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Abstract

Recommendation systems are pivotal in aiding users amid vast online con-
tent. Broutin, Devroye, Lugosi, and Oliveira proposed Subtractive Random
Forests (surf), a model that emphasizes temporal user preferences. Expand-
ing on surf, we introduce a model for a multi-choice recommendation system,
enabling users to select from two independent suggestions based on past inter-
actions. We evaluate its effectiveness and robustness across diverse scenarios,
incorporating heavy-tailed distributions for time delays. By analyzing user
topic evolution, we assess the system’s consistency. Our study offers insights
into the performance and potential enhancements of multi-choice recommen-
dation systems in practical settings.
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1 Introduction

Today’s online platforms have a record number of items available for their users.
In many cases presenting them as a catalogue is no longer a good option and can
make it difficult for the user to find what they are interested in. Recommendation
systems have become an essential tool to cope with the overload of information
available on the web.

A well-known way to approach recommendation systems today is through
deep learning, and many of the most effective recommendation systems use this
principle, see [14]. However, the mechanism of these systems is notable for its
opacity. In the realm of online sequential recommendation systems, Broutin, De-
vroye, Lugosi, and Oliveira [6] present an approach, offering a framework that
considers the temporal aspect of user preferences by a simple mechanism. They
define a model recommending topics based on a random time delay. The topic that
is recommended at time n is the same that was recommended at time n−Zn, where
(Zk)k≥1 is a sequence of i.i.d. random variables identically distributed on {1,2, . . .}.
This approach led them to study a family of random forests called subtractive ran-
dom forests (surf), allowing a detailed structural study. However, one expects a
recommendation system to make several recommendations at a time, not just one.

To model this more realistic scenario, our paper proposes a two-choice rec-
ommendation system inspired by the same idea. We envision a scenario where
users are presented with two independent recommendations, drawn from the same
temporal recommendation mechanism and allowing users to select the most ap-
pealing option. The resulting model has some intriguing mathematical properties
and the main goal of this paper is to analyze the model in order to understand the
long-term behavior of such recommendation systems.

1.1 A two-choice recommendation model

We assume that the initial pool of topics is infinite and represented by the set of
non-positive integers {0,−1,−2, . . .}. We now consider independent and identically
distributed random variables Z, W , (Zn)n≥1 and (Wn)n≥1 on the set of positive in-
tegers N. Define

qi = P(Z = i) and pi = P(Z ≥ i), i ≥ 1 .

Each topic i ≤ 0 is assigned a preference value Ui within the range [0,1],
where we assume that (Un)n≤0 is a sequence of random variables independent of
the sequences (Zn)n≥1 and (Wn)n≥1. These preference values are user-dependent.

Following [6], we can define a sequential random colouring of the positive
integers as follows. For each non-positive integer i ≤ 0, define its colour Ci = i
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and its preference value Vi = Ui . We assign colours and preference values to the
positive integers n ∈ N by the recursion{

Cn = Cn−Zn and Vn = Vn−Zn if Vn−Zn < Vn−Wn

Cn = Cn−Wn
and Vn = Vn−Wn

otherwise .

Thus, by identifying the colour Cn as the topic recommended at time n ≥ 1, this
definition means that at the time instance n ≥ 1, the user receives two recommen-
dations (the topic Cn−Zn , and the topic Cn−Wn

), and chooses the one with the lowest
(best) preference value.

This process naturally defines a random directed graph whose vertex set is
Z by drawing an edge from any positive integer n ≥ 1 to any integer m < n if and
only if m = n−Zn or m = n−Wn. Vertices with negative index are called leaves, as
is customary for final nodes in dags (i.e., directed acyclic graphs). Let Tn denote
the set of vertices that are reached from the vertex n ≥ 1. This set can be defined
recursively by saying that Tn = {n} for any n ≤ 0, and

Tn = {n,n−Zn,n−Wn} ∪ Tn−Zn ∪ Tn−Wn

for any n ≥ 1. Define
Ln = Tn ∩ {0,−1,−2, . . . }

as the set of vertices with a non-positive index that is reached from n. In other
words, Ln is the set of leaves in the subgraph of vertices reached from n. Note that

Cn = argmin
i∈Ln

Ui and Vn = min
i∈Ln

Ui .

One can assess the system’s long-term performance by analyzing the asymp-
totic behavior of the sequence (Vn)n≥1. If Vn approaches infi≤0Ui as n→∞, then
this means that after waiting a sufficient amount of time, the topics recommended
to the user tend to align more closely with their preferences. This gives us a con-
sistency criterion for our model. We consider the three following configurations of
the preference values:

(i) U0 < U−1 < U−2 < U−3 . . .

(ii) U0 > U−1 > U−2 > U−3 . . .

