of falling sick with malaria within one

year for individuals who sleep regularly under a treated bednet (top row), an untreated net (middle) or

12Household expenditure was measured asking about usual consumption of eighteen broad item categories, including self-
production.

13Malaria infection and hemoglobin levels were measured via fingerprick blood specimens requiring less than 0.5ml of blood.
Consent was requested to measure malaria infection and hemoglobin levels for all pregnant women, all children aged 5 and
under (U5) and their mothers and one randomly selected adult (age 15-60). Malaria infection was determined using the Binax
Now malaria rapid diagnostic test (RDT). This RDT is well validated internationally in comparison to blood smears (Moody,
2002) and provides accurate diagnosis for current or very recent (2 to 4-week) malaria infection. The test is particularly
accurate for the most severe form of malaria, caused by P. falciparum, and it can distinguish the infecting Plasmodium species
to some extent. Hemoglobin levels were tested with the HemoCue 201 hemoglobin analyzer (a portable, accurate system
for measuring hemoglobin). Results are available within about 15 minutes for these tests and communicated directly to the
participants.

14Note that we do not attempt to measure ranges of probability, so that our data do not allow to identify the degree of
uncertainty around the reports.

15For instance, one question asked: “imagine first that your household [or a household like yours] does not own or use a bed
net. In your opinion, and on a scale of 0-10, how likely do you think it is that a child under 6 that does not sleep under a bed
net will contract malaria in the next 1 year?” Questions for different demographic groups and bednet use were asked using
analogous wording.
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who do not use a net (bottom). Beliefs are very similar for individuals who belong to different demographic

groups. Importantly, both bednets and re-treatment with insecticide appear to be widely recognized as

very effective at reducing malaria risk. The histograms also show that a majority of elicited beliefs are

concentrated over the focal figures 0, 5 and 10. About three quarters of respondents believe that if nets

are not used one will certainly get malaria, and approximately the same fraction believes that regular use

of treated nets will virtually wipe out all risk. According to about half of respondents, there is instead a

50% chance of developing malaria if an untreated net is used. On the other hand, there remains a degree

of variation in the beliefs which can be exploited in the structural estimation that will follow in Section 3.

The baseline survey instrument also included twelve questions intended to gauge respondents’ intertem-

poral preferences and the extent of time inconsistency in these preferences. In a first group of four questions,

the respondent choose between an actual Rs. 10 sum to be paid one month later and an equal or larger

sum (Rs. 10, 12, 14 or 15) to be paid four months later. In a second group of questions the choice was

between Rs. 10 one month later and Rs. 10, 15, 20 or 25 seven months later. Finally, in a third set of

questions the same rewards described for the first group were offered, but with time horizons shifted by

three months.16 Standard expected utility models imply that if a respondent prefers, say, Rs. 15 four

months later to Rs. 10 paid a month from today, s/he should also prefer Rs. 15 paid seven months in the

future to Rs. 10 paid three months in the future. We interpret preference “reversals”, whereby the former

is true but the choice is reverted for the later rewards, to signal a form of inconsistency in time preference

consistent with hyperbolic discounting.17 In Table 2 we summarize the findings. As expected, in each

group of four questions, the fraction of individuals who prefers the earlier and lower reward decreases when

the time horizon of the later reward remains the same but the reward increases. Approximately one third

of respondents exhibit at least one “hyperbolic preference reversal.”

Table 3 includes a summary of the results of the ITN sale, completed in September–November, 2007.

Slightly more than 50 percent of sample households purchased at least one net on credit (330 of 621). Of

these, 153 chose to purchase only ITNs, while 165 opted for the “commitment” product which also included

in the price the cost of two re-treatments. Only twelve buyers purchased contracts of both types. Among

the buyers, the mean number of ITNs purchases was close to two, regardless of the contract type chosen.

Panel (B) of Table 3 shows that fewer than 3% chose to purchase ITNs for cash rather than on loan and

we will not focus on these purchases.

3 Model

The agent chooses three actions over the time period of the project. In the first period, the agent chooses

whether to purchase a net, and if so the type of contract. In the second period, the malaria status of the

household is realized following which the agent chooses whether to re-treat the net. Then, in period three

16Interviewers told respondents that one of the twelve chosen rewards, selected at random, would be paid by our micro-lender
partner BISWA at the chosen time horizon. In practice, to avoid logistical difficulties, we decided to pay immediately the
selected reward at the end of the interview (we find no evidence that the responses varied for households interviewed at later
times). Note also that all options entailed rewards to be paid at least one month later. This was done so that choices would
not depend on issues of trust, issues which were also likely to be made less relevant by the fact that all respondents belonged
to households with at least one BISWA client.

17However, see Rubinstein (2003) or Andreoni and Sprenger (2010) for an alternative view.
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malaria status is realized and then the agent chooses whether to re-treat again. Period 4 is the terminal

period and the agent takes no action in that period. We begin by defining and placing standard assumptions

on the state space, the action space, the transition probabilities, the class of acceptable decision rules and

finally the preferences and objective function the agent maximizes.

3.1 Primitives

State Space: St
The state space St can be partitioned as St ≡ (Xt, Et) where the first element denotes the domain of the

observed (to the economist) state variables and the second element denotes the domain of the unobserved

state variables. In the empirical work we allow for a rich observable state space (including income, prices

and other characteristics), but to focus attention on the key parts of the identification argument we simplify

the state space in the exposition to the bare minimum.18

In period one, x1 ∈ X1 is a binary variable equal to one if the respondent reported at least one case of

malaria in the household in the past six months. In periods 2 and 3, xt ∈ Xt takes on six possible values.

We denote the possible values by (nm, nh, bm, bh, cm, ch) where the first lower case letter in each state

value records whether the agent did not purchase a net (n), purchased a net using the first type of contract

C1 (b) or purchased a net using the commitment contract C2 (c). The second letter captures whether

anyone in the agent’s household suffered from malaria in the last six months with m denoting someone

had malaria and h (“healthy”) denoting that no-one contracted malaria.19 In the sequel it will be useful

to define the sets XC ≡ {ch, cm} and XB ≡ {bh, bm} that partition Xt depending upon the first period

purchase decision.

As commonly assumed in dynamic discrete choice models, the vector of unobservables εt ∈ Et has

dimension equal to the number of actions available to the agent in period t. Such variables will represent

a stochastic, choice-specific component in the utility function that is known to the agent but unobserved

by the econometrician. In addition, we assume that the support of each element of εt is the entire real line

although in the notation below we are somewhat informal and imply positive point probabilities for εt.

We can allow for a much richer discrete state space where, for instance, we keep track of the fraction of

household members that are healthy in each period. The identification arguments remain the same and are

presented in detail in Appendix B but for ease of exposition we present a simplified version of the model

in the text.

Action Space: A
The action space in period one (A1) has three elements denoted by (n, b, c), which are defined as above.

In periods 2 and 3 (t ∈ {2, 3}), the action space is At = {0, 1}, where 0 denotes that the agent did not

re-treat a net and 1 denotes that an agent did re-treat the net. Note that if an agent did not purchase a

net in period 1, she cannot take any more actions. Finally, we do not observe the state of the world in the

18Appendix B contains details on the identification argument with a general discrete state space and Appendix D contains
details on the construction of the state space for the empirical model.

19The state space can be easily extended so that agents keep track of their entire history of malaria. The current specification
is a convenient short-cut and is also undertaken for tractability since in the sequel we will consider a first-step non-parametric
estimator at each point of the state space.
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terminal period and the agent takes no action in this period.

In Appendix B, we generalize the model to allow for more than two or three actions in each period.

This would be useful for instance if we viewed the decision as being about the number (or fraction) of

household members that can be covered with an ITN. The general arguments in this case are very similar

and so we discuss the simpler action space in the main text.

Transition Probabilities: P(st|st−1)

Let P(st|st−1) denote the distribution function of the random vector st conditional on st−1 and refer to it as

the transition probability distribution. We make the standard assumption that the transition probabilities

are Markov (see e.g. Aguirregabiria and Mira, 2010) in the sense that

ASSUMPTION 1.

P(st|st−1, ..., s1, at−1, ..., a1) = P(st|st−1, at−1) (1)

where P(st|st−1, at−1) is the conditional distribution of the random variable st given st−1 and at−1. This

assumption along with the simplest definition of the state space as above rules out for instance the pos-

sibility that the probability of malaria infection in period 3 depends on malaria status in the first period

given malaria status in the second period and the retreatment decision in period 2. Incorporating such

dependencies is possible by suitably redefining the state variable at t to contain the complete malaria

history up to t.

In addition we assume, as is standard, that the vector of unobservables εt is independently distributed

across time. This rules out serially correlated unobserved heterogeneity, such as if agents’ decisions were

driven by shocks (to income for instance) whose effects may last for multiple periods. We address this

in two ways. First, we allow for time-invariant unobserved heterogeneity by allowing for different types

of agents with different preferences. Second, we include a number of observed variables, such as income,

in the state space. The hope is that these two approaches (expanding the state space and allowing for

unobserved types) will minimize the extent of serially correlated unobserved heterogeneity.

We also assume that εt is independent of the whole path of observable state variables {xt}Tt=1 and also

independent of {as}t−1
s=1. This rules out for instance direct feedback from current shocks to future state

variables: for instance, if a positive shock today leads to the household not only purchasing nets but also

investing in other health improving technologies that reduce the likelihood of malaria incidence in the

future. We deal with this limitation by trying to include a comprehensive set of state variables directly

modelling their evolution over time (see Appendix D for more details).

ASSUMPTION 2.

P(xt, εt|xt−1, εt−1, at−1) = P(xt|xt−1, at−1)P(εt), (2)

where the distribution of the vector εt is absolutely continuous on the real line (w.r.t. Lebesgue measure),

known and has mean zero. The dimension of εt is equal to the number of elements in At.

Beliefs

Our data contains detailed information on subjective beliefs about the risk of contracting malaria elicited

from respondents. Specifically, for each household we elicit the perceived probability of malaria infection

9



within a year for a person never sleeping under a net, sleeping regularly under an untreated net, and

sleeping regularly a treated net. Let these perceived probabilities be denoted by π, π − φ and π − φ − γ
respectively so that φ and φ + γ measure the perceived protection offered by nets and ITNs respectively.

Define the vector of beliefs z ≡ (π, φ, γ). In addition, we also collected post-intervention beliefs in the

follow up survey. These allow us to directly evaluate the extent of belief evolution and to incorporate

it into the model. This is potentially important since it allows us to explicitly incorporate issues about

learning into the dynamic choice process. The empirical section describes our approach to modelling the

evolution of beliefs in greater detail.

However, to simplify exposition and focus attention on the key elements for identification, we assume

here that agents’ beliefs stay constant over time. This is only a convenient simplification and the identifi-

cation results remain unaffected by its weakening. In general, incorporating observable time varying beliefs

will not hinder identification. In this special case, we can construct individual level transition probabilities

P(xt|xt−1, at−1) for each period using just baseline beliefs. In the sequel, we denote the transition proba-

bilities as P(xt|xt−1, at−1, z). For instance, the probability of malaria infection in t = 3 for an individual

who had malaria in the previous period and who is using regularly a treated net purchased with contract

b, is P(x3 = bm|x2 = bm, a2 = 1; z) = π − φ− γ. Note, however, that the transition probabilities could be

represented by more complex functions of the beliefs z depending on the richness of the state space. For

instance, in the example above, this would be the case if x3 denoted the fraction of members with malaria

in a household.

Decision Rules: dt

The decision rule in period t, dt, is a mapping from St to At. Note that we do not allow history dependent

decision rules in the sense that we do not allow decision rules to be mappings from
∏t−1
s=1(Ss,As) × St to

the action space. However, given the Markov property for the transition probabilities and the assumptions

on preferences below, the optimal decision rule will indeed be a deterministic function only of the state

variable.

Types and Preferences

The central objective of this paper is to assess the present-bias explanation for low technology adoption. As

is standard, we assume that preferences are additively time-separable, and parameterize time inconsistency

using the tractable (β, δ) formulation described in Strotz (1955).20 Then, for a given sequence of actions

{at}3t=1, the utility21 of an agent of type τ is:

ũt(st, at, τ) + βτ

T∑
j=t+1

δj−tEt(ũj(sj , aj , τ)) (3)

We allow for 3 different types of agents. Following O’Donoghue and Rabin (1999), time consistent agents

(τ = τC) have βτC = 1, which corresponds to the standard case of exponential discounting. Such agents

will maximize (3) using standard dynamic programming methods (backward induction in this finite horizon

20This is certainly not the only possible formulation: see for instance Gul and Pesendorfer (2001, 2004). However, empirical
implementations of time-inconsistency have worked almost exclusively using the (β, δ) formulation.

21With the understanding that in the terminal period AT = ∅
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case). We also allow for the existence of two types of time-inconsistent agents, for whom the hyperbolic

parameter β is below one. Both types of time-inconsistent agents are aware of their current present-bias, but

they differ in whether they recognize the present-bias their future selves will be subject to. time-inconsistent

“sophisticated” agents (τ = τS) will use backward induction to solve the maximization problem, but do so

while recognizing their future present bias. On the other hand, time-inconsistent “näıve” agents (τ = τN )

ignore the present-bias of their future selves in their computations. For the economist, these differences

will generate key identification issues that we address below.

Importantly, the formulation in (3) allows for type-specific per-period utilities ũt(·, τ). This flexibility

is important since it allows us to examine how much of the difference in behavior across types can be

attributed to different preferences over states and how much to the differing extent of present-bias (and its

recognition). This nests the typical model where types only differ in the degree of present-bias so that we

can provide a quantitative judgement (using a standard goodness of fit test) of the relative strength of the

present-bias explanation for observed behavior. In particular, we can compare the hyperbolic explanations

for observed behavior against alternative explanations (e.g Banerjee and Mullainathan, 2010) in a coherent

fashion. In sum, types differ in their degree of present-bias, preference structure as well as in their solution

to the utility maximization problem and we can test to what extent these differences help explain observed

behavior.

Finally, we assume that within each period, utility is additively separable in the unobserved state

variables. Formally, and recalling that no action is taken in period 4:

ASSUMPTION 3. For each type τ ∈ T where T = {τC , τS , τN} the utility function in period t ∈ {1, 2, 3}
is given by

ũt(st, at, τ) = ut(xt, at, τ) + εt(at)

and utility in the terminal period is given by u4(x4, τ).

In general, time-varying observed characteristics will be included as state variables. The transition

probabilities for such variables will be generated using elicited beliefs for variables for which we collected

such information (malaria incidence, income) and by invoking a rational expectation assumption for vari-

ables for which we have no belief information. In addition to the state variables, per-period utility can

also be a function of time-invariant characteristics (e.g. education level of the household head) that we

collectively refer to as v. Since these play no role in the identification, we omit them as arguments in

preferences from now on. The empirical section contains a discussion of which variables are included in v

for the estimation.

3.2 Observed versus Unobserved Types

We consider both the case where types are directly observed as well as the case where types are not

observed. While the second model is more general, the identification arguments for it require showing

identification for the directly identified types case, so it is useful to discuss both cases.

11



In both cases, we use two important pieces of information from the intervention: first, we collect in-

formation about whether individuals exhibit preference reversals in a series of questions designed to gauge

the extent of consistency in time preferences. In previous work we have shown that these reversals are

important predictors (in a reduced form sense) of subsequent decisions about bednet re-treatment (Tarozzi,

Mahajan, Yoong, and Blackburn, 2009). Agents who exhibited at least one preference reversal are refer-

enced by the binary variable r = 1 and agents who exhibit no preference reversals have r = 0. Second,

we designed a contract that should appeal to “sophisticated” time-inconsistent agents, and agents who

purchased these contracts provide us some additional information on their type.

directly identified types

In the directly observed types case, we use both these pieces of information to directly identify three types

of agent. Agents with r = 0 are classified as time consistent and agents with r = 1 are classified as

time inconsistent. Further, agents with r = 1 and who purchase the “commitment” product (a1 = c) are

classified as time-inconsistent “sophisticated” types and agents with r = 1 and a1 = b are classified as

time-inconsistent “näıve” agents. time-inconsistent agents who do not purchase a net (a1 = n) can be

either “näıve” or “sophisticated”, but we cannot directly assign these labels to them. We discuss identifi-

cation of their type in greater detail in Section 4.3 below. Note that since the state variable xt for t > 1

includes the choice of product in period 1, “sophisticated” and “näıve” types will have mutually exclusive

state spaces which we denote by XC ≡ {ch, cm} and XB = {bh, bm} respectively.

unobserved types

In this case, the economist does not directly observe the type of any individual. We assume instead that

the variables (r, a1) are only imperfect proxies, as is likely the case. For instance, an agent may choose

r = 1 due to an imperfect understanding of the choices offered rather than genuine time inconsistency.

Alternatively, an agent who expects sufficiently high income at the time of re-treatment may not choose

the commitment product regardless of time-inconsistency. In principle, the same decision not to commit

could also depend on low perceived benefits of re-treatment. However, we will show that this is not a

concern for identification to the extent that such perceptions are reflected in agent’s elicited beliefs.

We next discuss identification of the model in case where types are directly observed, and then for the

general case where types are unobservable.

