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A Simple Optimized Search Heuristic for the
Job-Shop Scheduling Problem
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Abstract--This paper presents a smple algorithm for thejob  predefined constant processing time. Preemption is

shop scheduling problem that combines GRASP (a heuristic ot gllowed when processing operations. The order
with a local search phase), with a branch-and-bound exact f th . ithi h iob d i
method of integer programming. The proposed method is of the operations within the jobs an its

compared with similar approaches and leads to better results ~ correspondent machines are fixed a priory and

in terms of solution quality and computational times. independent from job to job. To solve the problem
Keywords—ob-shop  scheduling, hybrid metaheurigtic, we ”?Ed to .fmq a sequence of _operatlons .m .e.aCh
GRASP. branch-and-bound. machine satisfying some constrains and optimizing

some objective function. It is assumed that two

consecutive operations of the same job are assigned
I. INTRODUCTION to different machines, each machine can only

process one operation at a time, and that different

The job-shop scheduling problem has beefachines can not process the same job
known to the operations research community sincd@Mmultaneously. We will adopt the maximum of the
the early 50's (Jain and Meeran 1999). It igompletion time of all jobs — the makespan — as the
considered a particularly hard combinatoriaPbjective function.
optimization problem of the NP-hard class (Garey Formally let 0={0,...,0+1 be the set of
and Johnson 1979) and it has numerous practicg@berations with 0 and o+1 being the dummy
applications; which makes it an excellent tespperations representing the start and end of bf,jo
problem for the quality of new schedulingrespectively. LetM be the set of machines the
algorithms. These are main reasons for the vasét of pairs of consecutive operations of each job
bibliography on both exact and heuristic proceduregnd E, the set of all possible pairs of operations

applied to this scheduling problem. The paper of . . )
Jain and Meeran. (1999) includes an exhausti\})erocessed by machinke, with k.DM.' we deflne-
survey not only of the evolution of the definitioh P >0 @s the constant processing time of operation

the problem, but also of all the techniques appiiied i and t; is the variable representing the starting

it. time of operationi . The mathematical formulation

Recently a new class of procedures that combirgr the job shop scheduling problem is as follows:
local search based (meta) heuristics and exact nin

t
algorithms have been developed, we denominate st ot
them Optimized Search Heuristics (OSH), 7~ o
t-t2p i, )HOA )

(Fernandes and Lourengo 2006). This paper presents
a simple OSH procedure for the job shop scheduling t, >0 ido (2
problem that combines a GRASP algorithm with a _ _ o

branch-and-bound method. totzpbt-tzp (LDOEKOM (@)

We first introduce the job-shop scheduling ) ) .

problem. We present a short review of existent OSH The job shop scheduling problem is usually
methods applied to this problem and proceetepresented by a disjunctive graph (Roy and
describing the procedure developed. Computation®ussman 1964% = (O, A,E) . Where O is the node
results are presented along with comparisons #et, corresponding to the set of operatiofsis the

other procedures. set of arcs between consecutive operations of the
same job, andE is the set of edges between
II. THE JOB-SHOP SCHEDULING PROBLEM operations processed by the same machine. Each

The job-shop scheduling problem considers a sepdei has weightp, , with py = p,,; =0. There is
of jobs to be processed in a set of machines. Eaghsybset of node®, and a subset of edgds, for

JeO;d']S (()jeélrr:;ic(i)nbyisarésc;ridireedd z)etaOme;Cehri?]?rﬁitﬁnéjach machine that together form the disjunctive
P g céhque Cy = (O, E,) of graph G. For every nodg
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is called the job predecessor of nofle jp(j) and and design a guided local search, over a treetsearc

| is the job successor df - js(j). structure, that reconstructs partially destroyed
. . ; . solutions.

Finding a solution to the job-shop scheduling Lourenco (1995) and Lourenco and Zwijnenburg

pfOb'e”? means replaci_ng every edge of th?1996) use branch-and-bound algorithms to
respective graph with a directed arc, constructing strategically guide an iterated local search, dnd a

acyclic directed graphDs=(0,A0S). Graph 4 tapy search algorithm. The diversification of the
D = (0, A) is obtained from G removing all edgessearch is achieved using the optimal solution of

and S={JS, corresponds to an acyclic union ofsubproblems (of one or two machines) to determine
K the perturbation forced on the incumbent solution.

sequences of operations for each macHingthis In the work of Schaal et al. (1999) an interior
implies that a solution can be built sequencing oniint method generates initial solutions of thein
machine at a time). relaxation. A genetic algorithm finds integer

The optimal solution is the one represented b§olutions. A cut is generated based on the integer

the graphDs having the critical path fromd to Solutions found and the interior point method is
S applied again to diversify the search. This procedu

0+1with the _smallest "?”gth- . is defined for the generalized job shop problem.