(iii) (Un)n≤0 i.i.d. and uniformly distributed in [0,1].

These assumptions correspond to natural scenarios and allow us to study
long-term consistency of the recommendation system. In the first case, topics have
a monotone preference with the most recent (corresponding to i = 0) being the
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Figure 1: An illustration of the definitions of Mn, Rn, and Ln.

most preferred one. In the second case, older topics are preferred, while in the
third case topics have a random order of preference. We say that the system is
consistent if, on the long run, it offers near-optimal recommendations to the user
in terms of the their preference. In Section 1.3 we rigorously define various notions
of consistency, corresponding to the scenarios above. These definitions lead us to
the study of the sequence (Vn)n≥1 by studying the set of leaves Ln. We will pay
particular attention to the three following random variables:

• Rn = max {i : i ∈ Ln} (the rightmost leaf in Ln)

•Mn = min {i : i ∈ Ln} (the leftmost leaf in Ln)

• Ln = |Ln| (the number of leaves reached from n).

Each of these random variables helps us understand the long-term behavior
of Vn in each of the three initial configurations described above. One would ideally
hope that Vn→ infi≤0Ui . In configuration (i) this is equivalent to Rn→ 0, in con-
figuration (ii) it is equivalent to Mn→−∞, while in case (iii) to Ln→∞. However,
one cannot expect to have Rn→ 0 in a general case. To introduce a more reasonable
consistency criterion for case (i), we require boundedness of the sequence (Rn)n≥1 .

Let us define the subsets T Zn = TWn = Sn = {n} for any n ≤ 0, and let

T Zn = {n} ∪ T Zn−Zn ,

TWn = {n} ∪ TWn−Wn
,

and Sn = {n} ∪ Sn−min(Zn,Wn)

for any n ≥ 1, so that T Zn ⊂ Tn (resp. TWn ⊂ Tn) is the chain of vertices that can be
reached from n by following only the Z-edges (resp. W -edges), and Sn ⊂ Tn is the
chain of vertices that can be reached from n by following only the shortest edges.
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Finally, for any n ≥ 1, let rn = P
(
0 ∈ T Zn

)
= P

(
0 ∈ TWn

)
denote the probability

that vertex 0 belongs to the Z-chain starting at vertex n. We set r0 = 1 so that rn
satisfies the recursion

rn =
n∑
i=1

qirn−i . (1.1)

1.2 Related work

This paper builds on the work of Broutin, Devroye, Lugosi and Oliveira [6], who
studied a one-choice version of this model by examining the properties of a graph
whose vertex set is Z, and whose edges are {n,n −Zn} for every n ≥ 1, given some
sequence (Zn)n≥1 of i.i.d. random variables distributed in {1,2,3, . . . }. This defines
a random forest where each non-positive integer is the root of a tree. They also
define a random coloring by setting Ci = i for all i ≤ 0, and Cn = Cn−Zn for all n ≥ 1.
Each tree in the forest corresponds to a colour (i.e., a topic). The graph that we
consider in our paper is nothing else than the superposition of two independent
copies of this forest, and the sets T Zn and TWn defined above are the chains that
connect the vertex n to the root of its tree in each of these two copies.

One of the main results in [6] shows that the process has two distinct be-
haviors: if EZ = ∞, then, almost surely, all trees in the forest are finite, mean-
ing that no topic will be recommended infinitely often, while if EZ < ∞, after
some random amount of time, all vertices connect to the same tree almost surely,
meaning that all topics recommended to the user become the same. In the two-
choice model however, there are three distinct regimes: EZ < ∞; EZ = ∞ yet
Emin(Z,W ) < ∞; and Emin(Z,W ) = ∞. We call these the light-, moderate-, and
heavy-tailed regimes.

The random forest in [6] appears as a subgraph of a random graph model
that was previously studied by Hammond and Sheffield in [10]. Given a sequence
(Zn)n∈Z of independent random variables, identically distributed in {1,2,3, . . . },
they consider a graph with vertex set Z such that vertices n,m ∈ Z, with m < n,
are connected by an edge if and only if m = n − Zn. One can obtain the random
forest in [6] by removing all edges between any two vertices with a non-positive
index. They show that the random graph has almost surely a unique component
when the sum

∑∞
n=1 r

2
n converges, and the graph almost surely has infinitely many

connected components when the sum diverges.