4 Identification

4.1 Identification: Directly Observed Types

We observe an i.i.d. sample on ({a∗t , xt}T−1
t=1 , w) where {a∗t , xt}T−1

t=1 are the optimal actions and realized

states of the world and w = (z, r, v) denotes a vector of agent specific variables measured at baseline (for

the exposition here we set T = 4). These comprise the agent beliefs z ≡ (π, δ, γ) described in Section 3, the

binary variable r equal to one in the presence of preference reversals, and other household characteristics

v. To ease notation and because we do not use them for identification, we ignore the characteristics v in

the subsequent discussion.
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The key starting point for identification are the type-specific choice probabilities Pτ (a∗t = a|xt, z). For

t > 1, for agents who purchase a product, these type-specific probabilities are directly identified from the

observed choice probabilities P(a∗t = a|xt, z, r) since the type is a deterministic function of the observed

variables r and the contract choice is an element of xt. Formally,

ASSUMPTION 4. Choice probabilities for types that purchase a product are directly observed. In par-

ticular, for a time consistent agent

PτC (a∗t = a|xt, z) = P(a∗t = a|xt, z, r = 0).

For a “näıve” time-inconsistent agent

PτN (a∗t = a|xt, z) = P(a∗t = a|xt, z, r = 1) for t > 1 and xt ∈ XB

Finally for a “sophisticated” time-inconsistent agent (for t > 1)

PτS (a∗t = a|xt, z) = P(a∗t = a|xt, z, r = 1) for t > 1 and xt ∈ XC

4.2 Backward Induction

We discuss identification using a backward induction argument. Since no action is taken in period 4, we

begin by examining choice in period 3. In period 3, if the agent has previously purchased a net, s/he will

choose to re-treat it if the expected gains from doing so outweigh the costs, that is, if

ũ3(s3, 1, τ) + βτδ

∫
u(s4, τ) dF(s4|s3, 1, z) > ũ(s3, 0, τ) + βτδ

∫
u(s4, τ) dF(s4|s3, 0, z)

where dF(s4|s3, a3, z) denotes the distribution function for the state variable in period 4 (s4) conditional

on the state of the world s3, the action a3 and beliefs z ≡ (π, δ, γ). Recall that at time t = 3 the action a3

is binary and equal to one if the agent decides to re-treat the net. Under Assumptions 2 (independence),

3 (additive separability) and 4 (directly observed types) we can write

Pτ (a∗3 = 1|x3, z) = G∆

(
u3(x3, 1, τ)− u3(x3, 0, τ) + βτδ

∫
u(x4, τ)(dF(x4|x3, 1, z)− dF(x4|x3, 0, z))

)
G∆ is the distribution of ε3(0) − ε3(1) which by assumption is known and has support over the real line.

The expression dF (x4|x3, 1, z)− dF(x4|x3, 0, z) denotes the difference in the state probability functions as

a result of retreating the net (formally, it is a finite signed measure obtained by differencing the two action

specific measures). Note that we have assumed that the data is generated in period 3 by agents exhibiting

present-bias in the sense that the discount rate applied to the next period is βτδ. However, we allow for

time-consistent preferences as well, because in principle βτ could be equal to one for some sub-population

of agents. Next, we can invert this relation above to obtain the identified function (see Appendix C)

gτ,3(x3, z) = u3(x3, 1, τ)− u3(x3, 0, τ) + βτδ

∫
u(x4, τ)(dF(x4|x3, 1, z)− dF(x4|x3, 0, z)). (4)
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We then explore which of the unknown elements on the right hand side – the utility functions and the

discount rates – can be identified using knowledge of the function gτ,3(·). We use the specifics of the

study design to place more structure on the transition probabilities. This has the advantage that for the

application at hand we can obtain identification by making fewer (and more reasonable) normalizations.

However, all the results stated below can be derived without the additional structure on the transition

probabilities, and indeed all that is required is sufficient variability in the beliefs. In Appendix B we derive

the identification results for the discrete state space, finite horizon case with a general structure on the

transition probabilities. We omit that discussion here to focus on the empirical issue at hand.

ASSUMPTION 5. Let XB ≡ {bm, bh} and XC ≡ {cm, ch} be subsets of the state space Xt for t > 1.

Let a1 ∈ {n, b, c} denote the purchase decision in period 1. Then the transition probabilities from states t

to t+ 1 can be written as:

P(xt+1 = nm|xt, a1 = n,wt) = π for xt ∈ {nm, nh}

P(xt+1 = x|xt, at, a1 ∈ {b, c}, wt) = π − δ − γat for (x = bm, xt ∈ XB),(x = cm, xt ∈ XC).

This assumption rules out changes in beliefs over time but, as we pointed out earlier, this is not important

for identification. We assume time-invariant beliefs as a simple starting point because first, we do not

directly observe beliefs at each point in time (only at two points) and second, observed time-varying beliefs

would in general strengthen identification since the assumptions on variation in beliefs (explicated below)

would probably be more credible.

However, we do observe beliefs at the end of the project (i.e. in period 3) and we use these two sets

of beliefs to estimate a (parametric) model for their evolution, which is therefore taken into account in

the empirical work. In particular, for our empirical example, changes in beliefs are important to incorpo-

rate into the analysis as agents may be learning about the efficacy of ITNs once they acquire them and

correspondingly updating their beliefs. Finally, note that no re-treatment is possible if a1 = n (i.e. the

no-purchase decision leads to an absorbing state) so that the model assumes that net ownership cannot

change after t = 1 (which is consistent with the data).

Using Assumption 5, the forward looking component of equation (4) (the integral) is a linear function

of the belief variable γ. This allows us to use particularly simple variation in beliefs to identify some of

the key unknown objects in (4). To ease notation, in what follows, given two sets A,B, B ⊂ A, let A\B
denote the elements of A that do not belong to B. Then:

ASSUMPTION 6. The distribution of γ conditional on (x3, w\γ) has at least two points of support.

This assumption requires that beliefs have sufficient residual variation even after conditioning on all state

variables. This assumption would fail if, for instance, beliefs were perfectly predictable using state variables.

In general, it seems most plausible when beliefs contain private information that affects (in this case) agents’

susceptibility to illness. In the context of the ITN study, elicited beliefs showed considerable variation even

after controlling for observables.

We can then state the first identification result directly.

LEMMA 1. Consider an agent of type τ solving at t = 1 the problem (3), and that Assumptions 1–6

hold. The economist observes an i.i.d. sample on ({a∗t , xt}T−1
t=1 , w). Then,
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1. The utility differentials u3(x3, 1, τ)− u3(x3, 0, τ) are identified for xt ∈ XB ∪ XC

2. The object βτδ
∫
u4(x4, τ)(dF(x4|x3, a3 = 1, z)− dF(x4|x3, a3 = 0, z)) is identified.

This result describes sufficient conditions for the identification of the change in utility at time 3 associated

with retreatment. The proof is in Appendix A and the key insight is equation (4). The underlying

differences in latent utilities in this equation has a forward looking component that depends upon beliefs

(γ). This component is additively separable from the penultimate period utility differential which can then

be identified by using the variation in beliefs.22 In addition, we assume (as is the case in our data) that at

least some of the time consistent agents purchase product b and further that the utility differential from

avoiding malaria in period 4 (conditional on exogenous household characteristics) is the same for both

“näıve” and time consistent agents. The last assumption is restrictive but we do allow for considerably

more variation in utilities by type than considered in the previous literature which usually assumes that

agents have the same per-period preferences for all time periods.

ASSUMPTION 7. Some time consistent agents choose to purchase product b and, in addition, u4(bh, τC)−
u4(bm, τC) = u4(bh, τN )− u4(bm, τN ).

This assumption, along with the previous results, allows us to identify the hyperbolic parameter for “näıve”

inconsistent agents. Note that one could carry out a similar exercise if some time consistent agents also

purchased the commitment product. However, we do not follow this approach since in subsequent sections

we will separately examine these agents as potentially distinct types. Although the equality of utility

differentials between the two types at time t = 4 cannot be tested, we show that separate differentials can

be estimated for t = 1, 2, 3, so that the restrictiveness of the assumption can be informally gauged looking

at these other identified differences.

LEMMA 2. Consider an agent of type τN solving at t = 1 the problem (3) and that Assumptions 1—7

hold. Then, the parameter βτN is identified.

We next consider identification of utility differentials in t = 2. The arguments here are very similar to

those in the previous step. In addition to the utility differentials, we also identify the exponential discount

rate (δ) as well as the remaining hyperbolic parameters (βτC , βτS ). First, using the same inversion argument

as before we can identify the type-specific function gτ,2(x2, z) where

gτ,2(x2, z) = u2(x2, 1, τ)− u2(x2, 0, τ) + βτδ

∫
v∗τ,3(s3, z)(dF(s3|s2, 1, z)− dF(s3|s2, 0, z)) (5)

and v∗τ (s3, z) is the type-specific value function (defined in Appendix A) incorporating the forward looking

aspect of the problem. The key to the identification argument, as before, is noting that beliefs (γ) enter

only the last part of the expression above (which in turn can be simplified considerably using the results

from Lemma 1 and Lemma 2). As usual, we will need to have sufficient variation in beliefs conditional on

other state variables and other agent characteristics. These assumptions can be verified directly so that

their appropriateness is easily judged. Formally,

22See Fang and Wang (2010) for identification in dynamic models with exclusion restrictions in the transition probabilities.
The explicit elicitation of beliefs here provides a natural candidate for exclusion restrictions, because beliefs do not enter the
per-period utility function.
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ASSUMPTION 8. The distribution of γ conditional on (x2, w\γ) has at least two points of support

(denoted γ1 and γ2). Also,

1. For the identified quantity
∫
v∗τC ,3(s3, z) dF∆(s3|x2, z).∫

v∗τC ,3(s3, z) dF∆(s3|x2, z\γ, γ2) 6=
∫
v∗τC ,3(s3, z) dF∆(s3|x2, z\γ, γ1)

2. For the identified function H(x2, z)
23

H(x2, z\γ, γ1)−H(x2, z\γ, γ2) 6= 0

Next, we need to make a standard normalization and assume that utility in all states of the world is

known for a reference action (see e.g. Magnac and Thesmar, 2002). In particular, we assume that utility

levels when the net is not retreated are known for all types.

ASSUMPTION 9. We normalize utility levels by assuming that u3(x3, 0, τ) is known ∀x3 ∈ X3, τ ∈ T .

Alternative normalizations are possible and discussed in subsequent sections. We can then state the

identification result for utility differentials in period 2.

LEMMA 3. Consider an agent of type τ solving at t = 2 the problem (3) and that Assumptions 1–(9

hold. Then, the utility differentials u2(x2, 1, τ) − u2(x2, 0, τ) are identified for all x2 ∈ X2. In addition δ

and the hyperbolic parameter βτS are identified.

Therefore, under the assumptions stated above, we have now identified all the time-preference parameters.

To recapitulate, there are three key features in the study design that enable us to identify the exponential

parameter δ and the type-specific hyperbolic parameters {βτ : τ ∈ {τS , τN}} separately. First, we use

baseline responses to a time discounting question to classify agents as time-inconsistent. Second, the

experimental intervention offered a product designed to be attractive to “sophisticated” time-inconsistent

agents. Third, we elicit beliefs from agents about the probability of malaria incidence conditional on action

choice. These three key features allow us to separately identify type-specific hyperbolic parameters βτ as

well as the standard exponential discounting parameter δ.

4.3 Identification of Period 1 Utilities

There is a sharp distinction in period 1 relative to the later periods regarding direct type identification

for individual agents. In particular, we cannot directly sub-classify time-inconsistent agents who do not

purchase a product (i.e. agents with r = 1 and a1 = n) into “näıve” or “sophisticated” types. These agents

could either be “näıve” or “sophisticated” but their decision to not purchase a product is not informative

of their type. To compound the problem, these agents make no further decisions.

We approach this problem by first noting that the key object required for the inversion argument is the

type-specific choice probability Pτ (a1|x1, z). For t > 1 we identified Pτ (at|xt, z) for agents who purchased

23The value functions v∗τ,3(·) is defined in equation (37), and H(·) in equation (32) respectively (all in Appendix A).
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a product (i.e for xt ∈ XB ∪XC) since the agent’s choice of product revealed his type perfectly (as ensured

by Assumption 4). However, at t = 1 we cannot proceed as earlier since the non-purchase decision (a1 = n)

does not reveal an agent’s type. Instead, we pursue an approach due to Kasahara and Shimotsu (2009) that

allows us to identify these type-specific choice probabilities even though we do not observe each agent’s

type. This approach requires us to impose a set of exclusion restrictions and the argument previews the

arguments in the next section on unobserved types.

As a starting point, consider the relationship between joint distribution of actions and states in the first

two periods and the type-specific choice probabilities. We use the distribution for the initial two periods

(rather than just the first) because given the Markov assumptions, it provides more information (and hence

restrictions) on the unknown period 1 type-specific probabilities. For concreteness, consider the observed

joint probability that an agent purchases contract C1 and re-treats the net in the second period. This

probability is obtained by integrating the corresponding unobserved type-specific joint probabilities of the

same event:

P(a1 = b, a2 = 1, x1, x2|r, z) =
∑

τ∈{τC ,τN ,τS}

πτ (r, z)Pτ (a2 = 1, a1 = b, x2, x1|r, z) =

∑
τ∈T

πτ (r, z)Pτ (a2 = 1|a1 = b, x2, x1, r, z)Pτ (x2|a1 = b, x1, r, z)Pτ (a1 = b, x1|r, z) (6)

where πτ (r, z) denotes the probability that an agent with values (r, z) is of type τ and we refer to this as

the type probabilities. We next simplify the right hand side of (6) . First, given the Markov nature of the

state transition probabilities and the resultant optimal actions, we note that the conditioning set for the

second period choice should be (x2, r, z).

Next, we assume that conditional upon an agent’s type, the preference reversal information (r) is not

informative about choice. This is reasonable to the extent that one believes that r is only relevant for

actions because it proxies for type. This would be implausible in situations where r provides information

about other aspects of the decision process. For instance, if r = 1 indicates not just time inconsistency but

also reflects a lack of numeracy or other flaws in an agent’s cognitive processes, one might believe that it

has an independent effect on choice, even after conditioning on type.

Further, we assume that the period 2 state transition probability is independent of type (τ) and the

preference reversal variable (r). While this assumption is not directly testable, we can test for whether

subsequent transition probabilities vary by (τ, r) since in future periods, types are observed for the sub-

population that purchases a product. To the extent that future transitions are type invariant, there is

perhaps some reason to believe that this is credible for the second period transition as well. Finally, the

identification results only hold for states x2 that can be reached from a given state x1. In the assumptions

below, we assume that there exist a set of (a1, x2, x1, z, r) with positive probability such that the following

statements are true.

ASSUMPTION 10. (i) Pτ (a2|x2, z, r) = Pτ (a2|x2, z) (ii) Pτ (x2|a1, x1, r, z) = P(x2|a1, x1, z) 6= 0. 24

In what follows we suppress the dependence on beliefs z since variation in it plays no role in identifying

the type-specific choice probabilities. Under the assumptions above, we can use (6) to define the directly

24Note that if z is continuously distributed, the statement should be modified to hold a.s..
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identified quantities F as

F1,2
a,x1,x2,r ≡

P(a1 = a, a2 = 1, x1, x2|r, z)
P(x2|a1 = b, x1)

=
∑
τ

πτ (r)Pτ (a2 = 1|x2)Pτ (a1 = a, x1)

and correspondingly define

F1
a,x1,r ≡ P(a1 = a, x1|r) =

∑
τ

πτ (r)Pτ (a1 = a, x1)

F2
x2,r ≡ P(a2 = 1|x2, r) =

∑
τ

πτ (r)Pτ (a2 = 1|x2)

The objects of interest that we need to identify are the type-specific probabilities in period 1 {Pτ (a1 =

a, x1)}a∈{n,b,c},x1∈X1
and the type probabilities {πτ (r)}τ∈T . We define the period 1 object of interest at

the type-specific joint distribution of (a1, x1) since that allows the initial state to be type-specific. This is

important if, for instance, the past actions of “näıve” time-inconsistent agents makes them more likely to

have malaria at the start of the project.

We now outline how the type-specific choice probabilities in the first period are identified. Note that

some of these objects are identified by Assumption 4. Specifically the assumption implies that “sophisti-

cated” agents only choose between not purchasing a product and purchasing a commitment product, and

“näıve” agents only choose between no purchase and purchasing the standard contract. This was critical

for the identification arguments in the previous periods and we can impose them in the following argument

to ensure consistency of argument. However, as an examination of the argument below reveals, these direct

restrictions are not used for identification of first-period type-specific choice probabilities.25 The inherent

unsatisfactoriness of these assumptions partly motivates the unobserved types model in the next section.