_ For any given solution, the operation processed The jnteresting work done by Danna Rothberg

|mmeQ|at(_er before operat|_on| in the same and Le Pape (2005) ‘“applies the spirit of

machine is called the machine predecessof of metaheuristics” in an exact algorithm. Within each

mp(i); analogously mg(i) is the operation that node of a branch-and-cut tree, the solution of the

immediately succeedsat the same machine. linear relaxation is used to define the neighbodhoo
of the current best feasible solution. The local

. REVIEW OEOPTIMIZED SEARCHHEURISTICS search consists in SOIVing the restricted MIP
problem defined by the neighborhood.

In_t_he literature we can find a few vv_orks IV. OPTIMIZED SEARCHHEURISTIC—GRASP_B&B
combining metaheuristics with exact algorithms -

applied to the job shop scheduling problem. They We developed a simple optimized search
vary not only on the procedures combined but algeeuristic that combines a GRASP algorithm with a
in the way of combining them. branch-and-bound method. Here the branch-and-
Chen et al. (1993) and Denzinger and Offermanound is used within the GRASP to solve
(1999) design parallel algorithms that usesubproblems of one machine scheduling.
asynchronous agents information to build solutions; GRASP (Feo and Resende 1995) means “greedy
some of these agents are genetic algorithms, othéggidomized adaptive search procedure”. It is an
are branch-and-bound algorithms. iterative process where each iteration consists of
Tamura et al. (1994) design a genetic algorithriwo steps: a randomized building step of a greedy
where the fitness of each individual, whoseature and a local search step. At the buildingsgha
chromosomes represent each variable of the integerfeasible solution is constructed by joining one
programming formulation, is the bound obtaineglement at a time. The element is defined
solving lagrangian relaxations. specifically for each problem. Each element is
The works of Adams et al. (1988), Applegateevaluated by a heuristic function and incorporated
and Cook (1991), Caseau and Laburthe (1995) afi@r not) in a restricted candidate list (RCL)
Balas and Vazacopoulos (1998) all use an exaggcording to its evaluation. The element to joie th
algorithm to solve a sub problem within a locasolution is chosen randomly from the RCL.
search heuristic for the job shop scheduling. Qasea Each time a new element is added to the partial
and Laburthe (1995) build a local search where thgolution the algorithm proceeds with the local
neighborhood structure is defined by a subprobleggarch step. The current solution is updated by the
that is exactly solved using constraint programmindocal optimum and this process of two steps is
Applegate and Cook (1991) develop the shuffliéepeated until the solution is complete.
heuristic. At each step of the local search the
processing orders of the jobs on a small number é& Building Block

machines is fixed, and a branch-and-bound \ye define the sequence of operations at each
algorithm completes the schedule. The shiftingnachine as the elements to join the solution, and
bottleneck heuristic, due to Adams, Balas ang,ei makespan r(1a><(t- + p—) i00,,kOM ) as the

i (WA '

Zawack (1988), is an iterated local search with a eedy function to evaluate them. In order to build
construction heuristic that uses a branch-and-bour%c? y )

to solve the subproblems of one machine Witltl e restricted candidate list we find the optimal

release and due dates. Balas and Vazacopouﬁ)%luuon for the one machine problems of machines

(1998) work with the shifting bottleneck heuristicnt Yet scheduled, and identify the be(it) and



worse (?) makespans. A machink is included in have been inspected more thah nodes after the

. y . last reduction of the difference between the upper
the RCL if f(x)2f —a(?—i), where (%) 1S and lower bound of the treen(s the number oap
the makespan of machinkand a is a uniform jobs).
random number in (01). This semi-greedy  Considering the job-shop problem and its
randomised procedure is biased towards tHdisjunctive graph representation, the release dfate
machine with the highest makespan, the bottlene@ach operation - (1;) is defined as the longest path
machine, in the sense that machines with low valug®m the beginning to, and its tail (G) as the

of makespan have less probability of being inc'”de%ngest path fromi to the end, without the

in the restricted candidate list. processing time of .