Other variants of the (single-choice) random subtractive process were stud-
ied, in different contexts, by Blath, Jochen, González, Kurt, and Spano [4], Chierichetti,
Kumar, and Tomkins [8], Baccelli and Sodre [3], Baccelli, Haji-Mirsadeghi, and
Khezeli [2], Baccelli, Haji-Mirsadeghi, and Khaniha [1], and Igelbrink and Wakol-
binger [12].
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1.3 Results

The goal of this paper is to understand the behavior of the two-choice model by
studying its consistency in each of the three configurations (i),(ii), and (iii), for
three types of tails, light, moderate, and heavy:

1. EZ <∞ (light tails)

2. EZ =∞ and Emin(Z,W ) <∞ (moderate tails)

3. Emin(Z,W ) =∞ (heavy tails)

We now introduce the main definitions of consistency.

Definition 1. We say that the system is consistent in configuration (ii) if Mn → −∞;
while it is consistent in configuration (iii) if Ln→∞. We differentiate between strong
and weak consistency based on whether convergence occurs almost surely or in prob-
ability. In the case of configuration (i), we say that the system is weakly consistent if
(Rn)n≥1 is a tight sequence. It is strongly consistent if the sequence (Rn)n≥1 is almost
surely bounded.

Remark 1. Pareto tails. Consider a distribution with Pareto tails, that is, qn =
Θ(1/n1+α), with α > 0. This implies that pn = Θ(1/nα). When α > 1, we see that
EZ < ∞. The more interesting situation is when α ∈ (0,1]. For α ∈ (1/2,1], we have
EZ =∞, yet Emin(Z,W ) <∞. Finally, for α ∈ (0,1/2], we have Emin(Z,W ) =∞. For
light-tailed Z, we recall from Broutin, Devroye, Lugosi, Oliveira [6] that rn → 1/EZ.
For moderate and heavy tails, however, we have rn → 0. When α ∈ (0,1), then Z is in
the domain of attraction of the extremal stable law with parameter α, which itself has a
tail distribution function that decays at the rate 1/nα (see, e.g., Ibragimov and Linnik
[11], Zolotarev [15] or Malevich [13]). One can then deduce that rn decays at the rate
1/n1−α. In particular,

∑
n r

2
n <∞ when α ∈ (0,1/2), which roughly corresponds to the

case of heavy tails.

Next we describe the main results of the paper. For a summary, see the table
at the end of this section.

Light tails

When EZ < ∞, time jumps are so short that Tn can’t reach distant leaves, thus
forcing the set Ln to be bounded. This case does not require much work, since
one can quickly determine consistency or inconsistency in each of the three con-
figurations just by looking at the sequence (Mn)n≥1, which happens to be bounded
almost surely.
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Theorem 2. Let M∞ = infn∈NMn. If EZ <∞, then M∞ is finite almost surely. Thus,
the sequences (Rn)n∈N, (Mn)n∈N and (Ln)n∈N are almost surely bounded.

Proof. Note that

P (M∞ ≤ −x) ≤ 2
∞∑
n=1

P (n−Zn ≤ −x) = 2
∞∑
n=1

pn+x .

Since EZ <∞, we know that
∑∞
n=1pn+x is finite and goes to 0 as x→ +∞. Thus, by

continuity of measure,

P (M∞ = −∞) = lim
x→+∞

P (M∞ ≤ −x) = 0 .

Since |Mn| ≥ Ln and |Mn| ≥ |Rn|, this also implies that (Ln)n∈N and (Rn)n∈N are almost
surely bounded.

Moderate and heavy tails

When Emin(Z,W ) =∞, a different behavior emerges:

Theorem 3. Let Z, W , (Zn)n≥1 and (Wn)n≥1 be i.i.d. random variables. Assume fur-
thermore that Emin(Z,W ) = ∞ . Then, with probability one, the number of leaves
satisfies

liminf
n→∞

Ln <∞ .

In other words, the system is not strongly consistent in the heavy-tailed regime.

Proof. Note that if min(Zn,Wn) ≥ n, then Ln ∈ {1,2}. Thus, to prove Theorem 3,
it suffices to show that with probability one, min(Zn,Wn) ≥ n happens infinitely
often. This follows by the second Borel-Cantelli lemma since the events

({min(Zn,Wn) ≥ n})n∈N

are independent and∑
n≥1

P (min(Zn,Wn) ≥ n) = E (min(Z,W )) =∞ .

The behavior of the set Ln for moderate and heavy tails is better under-
stood by examining its extreme pointsMn and Rn. The following two theorems are
proved in Section 3.

7



Theorem 4. If qi > 0 for all i ∈ N and EZ =∞, then, with probability one,

Mn→−∞ .

Thus, in configuration (ii) the system is strongly consistent in the moderate and heavy-
tailed regimes.

Strong (in-)consistency in configuration (i) is established in the next result:

Theorem 5. Let Z, W , (Zn)n≥1 and (Wn)n≥1 be i.i.d. random variables.