Using the notation above, consider the 3 × 3 directly identified matrix P1,r(a, x2, x
′
2, x1, x

′
1, r) (which

we abbreviate to Pa1,r

Pa1,r =


1 F2

x2,r F2
x′2,r,f

F1
a,x1,τ F1,2

a,x1,x2,r, F1,2
a,x1,x′2,r

F1
a,x′1,r

F1,2
a,x′1,x2,r

F1,2
a,x′1,x

′
2,r

 (7)

Then, we can write

Pa1,r = (La1)′VrL2

where Vr = diag(πτC (r), πτN (r), πτS (r)) and

La1 ≡

1 PτC (a1 = a, x1) PτC (a1 = a, x′1)

1 PτN (a1 = a, x1) PτN (a1 = a, x′1)

1 PτS (a1 = a, x1) PτS (a1 = a, x′1)

 L2 ≡

1 PτC (a2 = 1|x2) PτC (a2 = 1|x′2)

1 PτN (a2 = 1|x2) PτN (a2 = 1|x′2)

1 PτS (a2 = 1|x2) PτS (a2 = 1|x′2)

 . (8)

Next, note that L2 is directly identified by Assumption 4 for x2 ∈ XB ∪XC . If it is invertible (which we will

25Specifically, Assumption 4 implies that PτS (a1 = b|x1) = 0 and PτN (a1 = c|x1) = 0. Note that this assumption cannot be
directly tested here since we use it to identify the type-specific choice probabilities for period 2.
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assume to be the case below), we can postmultiply both sides by its inverse. Next, the first row of Pa1,rL
−1
2

identifies (πτC (r), πτN (r), πτS (r)). We obtain further simplification since under the directly observed type

assumptions, πτC (1) = 0.26 Once the type probabilities are identified, the type-specific choice probabilities

are also identified and the proof is relegated to the appendix. Formally:

ASSUMPTION 11. The matrix L2 defined above is invertible for x2, x
′
2 ∈ X2.

We can then state the result for period 1:

LEMMA 4. Consider an agent of type τ solving at t = 1 the problem (3) and that Assumptions 1–11 hold.

Then, the first period utility differentials u(x1, b, τ)− u(x1, n, τ) and u(x1, c, τ)− u(x1, n, τ) are identified

for all x1 ∈ X1 and for all types τ . In addition the type probabilities {πτ (·)}τ∈T are also identified.

The lemma is useful for at least two reasons: First, we have now identified type-specific utilities for

each time period, which along with the identified time parameters, can form the basis for standard model

specification tests as well as conducting complete counterfactual analysis. Second, we also identify the

relative size of all three different types of agent in the population. This is important because it provides

us with the unconditional distribution of types whereas previous work (as well as the type classification

by observed product choice) provides at best only the distribution of types conditional upon take-up of

the offered product. To the extent that the purchase decision is affected by type (e.g. “näıve” agents may

be more likely to purchase nets than “sophisticated” agents because they down-weight the future costs of

retreatment in the present) the two distributions will be different. Further, this difference, ceterus paribus,

provides us with a measure of how attractive the commitment contract is for the different types of agents.

We explore each of these in turn in the estimation section below.

4.4 Identification: Unobserved Types

We now turn to the case where we can no longer directly observe an agent’s type. This is reasonable to

the extent that we believe that agent observables do not completely reveal type. In particular, in the likely

case that the survey responses to the discounting questions and the choice of commitment product are not

perfect predictors for type it would be useful to have another approach to identify type-specific preferences.

Therefore, the primary advantage of this approach is that it is relatively agnostic about the extent to

which observed time inconsistency (i.e. the survey responses to the discounting questions as well as the

choice of commitment product) map into agent types. Since it nests the perfectly observed types model,

one can also test whether the mapping of types in Assumption 4 is appropriate.

The main complication is that we first need to identify type-specific choice probabilities — the key

to identification in the previous section — From The observed choice probabilities. Each observed choice

probability is a mixture of all the type-specific choice probabilities.

We proceed by making the same kinds of arguments as we made for period one in Section 4.3, and

show that both the type probabilities and the type-specific choice probabilities in each period are identified.

Once these probabilities are identified we can recover preferences using the same arguments as in Section

4.2
26The case for r = 0 is not interesting since the directly identified types assumption implies that (πτC (0), πτN (0), πτS (0)) =

(1, 0, 0). We keep the more general motivation since it anticipates the notation in the next section.
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A key additional set of parameters is now the type probabilities. We define πτ (ru) ≡ πτ (r, a1) as the

probability that an agent is of type τ conditional on their response to the reversal question and their period

1 choice.27 How information from (r, a1) is mapped to types will be obtained by imposing assumptions on

these probabilities which require imposing a kind of monotonicity assumption on πτ (ru)
πτ (r′u) .

One set of sufficient conditions for identification is that first, the set of agents with responses (r, a1) =

(1, c) are most likely to be “sophisticated” inconsistent agents and least likely to be time consistent agents.

Second, the set of agents with (r, a1) = (0, b) are most likely to be time consistent agents and least likely to

be “sophisticated” inconsistent agents. This implies an ordering on the ratios:
{
πτC (ru)

πτC (r′u) ≥
πτN (ru)

πτN (r′u) ≥
πτS (ru)

πτS (r′u)

}
for ru = (0, b) and r′u = (1, c). This assumption appears reasonable in our empirical framework but more

generally we only need the following weaker condition to hold (which in fact allows us to test the previous

set of conditions):

ASSUMPTION 12. For some ru 6= r′u, the three ratios
{
πτC (ru)

πτC (r′u) ,
πτN (ru)

πτN (r′u) ,
πτS (ru)

πτS (r′u)

}
can be ordered ex-ante.

Next, we examine the link between the observed choice probabilities and the type-specific choice prob-

abilities. Consider (for t > 1 and suppressing dependence on z)

P(at = 1, at+1 = 1, xt, xt+1|r, a1) =
∑
τ∈T

πτ (r, a1)Pτ (at+1 = 1, at = 1, xt+1, xt|r, a1)

We simplify the right hand side by assuming

ASSUMPTION 13. (i) Pτ (at = 1|xt, ru) = Pτ (at = 1|xt) ∀t > 1 (ii) The transition probabilities do not

vary by type and are independent of ru: Pτ (xt+1|xt, at, ru) = P(xt+1|xt, at).

The first part of the assumption asserts that conditional on the state and type, information about an

agent’s responses to ru are uninformative about actions. This seems reasonable to the extent that ru is

only informative about choices through its predictive power for agent type. Part of the assumption indeed

is trivial, since xt contains a1. If, however, ru provides information about other aspects of the decision

process this assumption would be implausible. For instance, if r = 1 indicates not just time inconsistency

but also reflects a lack of numeracy or other flaws in an agent’s cognitive processes, one might believe that

it has an independent effect on choice, even after conditioning on type. The second part of the assumption

states that the observed transition probabilities do not vary by agent type. Although this assumption

is not directly testable, we can examine the type-specific transition probabilities in the directly observed

types model to assess its plausibility.

We show identification in two steps. In the first step, we use the observed joint distribution P(at =

1, at+1 = 1, xt, xt+1|ru) and the restrictions in Assumptions 12 and 13 to identify the type-specific choice

probabilities Pτ (at|xt) and the type probabilities πτ (ru). The argument is similar to Kasahara and Shimotsu

(2009) with the primary difference that we exploit the exclusion restrictions (Assumption 13) that permit

identification with just two periods. In the second step, we recover the preference parameters from the

type-specific choice probabilities using results from the previous section.

27In terms of this probability, the previous section assumed that πτS (1, c) = 1, πτC (0, ·) = 1, and πτN (1, b) = 1.
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We first introduce the notation required to state two central assumptions for the first step in the

argument. Define the 3× 3 matrices containing the objects of interest as2829

L2 ≡

1 PτC (a2 = 1, x2) PτC (a2 = 1, x′2)

1 PτN (a2 = 1, x2) PτN (a2 = 1, x′2)

1 PτS (a2 = 1, x2) PτS (a2 = 1, x′2)

L3 ≡

1 PτC (a3 = 1|x3) PτC (a3 = 1|x′3)

1 PτN (a3 = 1|x3) PτN (a3 = 1|x′3)

1 PτS (a3 = 1|x3) PτS (a3 = 1|x′3)

 (9)

ASSUMPTION 14. There exist (x2, x
′
2, x3, x

′
3) such that the matrices L2 and L3 defined above are in-

vertible.

This assumption requires that there is sufficient variation in the type-specific choice probabilities. It

formalizes the intuition that if optimal choice probabilities do not differ very much across types then it

will be difficult to identify them separately. In the context of the empirical section, it requires that the

consistent, “näıve” and “sophisticated” agents indeed have different choice probabilities. This assumption

is reasonable here to the extent that the model is only interesting if it is true.

ASSUMPTION 15. All types exist with positive probability for at least two values of ru: πτ (ru) > 0 τ ∈ T

This assumption requires that all types exist with positive probability conditional on ru. This is reasonable

since the motivation for the unobserved type model in the first place was that the proxies were imperfect

predictors of type. Moreover, this is a convenient assumption and specific departures from it can be

accommodated. For instance, the directly observed types model in the previous section does not satisfy

this assumption but the model is nevertheless identified (in fact, the identification arguments are much

easier).30

LEMMA 5. Under Assumptions 13 and 14, the choice specific probabilities Pτ (at = 1|xt) are identified

for all xt ∈ XB ∪ XC and t > 1. In addition, the type probabilities conditional on r and first-period choice

{πτ (ru)}τ∈T are also identified.

LEMMA 6. Consider an agent of type τ solving the problem (3) and suppose that Assumptions 1–3 and

5–15 hold. We observe an i.i.d. sample on ({a∗t , xt}T−1
t=1 , w). Then, we can identify

1. The type-specific utility differentials ut(xt, 1, τ)− ut(xt, 0, τ) ∀ τ ∈ T , xt ∈ XB ∪ XC

2. The exponential discount parameter δ and the hyperbolic parameters βτ ∀τ ∈ T .

The proof is a combination of Lemma 5 and the results from Section 4.1. These results have several

interesting sets of implications. First, since we identify the unconditional (on first period choice) type

probabilities we can make statements about the sizes of the different types in the population. This is

important since it provides us with a quantitative measure of how large a fraction of the population are time

inconsistent agents. Second, we also identify the conditional (on first period choice) type probabilities which

28Appendix B discusses identification with a finite number of types
29We identify the joint distribution of (a1, x2). An alternative specification would be to write this joint distribution as

Pτ (a2|x2)Pτ (x2) and then impose that Pτ (x2) = P(x2). We do not follow this approach here since it is somewhat less general.
30Importantly, we have assumed that the total number of types is known. In principle one could test this assumption using

the arguments outlined in Kasahara and Shimotsu (2009)
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allow us to make statements about what the relative weights of the different types are when we stratify by

first period choice. This allows us to make statements about the relative appeal of the commitment contract

versus the regular contract for different types. Finally, comparing the unconditional and conditional

distributions gives us a quantitative measure of exactly how appealing the commitment contract is for

“sophisticated” agents.

Second, since we allowed significant flexibility in type preferences we can evaluate the strength of

alternative explanations in explaining observed behavior. Concretely, we can compare a model in which

different types have identical per-period preferences (but differ in their time preference parameters) to a

model where agents are time consistent but differ along other dimensions of their preferences. These and

other alternatives are explored in the empirical section.

5 Monte Carlo Simulations

We illustrate the properties of these models with a set of Monte Carlo simulations, beginning with the

case where types are directly observed and then moving on to the unobserved types case. In order to focus

attention on the estimation of the time preference parameters, we provide a simple parametrization for

per-period utilities, imposing that they are common across types and are linear in the unknown parameters.

We begin by specifying utility in each period as a function of the state variables and actions taken.

• Period 4: x4 ∈ {0, 1}.

u(x4) = −θ4x4

• Period 3: x3 ∈ {bm, bh, cm, ch, nh, nm} ≡ {b, c, n} × {h,m} ≡ {0, 1, 2, 3, 4, 5} and a ∈ {0, 1}

u(x3, a) = −3I{x3 ∈ {1, 3, 5}} − θ5prI{x3 ∈ {0, 1}, a = 1}

where pr is the price of retreatment.

• Period 2: x2 ∈ {bm, bh, cm, ch, nh, nm} ≡ {b, c, n} × {h,m} ≡ {0, 1, 2, 3, 4, 5} and a ∈ {0, 1}

u(x2, a) = −3I{x2 ∈ {1, 3, 5}} − θ5prI{x2 ∈ {0, 1}, a = 1}.

• Period 1: x1 ∈ {h,m} ≡ {0, 1} and a ∈ {b, c, n}

u(x1, a) = −3I{x1 = 1} − θ5pbI{a1 = b} − θ5pcI{a1 = c},

where pb is the price of the no-commitment contract and pc is the price of the commitment contract.

We assume that the unobserved state variables εt are independent Type I extreme-valued so that we obtain

a simple characterization of the choice probabilities

Pτ (at = a|xt, z) =
exp(vτ (xt, a, z)∑S
s=0 exp(vτ (xt, s, z))
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where the vτ (·) functions are constructed using backward induction. The results for the case where we

assume that types are directly observed are presented in Table 4 and those for the unobserved types case

are presented in Table 5. We present results for a range of sample sizes. The tables provide evidence

that the model is identified and that at least for moderate sample sizes (300 and above) the estimators

are reasonably close to the true values. (we present both the median and mean for the point estimates).

In addition, examining the standard errors across sample sizes provides corroborating evidence that the

estimators converge at the parametric rate as hypothesized.

6 Estimation

We turn next to solving and estimating the model using data from the intervention. We begin by specifying

preferences and then discuss the transition probabilities and other important ingredients of the dynamic

programming exercise. As is standard in the literature, we assume that the unobserved components of

preferences have the Type I generalized extreme value (GEV henceforth) distribution.

The central difference from standard analyses of dynamic models in what follows is the presence of

the different types of time-inconsistent agents and the fact that these types are unobserved. These two

deviations alter the standard results and we highlight these differences below.

6.1 Preferences

6.1.1 Period 4

In period 4 the state variables are income and health (x4 = (y4, h4)) while v are household characteristics

that enter preferences. In the base specification v includes household size (at baseline), a measure of

households assets, and an indicator of risk aversion (v = (hhsize, baseline assets, risk measure)).31

Preferences in period 4 are given by

uτ (x4; v) = c(x4)ατ (v) − cτ (x4, v)

where c(x4) is consumption in state x4 and the exponent ατ (·) captures risk aversion with respect to

consumption. The function cτ (·) is the direct disutility from malaria (i.e. not including the loss in utility

that arises from lower consumption due to potentially lower income when sick).

We allow for heterogeneity in the risk-aversion parameter along both observable (v) and unobservable

dimensions (τ):

ατ (v) = Logit (ατ + α1hhs + α2assets + α3risk) (10)

Note that the intercept differs by type; in principle, one could allow the entire function to vary by type,

but the sample size requirements for such flexibility are quite onerous. We have also restricted the risk

31The survey based measure of attitudes towards risk is obtained by using an abbreviated version of the procedure proposed
in Holt and Laury (2002) . See the data appendix for more details.
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aversion parameter to be between 0 and 1. The bound restrictions can easily be relaxed but we keep them

since they simplify estimation and are reasonable given the various empirical estimates in the literature.

The malaria disutility function cτ (·) is also allowed to vary by agent type as well as observables v.

Specifically, we model the disutility as

cτ (x4, v) ≡ h4cτ (v) = I{h4 = m} exp(κτ + κ1hhs + κ2assets) (11)

where h4 is an indicator equal to 1 if someone in the household contracts malaria in period 4. Note that

the survey based measure of risk does not enter the cost of malaria function and this exclusion restriction

is useful in identifying the two functions.

6.1.2 Periods 2 and 3

The state variables in period t ∈ {2, 3} are income (yt), health status (ht) and the choice of product in

period 1 (a1). We define utility in period t as

uτ (xt, at; v) = (c(xt)− pratI{a1 = b})ατ (v) − cτ (v)ht

where pr is the price of retreatment. Note that agents who have purchased the commitment contract do

not incur any additional cost in retreating the net.

6.1.3 Period 1

In period 1, preferences are given by

uτ (x1, a1; v) = (c(x1)− pbI{a1 = b} − pcI{a1 = c})ατ (v) − cτ (v)h1

where pb is the price of the ITN alone, and pc is the price of the commitment product.