At the first iteration we consider the graph
D=(0,A) (without the edges connecting

operations that share the same machine) to compute

SemiGreedy (K)
(1) a:=Randon{0))

@ f=ma{f(x) kOK} release dates and tails. Incorporating a new machin

@) f=min{f(x) kOK} in the solution means adding to the graph the arcs
- representing the sequence of operations in that

(4) RCL:{} machine. We then update the makespan of the

(5) foreachkOK partial solution and the release dates and tails of

(6) if f(x@z?—aﬁ— f) unscheduled operations, using the algorithm of

— Taillard (1994).
@) RCL:= RCLO{k}

(8) return RandomChoice(RCL)
B. Local Search

To solve the one machine scheduling problems ., o qer to build a simple local search algorithm

we use the branch-and-bound algorithm of Carlige neeq to design a neighborhood structure (defined
(1.92,32),' The objective f.unct|.0n of the a',go“thm"’s by moves between solutions), the way to inspect the
minimize the completion time of all jobs .and 'tneﬂghborhood of a given solution, and a procedure
assumes that there are three values associated Wiih,, 4juate the quality of each solution. It isdsai

every job j to be scheduled at the machine: thgn,t 5 solution B is a neighbor of a solution Avié
processing time(pj), a release datérj) and an can achieve B by performing a move in A.

We use a neighborhood structure very similar to
) the NB neighborhood of Dell’Amico and Trubian
after being processed. (1993) and the one of Balas and Vazacopoulos

At each node of the branch-and-bound tree t£§‘998). To describe the moves that define this
upper bound is computed using the algorithm Qhejghborhood we use the notion of blocks of critica
Schrage (1970). This algorithm gives priority topperations. A block of critical operations is a
higher values of the taildg;) when scheduling maximal ordered set of consecutive operations of a
released jobs. We break ties preferring jobs withritical path (in the disjunctive graph that renets
bigger processing times. the solution), sharing the same machine. Lt j)

The lower bound defined by Carlier (1982) isdenote the length of the critical path from nddeo
based on a critical path (the one with more jolis) ¢,gge j . Borrowing the name used by Balas and

the solution found by the algorithm of Schrag@VazacopouIOS (1998) we speak of forward and

(1970). The value of the solution with preemptien i L
. ; backward moves over forward and backward critical
used to strengthen this lower bound. We introduce a

slight modification, forcing the lower bound of apalrs of operau_ons. dv f d critical
node never to be smaller than the one of its father ,TWO operatmnsu andv form a forward critica
the tree. pair (u,v) if;

The algorithm of Carlier (1982) uses some @) they both belong to the same block;
proven properties of the one machine scheduling b) vis the last operation of the block;
problem to define the branching strategy, and@so  c) operation js(v) also belongs to the same
reduce the number of inspected nodes of the branctitical path;

and-bound tree. . _ d) the length of the critical path from to o+1
When applying the algorithm to problems withjs ot |ess than the length of the critical patbrir

50 or more jobs, we observed that a lot of time wa S(U) to 0+1 (L(v,0+1) > L(js(u),0+1))

spent inspecting nodes of the tree, after having ' B ' '

already found the optimal solution. So we X

introduced a condition restricting the number oParr (U,V) if:

nodes of the tree: the algorithm is stopped iféher a) they both belong to the same block;

amount of time(qj) that the job stays in the system

Two operationau and vform a backward critical



b) u is the first operation of the block;
c) operation jp(u) also belongs to the same GRASP_B&B (runs)

critical path; 1) M={Lm
d) the length of the critical path frof@ to u, (2) forr =1toruns
including the processing time aof, is not less than  (3) x:={}
the length of the critical path from 0 tgp(v), 4) K:=M
including the processing time of jp(v) (5) while K ¢{}
(LOW+p,=2LO jp(V)+ Pjp) )- (6) foreachk OK
Conditions d) are included to guarantee that all (7) % = CARLIER_B& B(K)
moves lead to feasible solutions (Balas and (8) K = SEMIGREEDYK)

Vazacopoulos 1998).