1. If Emin(Z,W ) <∞, then supn∈N |Rn| <∞ almost surely.

2. If Emin(Z,W ) =∞, then supn∈N |Rn| =∞ almost surely.

Given that the leftmost leaf in Ln goes to −∞ and the rightmost leaf remains
bounded in the moderate heavy-tail regime (i.e., when EZ =∞ and Emin(Z,W ) <
∞), one can expect that the total number of leaves reached by the vertex n diverges
under these two assumptions. Thus, strong consistency is observed in each of the
three configurations (i), (ii), and (iii).

On the other hand, only configuration (i) leads to strong consistency when
the distribution of Z has a heavy-tail (i.e., when Emin(Z,W ) =∞). However, when∑∞
n=1 r

2
n <∞, the model remains weakly consistent in configuration (iii), as estab-

lished by the next two results. Theorems 6 and 7 are proved in Sections 4.1 and
4.2, respectively.

Theorem 6. Assume that the distribution of Z is not supported by any proper additive
subgroup of the integers and thatZ exhibits a moderate-sized tail (i.e., Emin(Z,W ) <∞
and EZ =∞). Then

Ln→∞ almost surely.

Theorem 7. When Z has a heavy tail (i.e., Emin(Z,W ) =∞), and
∑
n≥0 r

2
n <∞ , then

Ln→∞ in probability.

We recall from Remark 1 that the summability of r2
n is assured for nearly all

heavy-tailed Z.

1.4 Summary

The following table summarizes our findings. Observe that weak and strong be-
havior coincide in most cases. They only differ in the extreme heavy tail case
(Emin(Z,W ) = ∞). For an optimal user experience, one would need Ln → ∞ al-
most surely, and the only case that assures this is when we have moderate tails. In
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addition, such moderate tails also guarantee strong consistency for the decreasing
and increasing input scenarios (as is apparent from the strong consistency of Mn
and Rn).

EZ <∞ EZ =∞ and
Emin(Z,W ) <∞

Emin(Z,W ) =∞

Strong consistency
Mn→−∞ a.s. no (Thm. 2) yes (Thm. 4) yes (Thm. 4)
Ln→∞ a.s. no (Thm. 2) yes (Thm. 6) no (Thm. 3)

Rn bounded a.s. yes (Thm. 2) yes (Thm. 5) no (Thm. 3)
Weak consistency

Mn
P→−∞ no (Thm. 2) yes (Thm. 4) yes (Thm. 4)

Ln
P→∞ no (Thm. 2) yes (Prop. 11) yes if

∑
r2
n <∞ (Thm. 7)

Rn is tight yes (Thm. 2) yes (Thm. 5)

The rest of the paper contains the proofs of the results stated above. In Sec-
tion 2 we recall some properties of the single-choice model that are useful in our
analysis. In Section 3, Theorems 4 and 5 are proven. The main technical content
of the paper is presented in Section 4 where the number of leaves is examined in
both the moderate-, and heavy-tailed cases, culminating in the proofs of Theorems
6 and 7.

2 The one-choice model

Some of our proofs use the observation that the graph contains several copies of
the subtractive random forest studied in [6]. For example, Theorem 1 in [6] states
that there is a unique infinite tree in the forest when EZ <∞:

Theorem 8 (Broutin, Devroye, Lugosi, Oliveira [6]). Assume EZ < ∞ and q1 > 0 .
Then there exists a positive random variable N with P (N <∞) = 1 such that, with
probability one,

N ∈ T Zn for all n ≥N .

Remark 2. Note that the actual statement of the theorem in [6] is slightly weaker since
it only asserts that there is a random variable N , finite almost surely, such that for all
n ≥ N , the vertex n belongs to the same tree as the vertex N . This does not necessarily
imply that N ∈ T Zn . Nevertheless, one can add this property of N without changing the
proof provided in [6].

Define Z ′n = min(Zn,Wn) and Z ′ = min(Z,W ) and note that Sn = T Z
′

n . By
Theorem 8 we obtain the following result for moderate and light tails.
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Corollary 9. If Emin(Z,W ) <∞ and q1 > 0, then there exists a positive random vari-
able N with P (N <∞) = 1 such that, with probability one,

N ∈ Sn for all n ≥N

When EZ =∞, Theorem 3 in [6] states that every tree in the forest is finite.
This translates as follows.

Theorem 10 (Broutin, Devroye, Lugosi, Oliveira [6]). If EZ = ∞ and qi > 0 for all
i ≥ 1, then

P(∪i≤0

[∣∣∣{n ≥ 1 : i ∈ T Zn }
∣∣∣ =∞

]
) = 0 .

3 Rightmost and leftmost leaves

As stated in Theorem 4, the leftmost leaf Mn reached by vertex n diverges to −∞
whenever EZ =∞. This can be seen as a consequence of the behavior of the one-
choice model, as one only needs to check the divergence to negative infinity of the
leaf minT Zn reached by vertex n by following only the Z-edges.