6.2 Solving the Model

Given a finite horizon model, we can solve for the optimal decision rule using backward induction. We

solve and estimate the model using the mapping between type-specific choice probabilities and type-specific

value functions (defined below). This is justified because even though we do not observe types, the type-

specific choice probabilities are identified using Lemma 5. Next, recall that in period 3 an agent who has

purchased an ITN will choose to re-treat his net if

uτ (x3, 1; v) + ε1 + βτδ

∫
u(x4; v) dF(x4|x3, 1; z) > uτ (x3, 0; v) + ε0 + βτδ

∫
u(x4; v) dF(x4|x3, 0; z)

which we rewrite as

ε3(0)− ε3(1) < vτ (x3, 1, w̃, βτ )− vτ (x3, 0, w̃, βτ ).
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Recall that w̃ = (z, v) are the time-invariant exogenous variables and vτ (·) are choice specific value functions

for type τ and are defined as

vτ (x3, a, w̃, βτ ) ≡ uτ (x3, a; v) + βτδ

∫
uτ (x4, w̃) dF(x4|x3, a, z) (12)

We emphasize the dependence of these functions on the hyperbolic parameter β since it will be useful for

future manipulations. We assume that (ε3(0), ε3(1))/σ are i.i.d. standard GEV (to ease notation we set

σ = 1 in what follows). Under the GEV assumption, the type-specific choice probability is given by

Pτ (a3 = 1|x3;w) =
exp(vτ (x3, 1, w̃, βτ ))∑1
j=0 exp(vτ (x2, j, w̃, βτ ))

. (13)

6.2.1 Period 2 Choice

Under the GEV assumption on the errors, the choice probabilities are given as usual by

P(a2 = 1|x2;w) =
exp(vτ (x2, 1, w̃, βτ )∑1
j=0 exp(vτ (x2, j, w̃, βτ )

(14)

For period 2, the vτ (·) functions are defined similarly as in period 3 except that the calculation of the v∗(·)
function is more involved. As we see below the formula does, however, provide some insight into the time

inconsistency problem

vτ (x2, a, w̃, βτ ) ≡ uτ (x2, a; v) + βτδ

∫
v∗τ (x3, w) dF(x3|x2, a, z) (15)

where v∗τ (·) It represents the utility (from the point of view of period 2) of behaving optimally in period 3

(given action a2 and state x2). To make the notation for this function easier, define the event

Aτk ≡ {vτ (x3, k, β̃τ ) + εk > vτ (x3, s, β̃τ ) + εs ∀s 6= k} (16)

which is the event that action k is optimal in period 3 given an τ agent’s future expected present-bias of

β̃τ and where

vτ (x3, a, c) = uτ (x3, a) + cδ

∫
uτ (x4) dF(x4|x3, a) (17)

which is the choice specific value function in period 3 given an agent’s hyperbolic parameter c. Next, define

v∗τ (x3, ε3) ≡
J∑
s=1

(v(x3, s, 1) + εs)IAτs
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Integrating with respect to the (GEV) error distribution

v∗τ (x3) ≡
∫
v∗τ (x3, ε3) dF(ε3)

=
J∑
s=1

∫
(vτ (x3, s, 1) + εs)IAτs dF(ε3)

=
J∑
s=1

P(Aτs)

(
vτ (x3, s, 1) + E(εs|Aτs)

)

=
J∑
s=1

P(Aτs)

(
vτ (x3, s, 1) + σE(εs|Aτs)

)

=
J∑
s=1

P(Aτs)

(
vτ (x3, s, 1) + γeuler − logP(Aτs)

)

where γeuler is Euler’s constant and

P(Aτs) =
exp(vτ (x3, s, β̃τ ))∑J
j=1 exp(vτ (x3, j, β̃τ ))

.

After simplification we obtain

v∗τ (x3) =
J∑
s=1

P(Aτs)

vτ (x3, s, 1)− vτ (x3, s, β̃τ ) + γeuler + log

 J∑
j=1

exp(vτ (x3, j, β̃τ ))


The formula provides some insight into the problem. The first term is the difference between the net value

of taking action s assuming no present-bias and the net value of the same action assuming a present-

bias of β̃τ . For time consistent agents who are not present-biased and know this, this term disappears

and the expression reduces to the standard expression for discrete choice models (see e.g. equation (12)

of Aguirregabiria and Mira, 2010). For “näıve” time-inconsistent agents this expression is also zero and

reflects the fact that such agents do not take their future present-bias into account while making choices

(in this case such agents are ignoring their future present bias in period 3 while making choices in period

2). Correspondingly, “sophisticated” inconsistent agents recognize their future inconsistency and this

expression is non-zero for them.

6.2.2 Period 1 Choice

The discussion is very similar to that for the previous period with the only real difference being that there

are three possible actions in period 1.

P(a1 = 1|x1;w) =
exp(vτ (x1, 1, w̃, βτ )∑2
j=0 exp(vτ (x1, j, w̃, βτ )

. (18)
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For period 1, the vτ (·) functions are

vτ (x1, a, w̃, βτ ) ≡ u(x1, a; v) + βτδ

∫
v∗τ (x2, w) dF(x2|x1, a, z), (19)

where v∗τ (·) is the value function for period 2 (for type τ).

As before, define

Aτk ≡ {vτ (x2, k, β̃τ ) + εk > vτ (x2, s, β̃τ ) + εs ∀s 6= k}, (20)

which is the event that action k is optimal in period 2 given an agent’s future expected present-bias of β̃τ

and where

v(x2, a, c) = uτ (x2, a) + cδ

∫
v∗τ (x3) dF(x3|x2, a), (21)

which is the choice specific value function in period 2 given an agent’s hyperbolic parameter c. Next,

v∗τ (x2, ε2) =
1∑
s=0

(vτ (x2, s, 1) + εs)IAτs ,

and as before, integrating with respect to the error distribution we obtain

v∗τ (x2) ≡
∫
v∗τ (x2, ε2) dF(ε2)

=

1∑
s=0

P(Aτs)(vτ (x2, s, 1) + γeuler − logP(Aτs)),

where

P(Aτs) =
exp(vτ (x2, s, β̃τ )/σ)∑1
j=0 exp(vτ (x2, j, β̃τ )/σ)

,

so that simplifying, we obtain

v∗τ (x2) =
1∑
s=0

P(Aτs)

v1t(x2, s, 1)− v1t(x2, s, β̃τ ) + γeuler + log

 1∑
j=0

exp(vτ (x2, j, β̃τ ))

 .

6.3 Estimation Method

Estimation is carried out in two steps. In the first step, we identify the type-specific choice probabilities

Pτ (at|xt, w̃) using the methods outlined in Lemma 5. In the second step, we use these probabilities to

conduct a minimum distance estimation exercises using equations (13), (14) and (18) as the mapping

between the identified type-specific choice probabilities and the type-specific probabilities predicted by the

model.

In the first step, we recover the type-specific choice probabilities for each state variable xt at each

value of the time-invariant exogenous variable w̃. Note that the identification results require xt to be

discrete and so the state support comprises health status (binary valued), income levels (binary valued)

and for t ∈ {2, 3} also includes period 1 choice. The time-invariant variables comprise w̃ = (v, z) =

(hhsize, baseline assets, risk measure, π, δ, γ). Each such calculation follows the steps outlined in equa-

27



tions (41)–(44). Note that though the state space support is required to be discrete, this is not the case

for w̃. However, given the steps involved in the Kasahara-Shimotsu inversions and the sample size for

the intervention, we discretized w̃ into 108 unique cells and implemented Lemma 5 in each cell to obtain

three type-specific probabilities per cell. In addition, we estimated the quantities defined in (38) and used

in Lemma 5 using flexible logit specifications. Note that this procedure yields type probabilities (the V

matrix) that were functions of w̃. However, these were very imprecisely estimated within each cell, and

so we averaged these weights over the distribution of w̃ to arrive at the type probabilities reported in the

paper.

In the second step, we begin by calculating the model choice probabilities — the right hands side

of equations (13), (14) and (18) — for given set of given parameter values θ ≡ (δ, βτN , βτSα,κ). δ is

the usual exponential discounting parameter, (βτN , βτS ) are the hyperbolic parameters for the “näıve”

and “sophisticated” agents respectively. (α,κ) are the parameter vectors characterizing risk aversion and

malaria disutility respectively, (see equations (10) and (11)). These model probabilities are calculated for

each candidate value θ starting with the value functions for the last period and then working backwards

using equations (12), (15) and (19). In order to compute these value function we also need estimates of

the transition probabilities dF(xt+1|xt, at) used by households in solving the problem. We obtain these

using the households’ elicited beliefs about the two stochastic components of this distribution: income and

health status. The beliefs for these were elicited during the baseline survey as well as in the follow-up

survey. We estimated the model using both sets of beliefs as well as only using the baseline beliefs, and the

results were insensitive to the choice of beliefs.32 In what follows we present the results using only baseline

beliefs.

Finally, we choose our estimate of θ0 to be the value of θ that minimizes the distance between these

model probabilities and the type-specific choice probabilities recovered in the first step using the Kasahara-

Shimotsu inversion.

7 Reduced Form Regressions

In this section we present some descriptive statistics and basic reduced form regressions intended to high-

light the basic correlations in the data. In Table 6 we predict product take up as a function of the period 1

state variables as well as the exogenous variables listed above. In column 1 the dependent variable is equal

to 1 if the household purchased at least one net using either loan product (C1 or C2) while in column (3)

we estimate a multinomial logit with values of 0,1, and 2 for no purchase, C1 purchase and C2 purchase

respectively. Finally, in column (2) we report the probability of choosing contract C1 restricting attention

to the sub-sample that purchased at least one net. The results for period 1 suggest that being sick with

malaria in the baseline makes households substantially more likely (by about seven percentage points or

about 16% of the take-up rate) to purchase one of the ITN products (p = .04). Conversely, higher period

income in period 1 (p = .09) and greater asset ownership at baseline (p = .07) are both associated with

substantial declines (8–10 percentage points) in the likelihood of purchasing a product suggesting that

32Households’ stated beliefs about the efficacy of ITNs decreased by about 10% points over the course of the intervention.
The most significant change in beliefs was a 30% decrease in the probability of contracting malaria while sleeping unprotected
by a net.
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poorer household were somewhat more likely to purchase a product. Greater beliefs in the efficacy of ITNs

(captured by the γ variable) were associated with higher propensity to purchase a product, although in a

non-linear fashion. Note that one implication of the forward-looking model is that the effect of the beliefs

in the efficacy of nets γ on take up in the first period will be non-linear (since these effects will multiply

each other due to the recursive nature of the value functions) and we use the quadratic form as a convenient

approximation.

In order to see whether these variables have greater predictive power for any one of the contract

choices, we next break down the dependent variable into three values and implement a multinomial logit.

The results suggest that beliefs are stronger predictors, both substantively and statistically, for contract

C2 which is consistent with the idea that households with stronger beliefs about ITN efficacy are more

likely to purchase contract C2. In addition, there is some evidence that poor households are more likely

to choose contract C1 both in the multinomial logit as well as when the sub-sample is restricted only to

households that chose one of the two contracts. Interestingly, net ownership (which was about 2/3 at

baseline) is not a strong predictor for take-up once we condition on beliefs. Finally, it is also interesting to

note that the survey measure of time-inconsistency is not strongly correlated with the choice of contract

(although it does have predictive power for retreatments as we discuss below).

In Table 7 we predict retreatment rates as a function of the state variable (including contract choice)

and time-invariant exogenous variables, restricting attention to the sub-sample that purchased one of

the two products. The most striking result (column (1)) is that retreatment rates for households that

purchased contract the commitment product are much higher (in fact almost double) than for households

that purchased C1 and this remains true for the second retreatment as well.

Turning next to the determinants of retreatment among households who choose contract C1, we see

that the survey measure of time-inconsistency is highly significant: households that have at least one pref-

erence reversal are about 22 percentage points less likely to re-treat any ITNs (p = .02). These results

are consistent with a situation where some buyers are näıvely time-inconsistent. Turning next to determi-

nants of retreatment among purchasers of the commitment contract, we first note that the unconditional

retreatment rates are very high (over 90%) so there is relatively little variation in the dependent variable.

As was the case in the take-up regressions an increase in the beliefs about efficacy of ITNs is associated

with substantially higher retreatment rates for this sub-sample of households as well.

In sharp contrast to the results from the first period, malaria incidence in the past six months is nega-

tively associated with the decision to re-treat (for both types of contract) with about a 13 percentage point

decrease in the likelihood of retreatment (p = .04 for the C2 regression) if someone in the household con-

tracted malaria after the household purchased an ITN and before the first retreatment. The sign remains

the same for the second retreatment (columns (4) and (5)) although it is no longer statistically signifi-

cant. Interestingly, for the second retreatment, we find that the relationship between baseline beliefs and

retreatment reverses for the two kinds of contract purchasers. We find that for C1 holders the relationship

between beliefs and retreatment is increasing at high levels of belief while the relationship reverses for C2

holders. These relationships point to the need to impose some more structure on the data to understand

the relationship between purchase, retreatment and household characteristics.

The regressions in this section provide useful information about the importance of beliefs, past health
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status and income in driving health decisions as well as some suggestive evidence about the potential

importance of time-inconsistency in retreatment decisions. In the following section we attempt to quantify

these links in the context of the model with GEV errors described in section 6.

8 Results

8.1 The Population Distribution of Time-Inconsistent Agents

We next report the results from the estimation exercise outlined in Section 6.3. We begin first with the

estimates of the type probabilities. We first discuss the type probabilities conditional only on the survey

responses r, {P(τ |r) : τ ∈ {τC , τN , τS}}, before further conditioning upon first period choice, {P(τ |r, a1) :

τ ∈ {τC , τN , τS}}. The former probability provides an estimate of the unconditional distribution of types in

the population, something that has not previously been proposed in the literature. The latter probability

estimates the distribution of types conditional on purchase. The difference between the two provides an

estimate of the attractiveness of the different contracts for different types of agent (recall that we cannot

observe agent types, so that direct choice probabilities are not informative about the selection problem

here).

Note that our identification assumptions only imposed a sort of monotonicity condition (Assumption

12) on the relationship between (r, a1) and types. Therefore, we can actually test whether the more

conventional, stronger, mappings hold. In particular, we can test whether (i) the sub-population with

r = 1 has a greater fraction of time-inconsistent agents and (ii) whether the sub-population that purchase

the commitment product (and had r = 1) is more likely to contain “sophisticated” time-inconsistent agents.

The results from Table 8 show that our estimate of the fraction of time consistent agents in the

population is about 40% and the bulk of the time-inconsistent agents (about 80%) are “näıve”. These figures

are approximately the same regardless of whether the sub-population exhibited preference “reversals” (i.e

the value of r). Assumption 12 is weak in the sense that it did not require that the fraction of inconsistent

agents be larger in the sub-population with r = 1. In fact, we find that the fraction of time-inconsistent

agents is actually (statistically insignificantly) smaller in the sub-population with r = 1. These results

suggest that, at least in our sample, the conventional deterministic mapping of time-consistency to standard

time preference survey questions does not hold.

We next discuss the type probabilities conditional upon first period choice in Table 9 for each of the

four combinations of the conditioning variables.

First, as with the previous table, the questionnaire based measures of time-inconsistency and the choice

of commitment product do not perfectly predict agent type. In fact, all three types of agent exist for every

value of these variables. Recall that the directly observed model that infers types deterministically from

these responses assumes that πC(0, ·) = 1, πN (1, b) = 1, and πS(1, c) = 1. Table 9 suggests that this is not

the case with our data.

For instance, among the sub-population of agents who exhibit preference “reversals” on discounting

questions (and purchase either C1 or C2) around a third are estimated to be time-consistent agents. Even

more starkly, this fraction is about the same (in fact somewhat lower) in the sub-population that did not

exhibit any such preference “reversals.”
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Third, across all sub-populations (given by the four different values of (r, a1), time-consistent agents

are a in a minority ranging roughly between 30% − 40%. “Näıve” inconsistent agents form the bulk —

approximately 70−−80% in all sub-populations — of the time-inconsistent agents.

Finally, comparing results from Table 9 and Table 8 we conclude that (i) Among that sub-population

that chooses r = 1, there is a substantial and significant decline on the order of 25% in the proportion

of time-consistent agents when we look at the further sub-population that purchases the commitment

product; (ii) There is an increase of about 19% in the proportion of “näıve” agents while the fraction of

“sophisticated” agents increases by about 23%. The last result is consistent with the hypothesis that the

commitment appealed equally to both “näıve” and “sophisticated” agents.

8.2 Time Preference Parameters

Tables 10 and 11 provide estimates of the preference parameters for each of the three different types of

agent. The differences between the tables is that in Table 10 we assume that risk preferences are constant

across types. It is comforting to note that the estimates for time-preference parameters remain stable

across the different utility specifications.

First, note that the two types of time-inconsistent agent have different rates of time preference. In

particular, in both specifications the“hyperbolic” parameters for the “sophisticated” agents are significantly

smaller — about 70% lower — than those for the “näıve” agent and this difference is statistically significant

at conventional levels. This result suggests that there is substantial heterogeneity across inconsistent agents

beyond that usually considered in empirical work on the issue. Second, the “hyperbolic” parameter for the

“näıve”-inconsistent type is quite close to 1, so that present-bias is a relatively small problem. These results

suggest the hypothesis that agents with strong present-bias problems are likely to become more aware of

their problem and take actions to mitigate the problem (i.e by becoming “sophisticated”). Conversely,

“näıve” agents are less likely to take actions to mitigate their present-bias problem because it is relatively

small.33

8.3 Cost and Risk Aversion Parameters

Finally, we deal with the hypothesis that types differ by more than just their time preferences. Specifically,

we allow different types to have different (constant relative) rates of risk aversion as well as different cost

parameters associated with illness. Table 11 shows that there is some variation in the risk aversion param-

eter for different types but these differences are quantitatively small (the risk aversion is parameterized by

equation (10)) and imprecisely estimated. The point estimates for the cost parameters follow this pattern

as well. These results together suggest that while there is some slight evidence that types differ in their

attitudes towards risk or the disutility from illness, these differences are small relative to the differences in

time preferences documented above.

33There is relatively little work, theoretical or empirical, on self-control and learning. See Ali (2010) for a theoretical model
of a decision-maker who is only partially aware about his self-control problems and learns about them over time.
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9 Counterfactuals

In this section we carry out a series of counterfactual exercises using the estimated model to (i) assess the

effect of changes in the model’s exogenous parameters and (ii) evaluate the relative importance of risk,

cost and time preference parameters in explaining outcomes. We consider several exogenous changes in

the price of retreatment and report their effects on ITN take-up and retreatment rates. In addition, we

examine outcomes for the different types of agent and assess the relative importance of the four ways in

which agents differ – risk, cost, hyperbolicity and awareness of future present-bias – in generating the

variations in outcomes.