Proof. [Proof of Theorem 4] From Theorem 10 we know that with probability one,
for all k ≤ 0, there are at most a finite number of integers n ≥ 1 such that k ∈ T Zn .
Thus, the sequence (minT Zn )n∈N, taking values in {0,−1,−2, . . . }, cannot take the
same value an infinite number of times, so it goes to −∞ as n→∞with probability
one. This concludes the proof, since Mn ≤minT Zn for all n ≥ 1.

Proof. [Proof of Theorem 5] Assume that Emin(Z,W ) <∞. From Corollary 9, we
know that there exists some random variable N with P (N <∞) = 1 such that, with
probability one, N ∈ Sn for all n ≥N . In particular, for any n ≥N we have TN ⊂ Tn,
which implies that |RN | ≥ |Rn|. Thus, with probability one, we have

sup
n∈N
|Rn| ≤ max

1≤k≤N
|Rk | <∞ .

When Emin(Z,W ) =∞, we have∑
n≥1

P (min(Zn,Wn) ≥ 2n) =
∑
n≥1

p2
2n =∞ .

Hence, by the second Borel-Cantelli lemma, we know that with probability one we
have min(Zn,Wn) ≥ 2n infinitely often, which implies that Rn ≤ −n infinitely often
and proves the second statement of the theorem.
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4 Number of leaves

4.1 Moderate tails

Consider the number Ln of leaves reached by vertex n, when the distribution of Z is
such that EZ =∞ and Emin(Z,W ) <∞. We first show weak divergence, implying
weak consistency in configuration (iii).

Proposition 11. Assume that the distribution of Z is not supported by any proper
additive subgroup of the integers. If EZ =∞ and Emin(Z,W ) <∞, then

Ln→∞ in probability as n→∞.

Lemma 12. Define

Jn =
n∑

m=1

1m∈Sn1max(Zm,Wm)≥m .

Then EJn→∞ as n→∞.

Proof. Jn counts the number of vertices in Sn with a positive index that are con-
nected to a leaf through its longest outgoing edge. Note that for n ≥ m ≥ 1, the
events {m ∈ Sn} and {max(Zm,Wm) ≥m} are independent. It follows that

EJn =
n∑

m=1

P(m ∈ Sn)P(max(Zm,Wm) ≥m) =
n∑

m=1

vn−mP(max(Zm,Wm) ≥m)

where vm := P(0 ∈ Sm) for all m ≥ 1, and v0 = 1.

Let f (z) =
∑
n≥0 vnz

n, q̃m = P(min(Z,W ) =m) and g(z) =
∑
n≥1 q̃nz

n. In view of

vn =
n−1∑
m=0

q̃n−mvm,

we have

f (z) = 1 +
∞∑
n=1

zn
n∑

m=0

q̃n−mvm = 1 + g(z)f (z) =
1

1− g(z)
.

Since min(Z,W ) is not supported by any proper additive subgroup of the integers,
the Erdős-Feller-Pollard theorem [9] implies that

lim
n→∞

vn =
1

Emin(Z,W )
. (4.1)
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Thus, for some constant c > 0, we have

EJn ≥ c
n∑

m=1

pm→∞ as n→∞ . (4.2)

We use the second-moment method to show that Jn→∞ in probability.

Lemma 13. Assume that EZ =∞ and Emin(Z,W ) <∞, and let VJn denote the vari-
ance of the random variable Jn. Then

VJn
(EJn)2 → 0 as n→∞ . (4.3)

In particular, we have:

P
(
Jn ≤

EJn
2

)
= P

(
Jn −EJn ≤ −

EJn
2

)
≤ 4

VJn
(EJn)2 → 0 ,

and therefore Jn→∞ in probability as n→∞.

Proof. [Proof of Lemma 13] To show (4.3), we prove that E[J2
n ]/(EJn)2 → 1 as

n→∞. We first define

p∗n = P(max(Z,W ) ≥ n) = 2pn − p2
n .

Note that for n ≥ 1,

(EJn)2 = 2
∑

1≤k<m≤n
p∗mp

∗
kvn−mvn−k +

∑
1≤m≤n

(p∗m)2v2
n−m

= 2
∑

1≤k<m≤n
p∗mp

∗
kvn−mvn−k +O(1) (4.4)

since
∑

1≤m≤n(p∗m)2v2
n−m is bounded by 4Emin(Z,W ) <∞.

Now, define for any m ≥ 1 the random variable Xm = max(Zm,Wm) and ob-
serve that for any 1 ≤ k < m ≤ n, the events {Xk ≥ k} and {Xm ≥m,m ∈ Sn, k ∈ Sn} are
independent. Thus, for any fixed n ≥ 1, we may write

E
[
J2
n

]
= 2

∑
1≤k<m≤n

P (m ∈ Sn, k ∈ Sn,Xm ≥m,Xk ≥ k) +EJn

= 2
∑

1≤k<m≤n
p∗kP (m ∈ Sn, k ∈ Sn,Xm ≥m) +EJn

= 2
∑

1≤k<m≤n
p∗kP[k ∈ Sn,Xm ≥m|m ∈ Sn]P (m ∈ Sn) +EJn
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If m ∈ Sn, the event {k ∈ Sn,Xm ≥ m} can only happen if one of the two random
variables Zm and Wm is greater or equal to m and the other one is smaller than
m− k, for otherwise k could not belong to Sn when 1 ≤ k < m ≤ n. Thus, using the
independence of Zm with respect to Wm, {k ∈ Sn} and {m ∈ Sn}, and using the fact
that p∗m + p2

m = 2pm,

E
[
J2
n

]
(4.5)

= 2
∑

1≤k<m≤n
p∗k × 2P[Zm ≥m,Wm ≤m− k,k ∈ Sn|m ∈ Sn]P (m ∈ Sn) +EJn

= 2
∑

1≤k<m≤n
p∗k(p

∗
m + p2

m)vn−mP[Wm ≤m− k,k ∈ Sn|m ∈ Sn] +EJn

= 4
∑

1≤k<m≤n
p∗k(p

∗
m + p2

m)vn−m
k−m∑
i=1

P (k ∈ Sm−i)P (Wm = i) +EJn

= 2
∑

1≤k<m≤n
p∗k(p

∗
m + p2

m)vn−m
m−k∑
i=1

vm−k−iqi +EJn . (4.6)

Observe that ∑
1≤k<m≤n

p∗kp
2
mvn−m

m−k∑
i=1

qivm−k−i ≤
∑

1≤k<m≤n
p∗kp

2
mvn−m

≤
∑

1≤k<m≤n
p∗kp

2
m

≤

 ∞∑
m=1

p2
m


 n∑
k=1

p∗k


=O (EJn)

by using the inequality in (4.2), which leads to

E[J2
n ] = 2

∑
1≤k<m≤n

p∗kp
∗
mvn−m

m−k∑
i=1

vm−k−iqi +O (EJn) . (4.7)

Fix some ε > 0. By (4.1), we know that there exists some constant x > 0 such that
for all m ≥ x, we have |vm −λ| < ε, where λ = 1/(Emin(Z,W )).

If m ≥ x, see that

m∑
i=1

qivm−i ≤
m−x∑
i=1

qi(λ+ ε) +
∑

m−x<i≤m
qi

≤ (λ+ ε) + pm−x .
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Thus, there exists some constant y > x such that for all m ≥ y,

m∑
i=1

qivm−i ≤ λ+ 2ε .

Moreover, ∑
1≤k<m≤n
s.t. m−k<y

p∗mvn−mp
∗
k

m−k∑
i=1

vm−k−iqi︸            ︷︷            ︸
≤1

≤
∑

1≤m≤n
p∗mvn−m

m∑
k=m−y

1

= (y + 1)EJn =O (EJn) ,

and ∑
1≤k<m≤n
s.t. n−m<y

p∗k p
∗
mvn−m

m−k∑
i=1

vm−k−iqi︸                   ︷︷                   ︸
≤1

≤
∑

n−y≤m≤n
1

n∑
k=1

p∗k

≤ (y + 1)
n∑
k=1

p∗k =O (EJn) .

Putting everything together, we have that

E[J2
n ] =

n−y∑
m=1

m−y∑
k=1

p∗mp
∗
kvn−k

m−k∑
i=1

qivm−k−i +O (EJn) . (4.8)

Similarly, we have

(EJn)2 =
n−y∑
s=1

m−y∑
k=1

p∗mp
∗
kvn−mvn−k +O (EJn) . (4.9)

Finally, observe that for any n > y we have:

n−y∑
m=1

m−y∑
k=1

p∗mp
∗
k vn−m

m−k∑
i=1

qivm−k−i︸               ︷︷               ︸
≤(λ+2ε)2

≤ (λ+ 2ε)2
n−y∑
m=1

m−y∑
k=1

p∗mp
∗
k (4.10)

and
n−y∑
m=1

m−y∑
k=1

p∗mp
∗
k vn−mvn−k︸    ︷︷    ︸
≥(λ−ε)2

≥ (λ− ε)2
n−y∑
m=1

m−y∑
k=1

p∗mp
∗
k . (4.11)
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From (4.8), (4.9), (4.10) and (4.11) it follows that

limsup
n→∞

E[J2
n ]

(EJn)2 ≤
(λ+ 2ε
λ− ε

)2
.