We first discuss the consequences of a known doubling the price of retreatments (balanced by a corre-

sponding increase in the price of the commitment contract).34 Intuitively, while increases in retreatment

prices should decrease contemporaneous demand for retreatment, they may also result in overall lower ITN

adoption rates in the initial period (because of the dynamic nature of the agents’ solution) or a switch from

the standard contract to the commitment contract. This latter effect is, however, moderated by the effect

of the corresponding increase in the price of the commitment product. In practice, which effect dominates

in the first period is an empirical question that the counterfactuals can answer

9.1 Adoption and Retreatment: Averaging Across Types

Consider first a doubling of the retreatment price from Rs. 15 to Rs. 30. First, averaging across types,

demographics and states, we find that retreatment rates under contract C1 fall by about 72% (see Table 13).

These figures are large and incorporate the effects of prices via preferences (including time-inconsistency)

and beliefs on retreatment. They suggest an price elasticity of demand of about −0.72. Second, not

surprisingly, we find no effect on retreatment decisions under contract C2 since retreatment price increases

have no effect on those who have committed to retreatment. However, it could be the case that the

increased price of retreatment increases demand for purchasing contract C2 in the first period. Weighing

against is this effect is the corresponding increase (by Rs. 30) in the price of the commitment product so

that the final change in the demand of C2 is an empirical question. According to the model, demand for

the commitment product C1 declines by 5% while demand for C2 increases by a little under 2%. Given

that slightly more agents purchase C2 and retreatment rates for C2 remain unchanged, overall retreatment

rates (averaging across all contracts) go down by about 12%.

We next examine (also in Table 13) changes in take-up and retreatment when the price of retreatment

is halved (from Rs. 15 to Rs. 7.5). First, we find that retreatment rates for purchasers of contract C1

are predicted to increase by about 82% which is similar to the proportional change in the exercise when

prices were doubled. Further, we find that overall purchase of the standard contract increases by 17% while

demand for the commitment contract declines by about 8%. Incorporating the differences in take-up of

contracts we find that overall retreatment rates averaged across the population increase by approximately

12% which is again similar in absolute terms to the corresponding figure in the previous counterfactual.

We carried out similar analyses for other price changes and found similar results. Broadly speaking,

increasing retreatment prices generally leads to a significant decline in retreatment rates for households

34Counterfactuals without the corresponding increase in the price of C2 imply that demand for C2 increases unambiguously.
We omit these results here.
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that purchased contract C1 with an elasticity of approximately −0.7 to −0.8. Further, these price increases

also lead to some wealthier households switching towards the commitment contract, though this effect is

not very large.

9.2 Adoption and Retreatment: Type Differences

Households differ in their time preferences, risk and cost preferences as well as awareness about their future

present-bias. The structural model combined with the estimates from the previous section allows us to

understand the relative contributions of each of these differences in explaining take-up rates. Concretely,

in this sub-section we seek to use the structure to understand why even wealthy “sophisticated” households

do not find the commitment contract appealing.

As might be anticipated from the empirical results, the commitment contract does not seem to appeal

exclusively to “sophisticated” inconsistent agents. In particular, wealthier households are much more

likely to purchase the commitment product (regardless of time preferences). Second, even among wealthy

households, “sophisticated” households are actually less likely to purchase the commitment contract. We

explore the reasons for this using the structural estimates, varying each of the model elements (time and

risk preferences, costs, and awareness of future present-bias) systematically.

The results suggest that the primary reason for the lower adoption of contract C2 by “sophisticated”

households is their degree of present-bias βS . We find evidence for this in two ways. First, we carry out

counterfactuals for a model where all types have the same risk and cost preferences but different hyperbolic

parameters (Model 2 in Table 12). In this model, types differ only in their hyperbolic parameters and their

awareness of their future present-bias. We find that the take-up results for contract C2 are identical to those

obtained from the general model where risk and cost preferences as well as time preferences are allowed

to vary by type (Model 4 in Table 12). This suggests that variations in risk and cost preferences across

types are not important in explaining variation across types in take-up of contract C2. Note, however, that

risk and cost preferences do seem to play a role in the take-up of Contract C1 by “näıve” agents (take-up

rates for “näıve” agents rise about 20% when we set their risk and cost parameters equal to the estimated

parameters).

We next evaluate the separate contribution of the hyperbolic parameters from that of the awareness

of future present-bias by carrying out another set of counterfactual exercises. These were conducted using

a model where all types have the same risk and cost preferences but the hyperbolic parameter for the

“sophisticated” type is set equal to that estimated for the “näıve” type (Model 1 in Table 12). In effect,

the only difference across inconsistent types is the extent to which they recognize their future present-bias.

In this case, the take-up and retreatment rates for the “näıve” agents are, as expected , the same as in

Model 4. However, we find that the take- up rates for the “sophisticated” and “näıve” types are very close.

This again suggests that it is the hyperbolic parameter for the “sophisticated” types (and its significant

difference from those of the “näıve” and consistent types) that matters for adoption decisions. This is

further confirmed by comparing the results for Models 1 and 2.

Further evidence of the role of the hyperbolic parameters can be found in the similarity of retreatment

rates for “näıve” and time-consistent agents. In particular, it appears that since the hyperbolic parameter

for the “näıve” agents is very close to one, their take-up decisions in the model are very similar to those of the
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time consistent agents. Finally, under the range of policy considerations considered here, the retreatment

rates across types are extremely similar. This suggests that the main effect of time-inconsistent preferences

in the model is working through the differential take-up rates across types rather than through differential

retreatment rates.

To conclude, the results from the counterfactual exercise support the view that time consistent behavior

is perhaps a reasonable approximation for the bulk of the population, with outcomes for only about 10%

of the population (the “sophisticated” types) being affected by time-inconsistency issues

10 Conclusions

Time inconsistency is often proposed as an explanation for observed inter-temporal choice behavior, par-

ticularly in poor households. However, the relative occurrence of this phenomena (i.e the population

prevalence of time-inconsistent agents) as well as its quantitative importance (i.e the extent of present-

bias) are difficult to identify and estimate using standard methods and data. This paper develops a dynamic

discrete choice model for possibly time-inconsistent agents with unobserved types. We show identification

for all key parameters for a model based on a specifically collected dataset containing detailed information

on beliefs combined with a field intervention. We estimate that formally time-inconsistent agents account

for more than half of the population and that “sophisticated” inconsistent agents are considerably more

present-biased than their “näıve” counterparts. However, the hyperbolic parameter for “näıve” inconsis-

tent agents — who we estimate to comprise 40% of the population — is very close to one and for the

range of policy interventions considered in this paper at least, their behavior was very similar to those of

the time-consistent agents. Finally, we also examined whether there are other differences across types (e.g.

in risk and cost parameters) and found that these differences are small relative to the differences in time

preferences.
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Appendix A

Proof of Lemma 1

Proof. Under the independence assumption (Assumption 2) and the additive separability assumption (Assumption
3) and the direct observation of types (Assumption 4), the probability that an agent of type τ who has purchased a
net will re-treat the net is given by

Pτ (a∗3 = 1|x3, z) = G∆(u3(x3, 1, τ)− u3(x3, 0, τ) + βτδ

∫
u(x4, τ)(dF(x4|x3, 1, z)− dF(x4|x3, 0, z)) (22)

G∆ is the distribution of ε0 − ε1 which is known and has support over the real line by assumption. We can invert
this function to obtain

gτ,3(x3, z) = u3(x3, 1, τ)− u3(x3, 0, τ) + βτδ

∫
u(x4, τ)(dF(x4|x3, 1, z)− dF(x4|x3, 0, z)) (23)

The left hand side is directly identified, and by Assumption 5 the integral on the right hand side simplifies to

γ((u4(bh, τ)− u4(bm, τ))I(x3∈XB) + (u4(ch, τ)− u4(cm, τ))I(x3∈XC))

Under Assumption 6 we can evaluate (23) at two different values of γ and take differences to obtain

gτ,3(x3, z\γ1, γ1)− gτ,3(x3, z\γ2, γ2) =

(γ1 − γ2)βτδ((u4(bh, τ)− u4(bm, τ))I(x3∈XB) + (u4(ch, τ)− u4(cm, τ))I(x3∈Xc))

so that the object on the right hand side below is identified.

(gτ,3(x3, z\γ1, γ1)− g(x3, z\γ2, γ2))

γ1 − γ2
= βτδ

(
(u4(bh, τ)− u4(bm, τ))I(x3∈XB) + (u4(ch, τ)− u4(cm, τ))I(x3∈XC)

)
Therefore, we can identify the utility differential as

u3(x3, 1, τ)− u3(x3, 0, τ) = gτ,3(x3, z, γ)− (gτ,3(x3, z\γ1, γ1)− gτ,3(x3, z\γ2, γ2))

γ1 − γ2
γ. (24)

Proof of Lemma 2

Proof. The proof is straightforward by comparing the identified quantities βτN δ
∫
u4(x4, τN ) dF∆(x4|x3, z) and

δ
∫
u4(x4, τC) dF∆(x4|x3, z) (where we have defined the finite signed measure dF∆(x4|x3, z) ≡ dF(x4|x3, 1, z) −

dF(x4|x3, 0, z)), and noting that
∫
u4(x4, τN ) dF∆(x4|x3, z) =

∫
u4(x4, τC) dF∆(x4|x3, z) by Assumption 7.

Proof of Lemma 3

Proof. Under the assumptions in the lemma, the probability that an agent of type τ who has purchased a net will
choose to re-treat it is

Pτ (a∗2 = 1|x2, z) = G∆

(
u2(x2, 1, τ)− u2(x2, 0, τ) + βτδ

∫
v∗τ (s3, z) dF∆(s3|x2, z)

)
, (25)

where we have defined the finite signed measure dF∆(s3|x2, z) ≡ dF(s3|x2, 1, z)− dF(s3|s2, 0, z). The value function
v∗τ (·) is defined as

v∗τ (s3, z) ≡ vτ (s3, d
τ (s3, z), z), (26)

where

vτ (s3, a, z) ≡ u3(x3, a, τ) + ε3(a) + δ

∫
u(x4, τ) dF(x4|x3, a, z) (27)
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and

dτ (s3, z) = I
{
u3(x3, 1, τ) + ε3(1) + β̃τδ

∫
u(x4, τ) dF(x4|x3, 1, z) ≥

u3(x3, 0, τ) + ε3(0) + β̃τδ

∫
u(x4, τ) dF(x4|x3, 0, z)

}
so that an agent of type τ will evaluate his continuation utility from period 3 onwards using the decision rule dτ (s3, z).
β̃τ is the present bias that an agent (of type τ) in period 2 thinks she will have in period 3. A time consistent agent
knows that he is not subject to present-bias and so β̃τC = βτC = 1. “Näıve” inconsistent agents assume that their
future selves are not subject to present-bias and will therefore set β̃τN = 1. Conversely, “sophisticated” agents
recognize that their future selves will be present biased and we assume that such agents will set β̃τS = βτS .35

To summarize, “näıve” agents will assume (in period 2) that their period 3 decision rule is unaffected by present-
bias while “sophisticated” agents will recognize that it is and this will be reflected in the decision rule they think
will be used in period 3.

Next, we examine
∫
v∗τ (s3, z) dF∆(s3|x2, z). Define the function

g̃τ,3(x3, z, c) ≡ u3(x3, 1, τ)− u3(x3, 0, τ) + cδ

∫
u4(x4, τ) dF∆(x4|x3, z)

= u3(x3, 1, τ)− u3(x3, 0, τ) + cδγ

(
(u4(bh, τ)− u4(bm, τ))I(x3∈B) + (u4(ch, τ)− u4(cm, τ))I(x3∈C)

)

where the second equality follows from Assumption 5. We can rewrite

dτ (s3, z) = I
(
g̃τ,3(x3, z, β̃τ ) ≥ ε3(0)− ε3(1)

)
and

v∗τ (s3, z) = I
(
g̃τ,3(x3, z, β̃τ ) ≥ ε3(0)− ε3(1)

)(
g̃τ,3(x3, z, 1) + ε3(1)− ε3(0)

)
+ u3(x3, 0, τ) + ε3(0) + δ

∫
u(x4, τ) dF(x4|x3, 0, z) (28)

so that we can write∫
v∗τ (s3, z) dF∆(s3|x2, z) =

∫∫ g̃τ,3(x3,z,β̃τ )(
g̃τ,3(x3, z, 1)−∆ε

)
dG(∆ε) dF∆(x3|x2, z)+∫

u3(x3, 0, τ) dF∆(x3|x2, z) + δ

∫∫
u(x4, τ) dF(x4|x3, 0, z) dF∆(x3|x2, z)

=

∫
G(g̃τ,3(x3, z, β̃τ ))g̃τ,3(x3, z, 1) dF∆(x3|x2, z)−

∫ g̃τ,3(x3,z,β̃τ )

∆ε dG(∆ε) dF∆(x3|x2, z)

+

∫
u3(x3, 0, τ) dF∆(x3|x2, z)

(29)

where we ignore the last two terms in (28) since they integrate to zero. Next, note that the last term in the preceding
is identified by the normalization (Assumption 9).
time-consistent agents
We first consider time consistent agents where βτC = β̃τC = 1 and the function g̃τ,3(x3, z, 1) is identified since
it is equal to the identified function gτC ,3(x3, z). Therefore, for this type the function

∫
v∗τ (s3, z) dF∆(s3|x2, z) is

35We do not consider “partially sophisticated” agents that is to say agents for whom β̃τS 6= βτS but also not equal to 1.
Identification in this case would be considerably more difficult without further information.
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identified. Returning now to the identified function for period 2 for this type,

gτC ,2(x2, z) = u2(x2, 1, τC)− u2(x2, 0, τC) + δ

∫
v∗τC (s3, z) dF∆(s3|x2, z). (30)

Then, Assumption 8 guarantees that∫
v∗τC ,3(s3, z) dF∆(s3|x2, z\γ, γ2) 6=

∫
v∗τC ,3(s3, z) dF∆(s3|x2, z\γ, γ1) (31)

Therefore, evaluating (30) at two different points of γ and differencing will identify the exponential discount parameter
δ. Next, using δ we can identify the second period utility differentials u2(x2, 1, τC)− u2(x2, 0, τC) for all x2 ∈ XB .
“sophisticated” time-inconsistent agents
Next, consider the time-inconsistent “sophisticated” agents, i.e. those for whom β̃τS = βτS . For this type the function
g̃τ,3(x3, z, β̃τS ) is identified as gτS ,3(x3, z). This implies that the second term on the right-hand side in the expression
below is identified (in addition to the last term).∫

v∗τ (s3, z) dF∆(s3|x2, z) =

∫
G(gτS ,3(x3, z))g̃τS ,3(x3, z, 1) dF∆(x3|x2, z)−

∫ g̃τS,3(x3,z)

∆ε dG(∆ε) dF∆(x3|x2, z)

+

∫
u3(x3, 0, τ) dF∆(x3|x2, z).

Focusing therefore on the first term, we can rewrite it as

∫
G(gτS ,3(x3, z)g̃τS ,3(x3, z, 1) dF∆(x3|x2, z) = γ

(
G(gτS ,3(ch, z))g̃τS ,3(ch, z, 1)−G(gτS ,3)(cm, z)g̃τS ,3(cm, z, 1)

)
= γ

(
G(gτS ,3(ch, z))

(
u3(ch, 1, τS)− u3(ch, 0, τS) + δ

∫
u(x4, τS) dF∆(x4|ch)

))
+ γ

(
G(gτS ,3(cm, z))

(
u3(cm, 1, τS)− u3(cm, 0, τS) + δ

∫
u(x4, τS) dF∆(x4|cm)

))
Define the identified functions H(·) and Q(·) as

H(x2, z) =

∫
u3(x3, 0, τS) dF∆(x3|x20, z)

+

∫ g(x3,z,τS)

∆εdG(∆ε) dF∆(x3|x20, z)

+ γG(gτS ,3(ch, z)(u3(ch, 1, τS)− u3(ch, 0, τS))

+ γG(gτS ,3(cm, z)(u3(cm, 1, τS)− u3(cm, 0, τS)).

(32)

Q(z) = δG(gτS ,3(ch, z))βτSδ

∫
u(x4, τS) dF∆(x4|ch, z)− δG(gτS ,3(cm, z))βτSδ

∫
u(x4, τS) dF∆(x4|cm, z)

In particular, Q(z) is identified since βτSδ
∫
u4(x4, τS) dF∆(x4|x3, z) is identified from Lemma 1, δ is identified from

the results above and G(gτS ,3(ch, z)) is identified since G(·) is known and gτS ,3(ch, z) is identified. We can then write

βτSδ

∫
v∗τS ,3(s3, z) dF∆(s3|x2, z) = βτSδH(x2, z) + Q(z).