Since this is true for any ε > 0 small enough, and E[J2
n ] ≥ (EJn)2, we conclude that

E[J2
n ]

(EJn)2 → 1

as n→∞.

Proposition 11 follows from the fact that Jn→∞ in probability. In order to
see this, we only need to check that the fact that Jn→∞ in probability implies that
the number of leaves connected to Tn goes to infinity as well.

Proof. [Proof of Proposition 11] Let us define

L∗n = {k ≤ 0 : there exists an m ∈ Sn such that max(Zm,Wm) =m− k} .

In other words, L∗n is the subset of vertices in Ln that are connected to some vertex
in Sn with positive index through the longest edge (i.e., given by max(Z,W )).

Given n ≥ 1 and k ∈ Z, we introduce the random variable

Dn,k =
n∑

m=1

1max(Zm,Wm)=m−k .

Note that for any fixed x > 0,

P (|L∗n| < x) (4.12)

≤ P


max
k∈L∗n

∑
m∈Sn

1max(Zm,Wm)=m−k <
EJn
2x

∩ [|L∗n| < x]


+P

(
∪k≤0

[
Dn,k ≥

EJn
2x

])
. (4.13)

Since Jn can be written as

Jn =
∑
k∈L∗n

∑
m∈Sn

1max(Zm,Wm)=m−k ,

we have that

P


max
k∈L∗n

∑
m∈Sn

1max(Zm,Wm)=m−k <
EJn
2x

∩ [|L∗n| < x]
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≤ P
(
Jn ≤

EJn
2

)
≤ 4

VJn
(EJn)2 → 0 . (4.14)

Moreover, for any k ≤ 0 and y > 0 , by Chernoff’s bound [7], [5], we have that

P(Dn,k > y) = P

 n∑
m=1

1max(Zm,Wm)=m−k > y


≤ exp

(
y − p∗1−k − y log

(
y

p∗1−k

))
≤

(
e
y

)y
(p∗1−k)

y .

Let yn = EJn/(2x) and assume that n is large enough so we have yn ≥ 2 and
∞∑
m=1

(p∗m)yn ≤
∞∑
m=1

(p∗m)2 <∞ (since Emin(Z,W ) <∞ ) .

Thus, by the union bound,

P
(
∪k≤0

[
Dn,k ≥

EJn
2x

])
≤

∑
k≤0

(
e
yn

)yn
(p∗1−k)

yn

≤
(
e
yn

)yn ∞∑
k=1

(p∗k)
2→ 0 . (4.15)

By putting (4.13), (4.14), and (4.15) together we have that P (|L∗n| < x)→ 0 as n→∞
for every fixed x > 0, which proves Proposition 11.

Proof. [Proof of Theorem 6] For any n ≥ 1, define Yn = min{m−min(Zm,Wm) :m ≥
n}. A simple union bound gives, for arbitrary k:

P (Yn ≤ k) ≤
∑
m≥n

P (min(Zm,Wm) > m− k) .

Since Emin(Z,W ) <∞, the sum above is finite and goes to 0 as n goes to infinity.
Hence, Yn→∞ in probability.

Let us fix n ≥ 0 and apply Corollary 9 to the model obtained by shifting by
n the set of integers so that leaves are indexed by the set {k : k ≤ n} and the edges
are given by the sequences of random variables (Zk)k≥n+1 and (Wk)k≥n+1. This gives
us a random variable Nn > n, finite almost surely, such that Nn ∈ Sk for all k ≥ Nn.
Let In ≤ n} be the root of this tree and note that

Yn ≤ In ≤ n < Nn .
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Figure 2: Illustration of the proof of Theorem 6

Since Yn→∞ in probability, In→∞ in probability as well. Moreover, for all
n ≥ 1, one can choose Nn such that Nn−n is distributed as N0. The fact that all ver-
tices k ≥Nn belong to the tree rooted at In in this single-choice model implies that
In ∈ Tk for all k ≥Nn, and in particular LIn ≤ Lk for all k ≥Nn. From Proposition 11
we know that Ln→∞ in probability. Hence, LIn →∞ in probability. Moreover, for
any fixed m ≥ 1 we have

P (∪k≥2n [Lk ≤m]) ≤ P (Nn > 2n) +P
(
Nn ≤ 2n,LIn ≤m

)
≤ P (N0 > n) +P

(
LIn ≤m

)
.

Thus, for any m ≥ 1, P (∪k≥2n[Lk ≤m])→ 0 as n→ ∞. By continuity of measure,
this implies that for any m ≥ 1,

P (∩n≥1 ∪k≥2n [Lk ≤m]) = 0.

By the union bound,

P (∪m≥1 ∩n≥1 ∪k≥2n [Lk ≤m]) = 0 ,

which implies that Ln→∞ almost surely.

4.2 Heavy tails

In this section we study the heavy-tailed case, that is, Emin(Z,W ) = ∞. From
Theorem 3 we already know that Ln cannot go to infinity with probability one.
Here we show that, in contrast to this, Ln→∞ in probability.

Lemma 14. For any integers k ∈ Z and n ≥max(1, k),

P
(
k ∈ T Zn

)
≤ rn−k .

Proof. Clearly, we have P
(
k ∈ T Zn

)
= rn−k whenever k ≥ 0. Moreover, rn satisfies

the recursion

rn =
n∑
i=1

qirn−i .
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Thus, for any k > 0, we have

P
(
−k ∈ T Zn

)
=

n∑
i=1

P (Zi = i + k)P (i ∈ Tn)

=
n∑
i=1

qk+irn−i

=
n+k∑
i=k+1

qirn+k−i

≤
n+k∑
i=1

qirn+k−i = rn+k .

Proof. [Proof of Theorem 7] Fix a constant w > 0 and let Iwn denote the number of
intervals of the form (kw, (k + 1)w], with k ∈ Z≥0, that are intersected by the chain
T Zn . Note that, for any x > 0, if Iwn < x then T Zn < wx, thus

P (Iwn < x) ≤ P
(
T Zn < wx

)
≤ P

(
Z1 + · · ·+Zbwxc > n

)
→ 0 . (4.16)

Let ` ≥ 1 be an arbitrary integer and observe that, if the event Iwn ≥ 2` occurs, then
one can define a random set of vertices An such that

1. An is independent of (Wk)k≥1 ,

2. An ⊂ T Zn ,

3. |An| = ` ,

4. for all k ,m ∈ An , |k −m| ≥ w .

Conditionally on Iwn ≥ 2`, we have

P
(
∪k,m,k∈AnT

W
k ∩ T

W
m , ∅

)
(4.17)

≤ E
∑

k,m∈An
s.t. k,m

1TWk ∩T
W
m ,∅

≤ E
∑

k,m∈An
s.t. k,m

P
(
TWk ∩ T

W
m , ∅

)
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≤
(
`
2

)
max
k,m≤n

s.t. |k−m|≥w

P
(
TWk ∩ T

W
m , ∅

)
(4.18)

by using the first moment method and the independence of An with respect to
(Wk)k≥1. Let k < m be a pair of integers such that |k −m| ≥ w and observe that

P
(
TWk ∩ T

W
m , ∅

)
= P

(
TWk ∩ T

Z
m , ∅

)
.

Thus, the union bound, Lemma 14 and the Cauchy-Schwarz inequality yield

P
(
TWk ∩ T

W
m , ∅

)
≤

k∑
i=−∞

P
(
i ∈ TWk

)
P
(
i ∈ T Zm

)
≤

k∑
i=−∞

rk−irm−i

≤

√√ ∞∑
i=0

r2
i ×

√√ ∞∑
i=m−k

r2
i . (4.19)

From (4.18) and (4.19), it follows that

P
(
∪k,m,k∈AnT

W
k ∩ T

W
m , ∅

)
≤

(
`
2

)√√ ∞∑
i=0

r2
i ×

√√ ∞∑
i=w

r2
i . (4.20)

Fix ε > 0. From (4.20) we know that we can choose w big enough so we have for
n ≥ 1,

P
(
∪k,m,k∈AnT

W
k ∩ T

W
m , ∅

)
≤ ε. (4.21)

Finally, observe that if Ln < ` and Iwn ≥ 2`, then there have to be at least two distinct
vertices k,m in An such that the chains TWk and TWm meet each other: otherwise,
each chain TWk with k ∈ An would lead to a distinct leaf in Tn, contradicting the
event Ln < `. Thus, by (4.20) we have

P (Ln < `) ≤ P (Iwn < 2`) + ε .

From (4.16) it follows that for any ε > 0 and any integer ` ≥ 1

limsup
n→∞

P (Ln < `) ≤ ε ,

which concludes the proof of Theorem 7.
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5 Conclusion

We introduced and studied a simple mathematical model for recommendation sys-
tems based on giving each user two random choices, which include a mixture of
past choices and untried options. In this setup, we identify three regimes based on
the tail behavior of the sizes of the jumps in the past. A natural generalization of
the model allows k > 2 choices, left for further study. We anticipate that in that case
there are k + 1 regimes, but even the case k = 3 seems interesting. The eagle-eyed
reader must have noticed that the bottom right corner of the table summarizing
the results is left unfilled. Indeed, the question of the tightness of the rightmost
leaf in the extremely heavy-tailed case remains an open problem.
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