The identified function for the “sophisticated” types is then given

gτS ,2(x2, z) = u2(x2, 1, τS)− u2(x2, 0, τS) + βτSδH(x2, z) + Q(z). (33)

Therefore, under Assumption 8, the hyperbolic parameter βτS is identified as are the utility differentials for period
2: u2(x2, 1, τS)− u2(x2, 0, τS) for x2 ∈ XC .
inconsistent “näıve” agents
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Finally, consider agents for whom β̃τN = 1. For these agents, we identify the function

gτN ,2(x2, z) = u2(x2, 1, τN )− u2(x2, 0, τN ) + βτN δ

∫
v∗τN (s3, z) dF∆(s3|x2, 1, z). (34)

Next, the function g̃τN ,s(x3, z, 1) is identified since (i) the utility differentials u3(x3, 1, τN )−u3(x3, 0, τN ) are identified
by Lemma 1, (ii) δ is identified by the first part of the proof above and (iii)

∫
u4(x4, τN ) dF∆(x4|x3, z) is identified

by Assumption 7. Looking at equation (10) we see that
∫
v∗τN (s3, z) dF∆(s3|x2, z) is therefore identified (given the

normalization assumption). Since βτN is identified by Lemma 2 and δ is identified above we conclude that the last
term in the display (34) is also identified. Therefore, the utility differential u2(x2, 1, τN )− u2(x2, 0, τN ) is identified
for all x2 ∈ XB .

Proof of Lemma 4

Proof. We first prove that the type-specific choice probabilities are identified. We then use the inversion argument
as before (see Appendix C for the direct argument) to recover preference parameters. First, note that by the
assumption of directly observed types, PτC (a1|x1) = P(a1|x1, r = 0) so that the type-specific choice probabilities
for time consistent agents are identified trivially. Similarly, since we assume that “sophisticated” types only choose
between {n, c} and “näıve” types only choose between {n, b}, PτS (a1 = b|x1) = PτN (a1 = c|x1) = 0.

In order to identify the type-specific choice probabilities for “näıve” and “sophisticated” agents separately we
begin by considering the directly identified matrix E ≡ Pb1,1L

−1
2 for given values of (x1, x

′
1, x2, x

′
2) for xt 6= x′t. Note

that under the assumptions stated, E = (La1)′V1, which is given by

(Lb1)′V1 =

0 πτN (1) πτS (1)
0 πτN (1)PτN (a1 = b, x1) πτS (1)PτN (a1 = b, x′1)
0 πτN (1)PτS (a1 = b, x1) πτS (1)PτS (a1 = b, x′1)


so that the type probabilities (πτ ) and PτN (a1 = b|x1) are identified. In addition, the type-specific distribution for
the initial state PτN (x1) is identified (note that by assumption PτS (a1 = b|x1) = 0) . Following the same argument
but for the choice of the commitment contract yields identification of PτS (a1 = c|x1) and PτS (x1). Therefore, all the
type-specific choice probabilities are identified. Next, using the same inversion argument as before we can invert the
choice probability for type τ to identify the functions

gτ,1,b(x1, z) = u(x1, b, τ)− u(x1, n, τ) + βτδ

∫
v∗τ (s2, z) dF∆,b(s2|x1, z) (35)

gτ,1,c(x1, z) = u(x1, c, τ)− u(x1, n, τ) + βτδ

∫
v∗τ (s2, z) dF∆,c(s2|x1, z) (36)

where the signed measure is dF∆,a(s2|s1, z) = dF(s2|x1, a1 = a, z) − dF(s2|x1, a1 = n, z). Define the period 2
type-specific value function as

v∗τ (s2, z) ≡ vτ (s2, d
τ (s2, z), z) (37)

where

vτ (s2, a, z) ≡ u2(x2, a, τ) + ε2(a) + δ

∫
v∗τ (s3, z) dF(s3|x2, a, z).

The decision rule for an agent of type τ in period 2 is

dτ (s2, z) = I
{
u2(x2, 1, τ) + ε2(1) + β̃τδ

∫
v∗τ (s3, z) dF(s3|x2, 1, z) ≥

u2(x2, 0, τ) + ε2(0) + β̃τδ

∫
v∗τ (s3, z) dF(s3|x2, 0, z)

}
.

As before, β̃τ is the present-bias that agent in period 1 thinks she will have in period 2. A time consistent agent knows
that he is not subject to present-bias and so β̃τC = βτC = 1. “Näıve” inconsistent agents assume that their future
selves are not subject to present-bias and will therefore set β̃τN = 1. Conversely, “sophisticated” agents recognize
that their future selves will be present biased and we assume that such agents will set β̃τS = βτS .

From the previous results the last term in each of the equations (35 and 36) is identified so that using the
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variation in beliefs assured by Assumption 8 we conclude that the utility differentials u(x1, b, τ) − u(x1, n, τ) and
u(x1, c, τ)− u(x1, n, τ) are identified for all initial states x1 and for all types τ .

Proof of Lemma 5

Proof. The idea of the proof is based on Lemma 4 of Kasahara and Shimotsu (2009). The difference is that we use
an exclusion restriction — that conditional on the state,36 ru ≡ (r, a1) only affect type probabilities — to generate
identification instead of placing restrictions on the number of periods required.

We first simplify the joint probability of (at, at+1, xt, xt+1) (for t > 1) and suppress the conditioning on z
throughout for convenience.37

P(at = 1, at+1 = 1, xt, xt+1|ru)

=
∑
τ∈T

πτ (ru)Pτ (at+1 = 1, at = 1, xt+1, xt|ru)

=
∑
τ

πτ (ru)Pτ (at+1 = 1|at = 1, xt+1, xt, ru)Pτ (xt+1|at = 1, xt, ru)Pτ (at = 1, xt)

We use the fact that the optimal action in any period only depends upon previous actions and states through the
current state (see e.g. equation (22)), Assumption 13 and that Pτ (at = 1, xt|ru) = Pτ (at = 1, xt) . Next, since by
assumption P(xt+1|xt, at = 1, z) does not vary by type, we can take them on the left hand side (under the assumption
that these are always strictly positive) and define

P(at = 1, at+1 = 1, xt = xa, xt+1 = xb|ru)

P(xt+1 = xb|xt = xa, at = 1)
≡ Ft,t+1

xa,xb,ru
. (38)

In what follows, we assume that there are M total types to highlight the generality of the argument.

Ft,t+1
xa,xb,ru

=

M∑
τ=1

πτ (ru)Pτ (at+1 = 1|xt+1 = xb, z)Pτ (at = 1, xt = xa)

Ftxa,ru =

M∑
τ=1

πτ (ru)Pτ (at = 1, xt = xa)

Ft+1
xb,ru

=

M∑
τ=1

πτ (ru)Pτ (at+1 = 1|xt+1 = xb)

Define the M ×M matrix

Pt,ru =


1 Ft+1

xa,τ . . . Ft+1
xM−1,ru

... Ft,t+1
xa,xa,ru . . . Ft,t+1

xa,xM−1,ru
...

... . . .
FtxM−1,ru Ft,t+1

xM−1,xa,ru . . . Ft,t+1
xM−1,xM−1,ru

 (39)

Next, define Pτ (at+1 = 1|xt+1 = xb) ≡ λτt+1,xb
and Pτ (at+1 = 1, xt = xa) ≡ λτt,xa . Define the M ×M matrix for t

and t+ 1

Lt =

 1 λ1
t,xa λ1

t,xM−1

...
...

...
1 λMt,xa λMt,xM−1

 (40)

Finally, define the M ×M matrix Vru = diag(πτ1(ru)...πτM (ru)). It is easy to show the following factorization holds.

Pt,ru = L′tVruLt+1 (41)

36Defined to include first period choice.
37Therefore, all identified quantities, including the type probabilities can vary by observables z which is potentially important.
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and by assumption each term on the right hand side is invertible. Next, consider the directly identified object A
defined by

A ≡ P−1
t,ruPt,r′u = L−1

t+1V
−1
ru Vr′uLt+1 (42)

so that
Lt+1A = V̂ru,r′uLt+1

where V̂
ru,r′u

≡ V−1
ru Vr′u is a diagonal matrix. The expression above asserts that the diagonal matrix V̂ru,r′u contains

the eigenvalues of A and that the rows of Lt+1 comprise its left eigenvectors. Therefore, these objects are identified
by carrying out an eigenvalue decomposition of the identified matrix A. Note that the eigenvectors are only identified
up to scale, so that we can identify the matrix E ≡ DLt+1 where D is a diagonal matrix (and we have Lt+1 = D−1E)
Next,

PruE
−1 = L′tVruD

−1.

Since the first row of L′t consists of ones, the first row of the identified matrix PruE
−1 identifies the elements of the

diagonal matrix VruD
−1. Define F ≡ VruD

−1 to be the identified matrix from this analysis. Next, note that

L′t = PruL
−1
t+1V

−1
ru = PruE

−1DV−1
ru = PruE

−1F−1

where all the terms on the right hand side are identified, so that Lt is identified.
Next,

VruLt+1 = (L′t)
−1Pru = PruE

−1F−1Pru . (43)

The first column on the left hand side consists of the diagonal elements of the matrix Vru . Therefore Vru is identified
since all the matrices on the right hand side in (43) are identified. Denote by G ≡ Vru the diagonal matrix obtained
by this argument. Then,

Lt+1 = G−1PruE
−1F−1Pru , (44)

where the matrix G is invertible since by assumption all its diagonal entries are non-zero. Finally, note that since
Vru is identified, then Vr′u = GV̂ru,r′u and so Vr′u is also identified since both G and V̂ are identified. We can
apply this result for (t, t + 1) = (2, 3) to identify the type-specific choice probabilities for these periods. We can
then use Lemma 4 to recover the type-specific choice probabilities for period 1 as well as the type probabilities
πτ (r) (i.e. the type probabilities only conditioning on r). To see this, consider the matrices Pa1,r (defined in (7)),
Vr = diag(πτC (r), πτN (r), πτS (r)) and La1 (defined in (8)) and the relationship Pa1,r = (La1)′VrL2. Since L2 is identified

from the previous arguments, we can identify L−1
2 P1,r ≡ E. Next, note that the first row of E contains the elements

of the matrix Vr. Therefore, the matrix La1 is identified as V−1
r E for a ∈ {b, c} and therefore Ln1 is also identified.

Finally, since {πτ (r, a)}τ∈T ,a∈{b,c} and {πτ (r)}τ∈T are both identified, and since

πτ (r) =
∑
a1∈A1

πτ (r, a1)P(a1|r),

we can recover πτ (r, n) as well for τ ∈ T .

Appendix B: Results for General Discrete State and Action Space

In this section, we consider the case where the action space At has cardinality K (the results extend easily to the
case where the cardinality varies by time) so the agent can take one of K actions in each period, at ∈ {0, ...K − 1}.
In addition, we assume that the state space has general finite discrete support. The identification results will require
a precise relationship between the support of the belief vector z and the number of points in the state space support
and these are explicated below. In the interest of exposition, we consider identifying variation in the belief vector
z directly (rather than the γ component of it as earlier) and assume z has finite support. This assumption is not
necessary and can be modified straightforwardly if this is not the case. Finally, we suppress dependence upon v
which is not used for identification.

We show identification for the case where the type-specific choice probabilities are identified. In the case of
unobserved types, an analogue of Lemma 5 can be applied to yield the type-specific choice probabilities in the first
step and the results below applied subsequently.
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Final Period and Penultimate Period Identification

First, as before we use standards results (see Hotz and Miller, 1993 or the direct argument in Appendix C) to justify
the inversion argument from the choice probabilities to utility differentials. From this argument we conclude that
there exists a K − 1 vector of directly identified functions gτ,3(x3, z) such that

gτ,3(x3, z) =

 ũτ,1
...

ũτ,K−1

 (45)

where

ũτ,k ≡ u(x3, k, τ)− u3(x3, 0, τ) + βτδ

∫
u(x4, τ) dF∆,k(x4|x3, z)

and we define the signed measure

dF∆,k(x4|x3, z) ≡ dF(x4|x3, k, z)− dF(x4|x3, 0, z)

The identification argument exploits the restrictions implied by equation (45). It will be useful to take differences
of g(·) evaluated at two distinct points in the support of z. This eliminates the third period utility differentials and
allows us to first focus on identifying the utility function in the final period.

gτ,3(x3, zs)− gτ,3(x3, z1)

= βτδ


∫
u(x4, τ) dF∆,s

∆,1(x4)
...∫

u(x4, τ) dF∆,s
∆,K−1(x4)

 (46)

where the signed measure dF∆,s
∆,k(x4) is defined as

dF∆,s
∆,k(x4) ≡ dF∆,k(x4|x3, zs)− dF∆,k(x4|x3, z1)

Define ∆gτ,3(zs) ≡ gτ,3(x3, zs)− gτ,3(x3, z1).
One can pursue at least two distinct identification strategies from this point on. We discuss each in turn. First,

one direct route (that does not depend upon the cardinality of the action space) places strong assumptions on the
variation in beliefs to identify final period utility. In the context of our application, this could either be variation
in beliefs about future income or about malarial incidence. In this first approach, we require that there be as many
points of support in the belief distribution as there are observable states in the final period (which we denote by
#X4).

ASSUMPTION 16. The distribution of the belief vector z conditional on x3 has at least #X4 points of support.

Consider, for a given zs, the kth element ∆gτ,3,k(zs) of ∆gτ,3(zs) and form the vector (of dimension (#X4 −

1) × 1) ∆̄gτ,3,k =

(
∆gτ,3,k(z1), . . . ,∆gτ,3,k(z#X4−1)

)′
. Since by assumption the state space is discrete and since∑#X4

r=1 dF∆,s
∆,k(x4,r) = 0, we can rewrite this vector as

∆̄gτ,3,k =


∑#X4−1
r=1 βτδ(u(x4,r, τ)− u(x4,0, τ))F∆,1

∆,k (x4r)
...∑#X4−1

r=1 βτδ(u(x4,r, τ)− u(x4,0, τ))F∆,#X4−1
∆,k (x4r)

 (47)

which is a system of #X4 − 1 linear equations in the #X4 − 1 unknowns {u(x4,r, τ)− u(x4,0, τ)}#X4−1
r=1 . This system

will always have a solution if
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ASSUMPTION 17. The matrix dF∆,·
∆,k defined below is invertible a.e. x3

dF∆,·
∆,k ≡


dF∆,1

∆,k(x4,1) . . . dF∆,1
∆,k(x4,#X4−1)

...
...

...

dF∆,#X4−1
∆,k (x4,1) . . . dF∆,#X4−1

∆,k (x4,#X4−1)


The invertibility assumption implies that not only is there sufficient variation in beliefs, but that this variation in
beliefs translates into sufficient independent variation in state probabilities. In the simple case with only 2 states in
the final period and where dF(x4) depends linearly on z, this reduces to the condition that z has at least two points
of support. Note that the above assumption assumes that from every state x3 every possible point in the support
of x4 is reached with positive probability. If this is not true, the above argument (and assumption) needs to be
interpreted as referring to only those points in X4 that can be reached with positive probability from a given x3

LEMMA 7. Consider an agent of type τ solving at t = 1 the problem (3) and that Assumptions 1–4,16 and 17
hold. We observe an i.i.d. sample on ({a∗t , xt}T−1

t=1 , w). Then,

1. Discounted normalized utility in the final period {βτδ (u(x4,r, τ)− u(x4,0, τ))}#X4−1
r=1 are identified.

2. The utility differentials in the penultimate period {(u3(x3, k, τ)− u3(x3, 0, τ))}K−1
k=1 are identified for x3 ∈ X3

The proof is straightforward and follows directly from the invertibility assumption and equation (47) and is omitted.
An alternative approach that requires fewer points of support in the belief distribution would use the unexploited
restrictions on u(x4) coming from all K − 1 equations in (46).
Next, as before we can identify βτN under the addition of Assumption 7. We state the result but omit the proof.

LEMMA 8. Consider an agent of type τN solving at t = 1 the problem (3) and that Assumptions 1–4, 7,16 and 17
hold. Then, βτN is identified.

Period 2 Identification

We next show identification for normalized utility in period 2. We first state the additional assumptions (analogues
of Assumptions 8 and 9 respectively).

ASSUMPTION 18. The distribution of z conditional on x2 has at least two points of support. Also,

1. For the identified function v∗τC ,3(s3, z) defined in (49) below,
∫
v∗τC ,3(s3, z2) dF∆,k(s3|x2, z2) 6=

∫
v∗τC ,3(s3, z1) dF∆,k(s3|x2, z1)

2. For the identified function J(x2, z) J(x2, z1) 6= J(x2, z2) where J(x2, z) is defined in Equation (53).

ASSUMPTION 19. We normalize utility levels by assuming that u3(x3, 0, τ) is known for all x3 ∈ X3, τ ∈ T and
that final period utility in a base state u(x4,0, τ) , τ ∈ T is known.

We can next state the result

LEMMA 9. Consider an agent of type τ solving at t = 1 the problem (3) and that Assumptions 1–4, 7,16–19 hold.
Then

1. Period 2 utility differentials {u2(x2, k, τ)− u2(x2, 0, τ)}K−1
k=1 are identified for all x2 ∈ X2

2. δ and βτS are identified.

Proof. The probability that an agent of type τ will take action k in period 2 (corresponding, say to the number of
household members he can potentially cover under a treated net) is

Pτ (a∗2 = j|x2, z) = P
(
j = argmaxk

{
u2(x2, k, τ) + ε2(k) + βτδ

∫
v∗τ (s3, z) dF(s3|x2, k, z)

})
(48)
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where we define

v∗τ (s3, z) ≡ vτ (s3, d
τ (s3, z), z, 1)

vτ (s3, a, z, c) ≡ u3(x3, a, τ) + ε3(a) + cδ

∫
u(x4, τ) dF(x4|x3, a, z)

dτ (s3, z) ≡ argmaxk

{
vτ (s3, k, z, β̃τ )

}
vτ,∆(s3, a, z, c) ≡ vτ (s3, a, z, c)− vτ (s3, 0, z, c).

Aτ (s3, z) ≡ I
{
a = argmaxj{vτ (s3, j, z, β̃τ )}

}
We can then rewrite

v∗τ (s3, z) =

K−1∑
a=1

vτ,∆(s3, a, z, 1)Aτ (s3, z) + vτ (s3, 0, z, 1) (49)

We consider identification for the three different types of agent. We first focus on the identification of

βτδ

∫
v∗τ (s3, z)dF∆,k(s3|x2, z) (50)

time-consistent agents
For time consistent agents,

vτC ,∆(s3, a, z, 1) = vτC ,∆(s3, a, z, β̃) = ũτC ,a(x3, z) + ε3(a)− ε3(0)

where ũτC ,a(x3, z) is identified from equation (45). Since the distribution of ε3 is known by assumption we conclude
that

∫
v∗τC (s3, z)dF∆,k(s3|x2, z) is identified.

Next, as before, using standard inversion arguments (see Appendix C for a direct argument) we can identify

gτ,2(x2, z) =

 ũτ,2,1
...

ũτ,2,K−1

 (51)

where

ũτ,2,k(x2, z) ≡ u2(x2, k, τ)− u2(x2, 0, τ) + βτδ

∫
v∗τ (s3, z) dF∆,k(s3|x2, z). (52)

For time-consistent agents, the last term in the expression above is identified from the previous argument upto δ.
Under Assumption 18, evaluating ũτ,k,z at two different values of z allows us to identify δ. Substituting for δ into
equation (52) yields identification of u2(x2, k, τC)− u2(x2, 0, τC).
“sophisticated” time-inconsistent agents
For “sophisticated” agents,

vτS ,∆(s3, a, z, β̃τS ) = vτS ,∆(s3, a, z, βτS )

= ũ3,τS ,a(x3, z) + ε3(a)− ε3(0)

where the first term on the right-hand side is identified. However, vτS ,∆(s3, a, z, 1) is not identified so that showing
that (50) is identified requires more work. First, we write

βτSv
∗
τS (s3, z) = βτS

K−1∑
a=1

(u(x3, a, τS)− u(x3, 0, τS))Aτ (s3, z)︸ ︷︷ ︸
Ĵ

+

K−1∑
a=1

βτSδ

∫
(u(x4, τS)− u(x4,0, τS)) dF∆,a(x4|x3, z)Aτ (s3, z)︸ ︷︷ ︸

K̂

+ βτS u3(x3, 0, τS)︸ ︷︷ ︸
M̂

+βτSδ

∫
(u(x4, τS)− u(x4,0, τS)) dF(x4|x3, 0, z)︸ ︷︷ ︸

N̂

(53)
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and examine each expression in turn. First, the term inside the summation does not pose a problem since the
period 3 utility functions are identified and the distribution of ε is known so that J ≡

∫
Ĵ dF∆,k(s3|x2, z) will be

identified. Similarly, K ≡
∫

K̂ dF∆,k(s3|x2, z) and N ≡
∫

N̂ dF∆,k(s3|x2, z) are also identified since final period
utilities (multiplied by βτδ) are identified by Lemma 7. Next, u3(x3, 0, τS) is assumed known (Assumption 19) so
that M ≡

∫
M̂ dF∆,k(s3|x2, z) is also identified. Therefore we can write∫

βτSv
∗
τS (s3, z) dF∆,k(s3|x2, z) = βτS (J(x2, z) + M(x2)) + K(x2, z) + N(x2, z)

so that we can rewrite (52) (for sophisticated types) as

ũτS ,2,k(x2, z) ≡ u2(x2, k, τS)− u2(x2, 0, τS) + δ

(
βτS (J(x2, z) + M(x2)) + K(x2, z) + N(x2, z)

)
(54)

and under Assumption 18 we can conclude that βτS is identified and consequently that u2(x2, k, τS) − u2(x2, 0, τS)
is identified for x2 ∈ X2.
“näıve” time-inconsistent agents

For “näıve” agents, the standard inversion argument identifies

ũτN ,2,k(x2, z) ≡ u2(x2, k, τN )− u2(x2, 0, τN ) + βτN δ

∫
v∗τN (s3, z) dF∆,k(s3|x2, z). (55)

Recall that (βτN , δ) are already identified. Further as we will show below,
∫
v∗τ (s3, z) dF∆,k(s3|x2, z) is also identified.

Therefore, u2(x2, k, τN )− u2(x2, 0, τN ) is identified.
To see that v∗τ (s3, z) dF∆,k(s3|x2, z) is identified, first recall that

v∗τN (s3, z) =

K−1∑
a=1

vτN ,∆(s3, a, z, 1)Aτ (s3, z) + vτN (s3, 0, z, 1)

=

K−1∑
a=1

(u(x3, a, τN )− u(x3, 0, τN ))AτN (s3, z) +

K−1∑
a=1

δ

∫
(u(x4, τN )− u(x4,0, τN )) dF∆,a(x4|x3, z)Aτ (s3, z)

+ u(x3, 0, τN ) + δ

∫
(u(x4, τN )− u(x4,0, τN )) dF(x4|x3, 0, z)

and each expression on the right hand side above is identified.

Period 1 Identification

Conditional on the identification of the type-specific choice probabilities, identification of utility in the first period
follows the same arguments as previously. Identifying the type-specific choice probabilities for the first period uses
the same arguments as in Lemma 4 (under Assumptions 10 and 11) and we omit the details here.

Once the type specific choice probabilities are identified, using standard inversion arguments (see Appendix C
for a direct argument) we can show that the function

g1,τ (x1, z) =

 ũτ,1,1
...

ũτ,1,K−1

 (56)

is identified and where

ũτ,1,k(x1, z) ≡ u(x1, k, τ)− u(x1, 0, τ) + βτδ

∫
v∗τ (s2, z) dF∆,k(s2|x1, z) (57)
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and as before we define the signed measure

dF∆,k(s2|s1, z) ≡ dF(s2|s1, k, z)− dF(s2|s1, 0, z)

v∗τ (s2, z) ≡ vτ (s2, d
τ (s2, z), z, 1)

vτ (s2, a, z, c) ≡ u2(x2, a, τ) + ε2(a) + cδ

∫
v∗τ (s3, τ) dF(s3|x2, a, z)

dτ (s2, z) ≡ argmaxk

{
vτ (s2, k, z, β̃τ )

}
vτ,∆(s2, a, z, c) ≡ vτ (s2, a, z, c)− vτ (s2, 0, z, c).

Aτ (s2, z) ≡ I
{
a = argmaxj{vτ (s2, j, z, β̃τ )}

}
We next make an explicit normalization on second period utility

ASSUMPTION 20. u2(x2, 0, τ) is known for all x2 ∈ X2

Then, βτδ
∫
v∗2(s2, z) dF∆,k(s3|x2,z) is identified. We can then directly identify the first period utility (upto a

normalization)

ũτ,1,k(x1, z)− βδ
∫
v∗τ (s2, z) dF∆,1(s2|s1, z) = u(x1, k, τ)− u(x1, 0, τ)

and we record the result

LEMMA 10. Consider an agent of type τ solving at t = 1 the problem (3) and that Assumptions 1–4, 7,10,11,16–20
hold. Then, the first period utility differentials u(x1, b, τ) − u(x1, n, τ) and u(x1, c, τ) − u(x1, n, τ) are identified for
all x1 ∈ X1 and for all types τ . In addition the type probabilities {πτ (·)}τ∈T are also identified.

Appendix C: Inversion Argument

In in the interest of keeping proofs self-contained we provide a simple direct argument for the inversion of choice
probabilities that is used repeatedly in the previous proofs.38 To simplify the exposition, we consider the case where
the action space has 3 elements so that a ∈ {0, 1, 2} although the general case follows exactly analogously. We
maintain assumptions Assumptions 1-3 for the argument. The probability that an agent chooses action 0 will be
given by

P(a2 = 0|x2) =Px2


u(x2, 0) + ε(0) + βδ

∫
v∗(s3) dF(s3|s2, 0) ≥

u(x2, 1) + ε(1) + βδ
∫
v∗(s3) dF(s3|s2, 1),

u(x2, 0) + ε(0) + βδ
∫
v∗(s3) dF(s3|s2, 0) ≥

u(x2, 2) + ε(2) + βδ
∫
v∗(s3) dF(s3|s2, 2)


Correspondingly, the probability that an agent will choose action 1 will be given by

P(a2 = 1|x2) =Px2


u(x2, 0) + ε(0) + βδ

∫
v∗(s3) dF(s3|s2, 0) ≤

u(x2, 1) + ε(1) + βδ
∫
v∗(s3) dF(s3|s2, 1),

u(x2, 1) + ε(1) + βδ
∫
v∗(s3) dF(s3|s2, 1) ≥

u(x2, 2) + ε(2) + βδ
∫
v∗(s3) dF(s3|s2, 2)


38see Hotz and Miller (1993) for the original (different) argument. Note that for our argument, we require that the distri-

bution of the unobservable state variables conditional on the observed state variables has support over all of RK where K is
the number of possible actions
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Next, define

û1 ≡ u(x2, 1)− u(x2, 0) + βδ

∫
v∗(s3) dF∆,1(s3|s2)

û2 ≡ u(x2, 2)− u(x2, 0) + βδ

∫
v∗(s3) dF∆,2(s3|s2)

and as usual, the signed measure is defined as

dF∆,k(s3|s2) ≡ dF(s3|s2, k)− dF(s3|s2, 0)

Using this notation, we can write the inequalities more compactly as

P(a2 = 0|x2) = P (ε(0)− û1 ≥ ε(1), ε(0)− û2 ≥ ε(2)|x2)

P(a2 = 1|x2) = P (ε(0)− û1 ≤ ε(1), ε(1) + (û1 − û2) ≥ ε(2)|x2)

Suppose that (û1, û2) are not identified from these equations. Then, there exist (u∗1, u
∗
2) such that

P (ε(0)− û1 ≥ ε(1), ε(0)− û2 ≥ ε(2)|x2)− P (ε(0)− u∗1 ≥ ε(1), ε(0)− u∗2 ≥ ε(2)|x2) = 0 (58)

P (ε(0)− û1 ≤ ε(1), ε(1) + (û1 − û2) ≥ ε(2)|x2)− P (ε(0)− u∗1 ≤ ε(1), ε(1) + (u∗1 − u∗2) ≥ ε(2)|x2) = 0 (59)

We will show that these inequalities are mutually contradictory. We will throughout assume that we are conditioning
on x2. First, assume first that û1 > u∗1. Then, in order for the first equality to hold, we must have û2 < u∗2. To see
this, note that if instead û2 ≥ u∗2 then the set

{ε(0)− û1 ≥ ε(1), ε(0)− û2 ≥ ε(2)} ⊂ {ε(0)− u∗1 ≥ ε(1), ε(0)− u∗2 ≥ ε(2)} = 0

and as long as dF(ε|x2) had strictly positive measure on all of R3, the equality in (58) cannot hold.39 Therefore, if
û1 > u∗1 we must have û2 < u∗2. But, in turn, if this is true, then the equality (59) cannot hold because

{ε(0)− û1 ≤ ε(1), ε(1) + (û1 − û2) ≥ ε(2)} ⊂ {ε(0)− u∗1 ≤ ε(1), ε(1) + (u∗1 − u∗2) ≥ ε(2)}

We can carry out similar arguments using the opposite inequalities to conclude that the (û1, û2) are identified.

Appendix D: Data and Estimation Details

State Space
Malaria: In period one, the malaria indicator is equal to 1 if any one in the household tested positive for malaria using
the rapid diagnostic test during the baseline. In period two, the malaria indicator is equal to one if the household
reported someone contracting malaria in the period between the purchase of the nets and the first retreatment (this
information was collected at the time of the first retreatment). Finally, malaria in period 3 is a binary indicator for
malaria incidence in the household that is measured during the follow up survey.
Income: The income indicator is equal to one if a household’s income level was high in that period and zero other
wise. This variable was derived by first generating an income process and then choosing a cut-off value appropriately.
The income process is generated as follows: First, we use household reports about their expectations of future income
to construct a household specific income distribution using a triangular distribution. In particular, households at
baseline report an upper and lower bound for expected future annual income as well as the probability that the
realized income will be greater than the average of the lower and upper bounds. These reports (denoted by [l, u, q])

39Note that in this argument all that is required is that the distribution of the ε vector conditional on x2 has support over
all of R3
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and the parametric distribution assumption imply that the C.D.F. of income is

F (y) =I{y ≤ l + u

2
}
(

4q

(u− l)2
(y − l)2

)
+

I{y ≥ l + u

2
}
(

4(1− q)
(u− l)2

(u− y)2

)
Next, we draw from this distribution by inverting the CDF (for a uniformly distributed random variable u) to
generate y as

u ≤ q ⇒ y = l +

(
(u− l)

2

)√
u

q

u ≥ q ⇒ y = u−
(

(u− l)
2

)√
1− u
1− q

and we set y equal to the lower or upper bound if the above algorithm yields draws that violate the support condition.
Denote the three draws from this distribution as {εs}3s=1. We then generate income {yt}3t=1 as yt = αyt−1 +(1−α)εt
where y0 is baseline income and α is the autoregressive coefficient in the regression of follow-up income on baseline
income. We then experimented with various discretizations of the income variable and given the sparseness of the
data, settled on a two point distribution depending upon whether household income was above or below the median
income for that period (using alternative cut-offs such as the mean did not alter the results). Finally, for periods 2
and 3 the state variables also include the kind of contract purchased in period 1.
Other Variables
Attitudes Towards Risk: We also measured household’s attitudes towards risk using a version of the procedure
proposed by Holt and Laury (2002). Each respondent was presented with a set of five choice problems. In each
problem, the respondent was asked to choose between two lotteries (denoted A and B respectively). The lotteries
were designed so that a risk-neutral agent would choose lottery A for the first two problems and switch to lottery B
for the remaining 3 problems. We use as our measure of a household’s attitude towards risk the number of times the
household chose option A in response to the choice problems.
Household Assets: A baseline measure of household assets is used as a conditioning variable in the analysis. The
measure is (a function of) the first principal component of the following baseline binary asset indicators: house
ownership, motorbike ownership, bicycle ownership, radio ownership, clock ownership, car ownership television own-
ership, fan ownership, poultry ownership, livestock ownership (small and large), land ownership. In order to ease the
first step inversion (which needs to be carried out at each value of the conditioning variables, we classify households
into either a low or a high asset category if they were respectively below or above the median of the first principal
component.
Beliefs The beliefs data is discussed in greater detail on page 6. In order to ease the first step inversion (which needs
to be carried out at each value of the conditioning variables) we use a three point support for the belief data.
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Bargarh

Sambalpur

Khandhamal
(Phulbani)

Balangir

Keonjhar

Figure 1: Study Areas

Notes: A total of 166 villages have been included in the study. The 47 communities studied within this
paper include 8 villages in Sambalpur, 3 in Kandhamal (Phulbani), 10 in Keonjhar, 10 in Balangir and 16
in Bargarh.
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Figure 2: Perceived Protective Power of Bednets

Notes: Histograms of subjective beliefs about the protective power of bednets. Data from March-April
2007 baseline survey.
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Table 1: Baseline Summary Statistics

Mean Median S.d.

Household size 5.3 5 2.1
no. children under 5 .49 0 .7
Head is male .93 1 .25
Age of head 45 45 12
Per capita monthly total expenditure 705 602 426
Highest no. of years of schooling in household 8.6 9 3.6

Nets per head (pre-intervention) .31 .25 .31
ITNs per head (pre-intervention) .055 0 .18
Owns at least one net .67 1 .47
% protected by a net last night .16 0 .32
% protected by an ITN last night .032 0 .15
% usually sleeping under net in malaria season .57 .8 .46

Malaria prevalence (RDT) .11 0 .29
Anemia prevalence (RDT) .46 .5 .46
Thinks mosquitoes are malaria carriers .96 1 .2
Thinks bednets can protect against malaria .95 1 .22
Expected cost of a malaria episode (working man) 2865 2300 2318
Expected cost of a malaria episode (working woman) 1874 1550 2167
Expected cost of a malaria episode (non-working) 1772 1400 1524
Mean cost of recent (actual) malaria episodes 1326 748 1637

Notes: Data from March-April 2007 survey. n = 621. All monetary values are in Rs. (PPP exchange rate ≈ 16Rs/USD,
(World Bank, 2008)).
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Table 2: Baseline Time Preferences

Prefers Rs. 10 to Rs. 10 in 4 mts 0.84
Prefers Rs. 10 to Rs. 12 in 4 mts 0.71
Prefers Rs. 10 to Rs. 14 in 4 mts 0.65
Prefers Rs. 10 to Rs. 16 in 4 mts 0.60

Prefers Rs. 10 to Rs. 10 in 7 mts 0.82
Prefers Rs. 10 to Rs. 15 in 7 mts 0.63
Prefers Rs. 10 to Rs. 20 in 7 mts 0.53
Prefers Rs. 10 to Rs. 25 in 7 mts 0.49

Prefers Rs. 10 in 4 mts to Rs. 10 in 7 mts 0.83
Prefers Rs. 10 in 4 mts to Rs. 12 in 7 mts 0.73
Prefers Rs. 10 in 4 mts to Rs. 14 in 7 mts 0.66
Prefers Rs. 10 in 4 mts to Rs. 16 in 7 mts 0.58

Always prefers earlier reward 0.27
At least one “hyperbolic” preference reversal 0.26
Mean no. of “hyperbolic” preference reversals (> 0) 1.3

Notes: Data from March-April 2007 survey. n = 621. “Hyperbolic” preference reversals are defined as cases when the
respondent prefers the earlier reward at a short time horizon but switches to the later reward when both time horizons are
shifted away from the present by a same time period. The means in the last two rows are calculated including only respondents
who displayed at least one hyperbolic preference reversal.
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Table 3: Summary of purchases

(A) Mean S.d.
Fraction who purchased at least one loan contract .53 .5
no. ITNs purchased on credit .51 1.2
no. ITNs + 2 re-treatments purchased on credit .65 2.1
no. ITNs purchased on credit (conditional on purchase) 1.9 1.6
no. ITNs + 2 re-treatments purchased on credit (conditional on purchase) 2.3 3.5

no. of households who purchased ITNs only 153
no. of households who purchased ITNs + retreatment contracts 165
no. of households who purchased both types of contracts 12

(B) Mean S.d.
Fraction who purchased at least one cash contract .023 .15
no. ITNs purchased for cash .024 .33
no. ITNs + 2 re-treatments purchased for cash .0081 .09
no. ITNs purchased on loan (conditional on purchase) 2.5 2.5
no. ITNs + 2 re-treatments purchased on loan (conditional on purchase) 1 0

Notes: Data from September-November 2007.
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Table 4: Monte Carlo Results: Directly Observed Types

Mean Median Std.Dev IQR

N=150

δ 0.81 0.76 0.75 0.93
βN 0.76 0.68 0.45 0.57
βS 0.91 0.80 0.64 0.65
θ4 3.82 2.86 8.27 3.49
θ5 1.10 1.11 0.84 1.15

N=300

δ 0.88 0.86 0.52 0.65
βN 0.74 0.71 0.30 0.40
βS 0.83 0.79 0.32 0.41
θ4 4.37 3.09 4.92 3.11
θ5 1.03 1.03 0.56 0.74

N=600

δ 0.90 0.86 0.37 0.52
βN 0.71 0.70 0.18 0.25
βS 0.81 0.78 0.23 0.28
θ4 3.71 3.09 2.10 1.93
θ5 1.04 1.04 0.38 0.51

N=1200

δ 0.88 0.88 0.25 0.35
βN 0.71 0.70 0.13 0.20
βS 0.81 0.80 0.16 0.21
θ4 3.37 3.09 1.12 1.29
θ5 1.02 1.02 0.27 0.39

N=2400

δ 0.89 0.89 0.18 0.26
βN 0.69 0.69 0.09 0.13
βS 0.80 0.79 0.11 0.14
θ4 3.17 3.03 0.73 0.94
θ5 1.00 0.99 0.18 0.24

N=4800

δ 0.91 0.92 0.13 0.18
βN 0.70 0.70 0.07 0.10
βS 0.80 0.79 0.08 0.10
θ4 3.05 2.97 0.47 0.59
θ5 1.01 1.01 0.13 0.18

Notes: Each model was simulated 500 times. The true values for the parameter vector are
(δ, βN , βS , θ4, θ5) = (.9, .7, .8, 3, 1)
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Table 5: Monte Carlo Results: Unobserved Types

Mean Median Std.Dev IQR

N=150

δ 0.4992 0.3229 0.4955 0.6216
βN 1.6499 0.5385 2.9145 1.9593
βS 0.7057 0.5981 0.6116 0.4903
θ4 7.6032 6.2491 4.7227 4.1101
θ5 1.0383 1.0037 0.6848 0.9602

N=300

δ 0.6669 0.6309 0.3303 0.4147
βN 0.4034 0.2795 0.4306 0.6809
βS 0.9608 0.9315 0.4766 0.6875
θ4 5.0283 4.0879 3.3146 3.0744
θ5 1.0576 1.0462 0.5426 0.6934

N=600

δ 0.7377 0.7051 0.3016 0.4182
βN 0.4330 0.4020 0.4000 0.4674
βS 0.9475 0.9263 0.3027 0.4387
θ4 4.0817 3.6559 1.7953 2.2880
θ5 1.0742 1.0695 0.3836 0.5152

N=1200

δ 0.7200 0.7132 0.2873 0.4098
βN 0.4374 0.4146 0.2944 0.3445
βS 1.0216 0.9626 0.3825 0.4188
θ4 4.0004 3.3144 2.1385 2.0337
θ5 1.0135 1.0107 0.2779 0.3777

N=2400

δ 0.7865 0.7751 0.2083 0.2920
βN 0.4137 0.4096 0.1782 0.2229
βS 0.9701 0.9552 0.2143 0.2611
θ4 3.2838 3.0896 0.9665 1.2084
θ5 1.0159 1.0165 0.2054 0.2545

N=4800

δ 0.7921 0.7882 0.1464 0.2053
βN 0.4071 0.4040 0.1217 0.1595
βS 0.9623 0.9503 0.1479 0.1894
θ4 3.1284 3.0296 0.5999 0.8060
θ5 1.0093 1.0079 0.1401 0.1745

Notes: Each model was simulated 500 times. The true values for the parameter vector are
(δ, βN , βS , θ4, θ5) = (.8, .4, .95, 3, 1)
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Table 6: Predicting Contract Choice (Period 1)

(1) (2) (3)
Logit Logit Multinomial Logit

Any Contract C1 vs C2 C1 C2

Malaria (t=1) 0.34∗∗ 0.20 0.42∗ 0.26
(0.17) (0.31) (0.24) (0.21)

Income (t=1) -0.37∗ 0.055 -0.31 -0.43
(0.22) (0.33) (0.28) (0.27)

ITN Efficacy Beliefs -1.62∗ 1.94 -0.70 -2.39∗∗

(0.98) (1.20) (1.29) (1.05)

ITN Efficacy Squared 2.26∗ -2.31∗ 1.16 3.18∗∗

(1.20) (1.32) (1.52) (1.24)

Time Inconsistency 0.10 -0.071 0.046 0.15
(0.19) (0.27) (0.21) (0.26)

Household Size 0.028 -0.11 -0.017 0.065
(0.047) (0.078) (0.061) (0.055)

Baseline Assets 0.024 -0.35 -0.14 0.19
(Tercile 2) (0.19) (0.27) (0.25) (0.22)

Baseline Assets -0.45∗ -0.47 -0.69∗∗ -0.21
(Tercile 3) (0.26) (0.36) (0.35) (0.29)

2 #A Choices -0.24 0.55 0.012 -0.49
(0.29) (0.34) (0.33) (0.33)

3 #A Choices -0.33 0.072 -0.30 -0.36
(0.26) (0.36) (0.34) (0.30)

4 #A Choices -0.43 -0.19 -0.52∗ -0.35
(0.31) (0.34) (0.32) (0.37)

Baseline Net 0.18 0.34 0.34 0.025
Ownership (0.24) (0.30) (0.30) (0.27)

Constant 0.45 0.097 -0.25 -0.25
(0.46) (0.73) (0.67) (0.49)

Observations 572 290 572

Notes: Malaria is equal to 1 is anyone in the household suffered from Malaria in the six months before the offer

of ITNs. ITN Efficacy beliefs are household reported probabilities about the efficacy of ITNs. Time Inconsistency

is equal to 1 if the household exhibited at least one preference reversal to a set questions designed to elicit time

preferences. Baseline Assets is a ternary valued variable (3 is the highest tercile) based on a principal component

decomposition of asset ownership at baseline. The # A choices variable takes on 4 values equal to the number of times

the respondent picked option A in the questions on risk aversion (see Section 2 and Appendix 10 for more details on

the variables used). Standard errors are clustered at the village level. T-test significant at ***1%, **5%,*10%
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Table 7: Predicting Retreatment Rates

(1) (2) (3) (4) (5)
Retreatment C1 Retreatment C2 Retreatment C1 -Period 3 C2 - Period 3

Standard (C1) -0.49∗∗∗

(0.075)

Malaria -0.56 -2.40∗∗ -0.11 -0.16
(0.44) (1.10) (0.35) (0.62)

Income 0.49 -0.60 -0.31 -0.34
(0.41) (0.66) (0.61)( (0.63)

ITN Efficacy Beliefs -0.60 7.40∗∗∗ -3.30∗ 4.86∗∗∗

(2.11) (1.63) (1.84) (1.65)

ITN Efficacy Squared 1.44 -4.89∗ 6.05∗∗∗ -3.20
(2.01) (2.54) (2.21) (2.03)

Time Inconsistency -1.04∗∗ 0.45 -0.78 0.74
(0.47) (0.56) (0.62) (0.56)

Household Size -0.064 -0.074 -0.20 0.22
(0.11) (0.20) (0.18) (0.22)

Baseline Assets 0.49 -1.14∗ 0.84 -0.14
(Tercile 2) (0.47) (0.60) (0.61) (0.47)

Baseline Assets 0.62 -1.12 0.49 0.64
(Tercile 3) (0.60) (0.84) (0.62) (0.57)

2 #A Choices -0.090 -1.31 -0.38 0.30
(0.40) (1.21) (0.50) (0.98)

3 #A Choices -0.073 -1.43 -1.79∗∗ -0.29
(0.54) (1.16) (0.82) (0.77)

4 #A Choices 0.17 -0.78 -1.02∗ -0.43
(0.59) (1.15) (0.53) (0.69)

Baseline Net 0.11 0.15 0.94∗ -0.62
Ownership (0.48) (0.78) (0.54) (0.66)

Constant 0.93∗∗∗ -0.23 4.06∗∗∗ -0.26 0.36
(0.041) (1.04) (1.57) (1.13) (1.81)

Observations 290 141 149 141 149

Notes: Malaria is equal to 1 is anyone in the household suffered from Malaria in the six months before the offer

of ITNs. ITN Efficacy beliefs are household reported probabilities about the efficacy of ITNs. Time Inconsistency

is equal to 1 if the household exhibited at least one preference reversal to a set questions designed to elicit time

preferences. Baseline Assets is a ternary valued variable (3 is the highest tercile) based on a principal component

decomposition of asset ownership at baseline. The # A choices variable takes on 4 values equal to the number of times

the respondent picked option A in the questions on risk aversion (see Section 2 and Appendix 10 for more details on

the variable used). Standard errors are clustered at the village level. T-test significant at ***1%, **5%,*10%
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Table 8: Type Probabilities

πτ (r) Estimate 2.5 97.5

πC(0) 0.3870 0.2894 0.4837
πN (0) 0.5019 0.4172 0.6059
πS(0) 0.1111 0.0593 0.1691

πC(1) 0.4143 0.3092 0.5126
πN (1) 0.4699 0.3851 0.5790
πS(1) 0.1158 0.0639 0.1756

Notes: πτ (r) is the probability that an agent is of type τ given their response to the time-inconsistency question r. The

second and third columns are the 2.5th and 97.5th percentiles of the bootstrap distribution of the type-probabilities

computed using a clustered bootstrap (at the village level) with 200 replications.

Table 9: Type Probabilities (Conditional on Contract Choices C1 or C2)

πτ (r, a1) Estimate 2.5 97.5

πC(0, 1) 0.3565 0.2776 0.4484
πN (0, 1) 0.5153 0.4409 0.5876
πS(0, 1) 0.1282 0.0729 0.2034

πC(0, 2) 0.2780 0.1394 0.4186
πN (0, 2) 0.5697 0.4644 0.6856
πS(0, 2) 0.1523 0.0486 0.2978

πC(1, 1) 0.3970 0.3196 0.4792
πN (1, 1) 0.4738 0.4052 0.5505
πS(1, 1) 0.1292 0.0801 0.1938

πC(1, 2) 0.2978 0.1530 0.4372
πN (1, 2) 0.5607 0.4512 0.6804
πS(1, 2) 0.1415 0.0438 0.2743

Notes: πτ (r, a) is the probability that an agent is of type τ given their response to the time-inconsistency question

r and their choice of contract a1 (1 represents the standard contract C1 and 2 represents the commitment contract

C2). The second and third columns are the 2.5th and 97.5th percentiles of the bootstrap distribution of the type-

probabilities computed using a clustered bootstrap (at the village level) with 200 replications.
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Table 10: Unobserved Types (Type Invariant Risk Aversion)

Estimate 2.5 97.5

δ 0.7894 0.0010 0.9351
βN 0.9727 0.9161 0.9798
βS 0.5533 0.0060 0.7311

α1 0.7219 0.6047 1.8436
α4 0.5755 0.3725 1.6225
α5 0.8424 0.6911 1.5438
α6 0.9401 0.7935 2.0000

κC -0.6870 -1.7168 1.0740
κN -0.5277 -1.6417 0.8373
κS -1.2090 -2.0000 1.3694
κ4 -1.5486 -1.9933 0.3874
κ5 -1.2644 -1.7997 1.7145

Notes: δ is the exponential discount parameter. βN is the hyperbolic parameter for “näıve” time-inconsitent agents,

βS is the corresponding parameter for “sophisticated” time-inconsistent agents. the α vector parameterizes the risk-

aversion parameter and the κ vector parameterizes the malaria cost function. The second and third columns are the

2.5th and 97.5th percentiles respectively of the clustered bootstrap distribution of the two-step estimation procedure

outlined in section 6.3 with 200 replications.

Table 11: Unobserved Types (Types vary by risk aversion)

Estimate 2.5 97.5

δ 0.7880 0.0000 0.9351
βN 0.9757 0.9313 0.9798
βS 0.5727 0.0007 0.7311

αC 0.7230 0.6047 1.7890
αN 0.4348 0.2935 1.9277
α4 0.5513 0.3725 1.9736
α5 0.8389 0.6911 2.0000
α6 0.9205 0.7935 1.9445

κC 0.0070 -1.9950 1.0754
κN -0.1998 -0.6869 0.8373
κS -0.5314 -1.9951 1.3667
κS -0.9613 -1.2298 0.3725
κ5 -0.3721 -2.0000 1.6852

Notes: δ is the exponential discount parameter. βN is the hyperbolic parameter for “näıve” time-inconsitent agents,

βS is the corresponding parameter for “sophisticated” time-inconsistent agents. the α vector parameterizes the risk-

aversion parameter and the κ vector parameterizes the malaria cost function. The second and third columns are the

2.5th and 97.5th percentiles respectively of the clustered bootstrap distribution of the two-step estimation procedure

outlined in section 6.3 with 200 replications.

59



Table 12: The Relative Importance of Risk, Cost and Time Preferences

Outcome Model 1 Model 2 Model 3 Model 4

C1 Take Up (C) .14 .14 .14 .14
[.138,.144] [.138,.144] [.135,.143] [.136,.143]

C1 Take Up (N) .14 .14 .16 .17
[.139,.145 [.139,.145] [.056,.272] [.057,.275]

C1 Take Up (S) .14 .16 .15 .17
[.139,.145] [.145,.177] [.015,.290] [.015,.325]

C2 Take Up (C) .31 .31 .31 .31
[.129,.491] [.129,.491] [.128,.483] [.128,.483]

C2 take Up (N) 31 .31 .31 .31
[.129,.486] [.129,.486] [.041,.583] [.041,.578]

C2 take Up (S) .31 .21 .31 .21
[.129,.486] [.082,.342] [.002,623] [.002,.466]

Retreatment C1 (C) . 19 .19 .19 .19
[.181,.191] [.181,.191] [.181,.191] [.181,.191]

Retreatment C1 (N) . 19 .19 .19 .19
[.181,.191] [.181,.191] [.174,.198] [.174,.197]

Retreatment C1 (S) .19 .18 .18 .18
[.181,.191] [.180,.186] [.154,.208] [.158,.203]

Retreatment C2 (C) .51 .51 .51 .51
[.500,.515] [.500,.515] [.501,.515] [.500,.515]

Retreatment C2 (N) .51 .51 .51 .51
[.500,.515] [.500,.515] [.492,.526] [.493,.526]

Retreatment C2 (S) .51 .50 .50 .50
[.500,.515] [.498,.508] [.471,.529] [.478,.521]

Notes: In Model 1 all types have the same risk and cost preferences but βS is set equal to βN . Model 2 is the same as Model

1 but with βN 6= βS . In model 3, risk and cost parameters are as in Table 11 but βN = βS = 1. In Model 4, parameter values

are as in Table 11 . Key: C = Time Consistent, N = “Näıve” Inconsistent, S= “Sophisticated” Inconsistent. The figures in

parentheses are confidence intervals computed using the clustered bootstrap

Table 13: Counterfactuals: Change in Take up and Retreatment Rates

Outome Retreatment Price Rs. 30 Retreatment Price Rs. 7

% Change C1 Take Up -5.39 17.12
[-7.19,2.67] [0.51, 20.21]

% Change C2 Take Up 1.68 -7.98
[-12.54,2.69] [-9.02, 7.66]

% Change Retreatment C1 -74.15 81.91
[-74.61,-74.04] [81.10, 84.96]

Notes: All changes are relative to the retreatment price of Rs.15 offered during the intervention. All figures are

arrived at by averaging over the estimated distribution of demographics, beliefs and types. Figures for retreatment

are provided separately for each contract type. The figures in parentheses are the 2.5th and 97.5th percentiles

respectively of the clustered bootstrap distribution of the estimates
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