A forward move is executed by moving ©) X:= XU X
operation u to be processed immediately after (10) f (X) := TAILLARD(x)
operation v. A backward move is executed by (11) K:=K\{k*}
moving operationv to be processed immediately ,
before operation . (12) if K| <|m[-1

When inspecting the neighborhoodl(x,M,)) (13) x:= LOCALSEAREI (x,M \K)
of a given solutionx with M, machines already (14) if X' not initialized or f (x) < f~
scheduled, we stop whenever we find a neighbor (15) X = x
with a best evaluation value then the makespan of (16) £ = (%)

To evaluate the quality of a neighbor of a
solutionx, produced by a move over a critical pair (17) returnx’
(u,v), we need only to compute the length of all the
longest paths through the operations that were |hiS metaheuristic has only one parameter to be
betweenu and vin the critical path of solutior, defined: the number of runs to perform (line (2)).
This evaluation is computed using the algorithm ofhe step of line (8) S the only one using
Balas and Vazacopoulos (1998), which is a variatiofhdomness. When applied to an instance with
of the one of Taillard (1994) for a subset of arcs. Machines, in each run of the metaheuristic, the
branch-and-bound algorithm is calledx (m+1)/2
LocalSearch (x, f(x),M,) times (line (7)); the local search is executed-1
1) si= neighbo(x,f(x),MO) times (lines (12) and (13)); the procedure semi-
(2) while s# x greedy (line (8)) and the algorithm of Taillardn@i
(10)) are executedh times.

3) X:=
4) s:= neighbo(x, f(x), MO)
(5) returns D. Computacional Results
We have tested the algorithm GRASP_B&B on
) the benchmark instances abz5-9 (Adams et al.
Neighbor (x, f (x),Mo) 1988), ft6, ft10, ft20 (Fisher and Thompson 1963),
(1) foreachsO N(x,MO) la01-40 (Lawrence 1984), orb01-10 (Applegate and
2) f(s):= evaluatiorﬁmovéx . S)) Coqk 1991), swv01-20 (Storer et al. 1992), ta01-70
3) it ()< f(x) (Taillard 1993) and ynl-4 (Yamada and Nakano
1992). Because of space limitations, in this woek w
(4) returns will only present the results for ft6, ft10, ft20
(5) returnx (Fisher and Thompson 1963), 1a01-40 (Lawrence

1984) and orb01-10 (Applegate and Cook 1991), in
Tables I, Il and Il respectively.
C. GRASP_Bé&B The tables have the following structure: in each

We named the procedure GRASP_B&B. Lefine it is presented the name of the instance, the
runs be the total number of runsd the set of number of jobs and the number of machines of the

machines of the instance arfdx) the makespan of instance (n*m), the best value (min) obtained, the

. ercentage over the lower bound and the time to the

a solution x. The procedure can be genera_llygest solution found (btime), in seconds. The total
described by the pseudo-code in the followingime of all runs (ttime) will be presented in next

figure: tables. We gathered the values of the lower bounds

from the paper of Jain and Meeran (1999) and the



papers of Nowicki and Smutnicki (1996, 2002,
2005). Within brackets, next to the best known
value (UB), is the percentage of relative errotht®
upper bound calculated as follows:

RE,5 (x) = 1006x X~ B

The algorithm has been run 100 times for each
instance on a Pentium 4 CPU 2.80 GHz and coded
in C.

Whenever the values are not worse than the best
known upper bound, we present them in bold.
Although this is a very simple (and fast) algorithm
it happens in 22 of the 152 instances used in this

study.

TABLA |

RESULTS OF THEFT INSTANCES

name n*m min btime (s)

ft06 6*6 55 0.1274
(0.00)

ft10 10*10 970 0.5800
(4.30)

ft20 20*5 1283 0.0094
(10.13)

TABLA Il

RESULTS OF THELA INSTANCES

name n*m min  btime (s)

la01 10*5 | 666 0.0017
(0.00)

la02 10*5 667 0.0437
(1.83)

[a03 10*5 605 0.0066
(1.34)

la04 10*5 607 0.0051
(2.88)

l[a05 10*5 | 593 0.0011
(0.00)

la06 15*5 | 926 0.0017
(0.00)

l[a07 15*5 | 890 0.0020
(0.00)

[a08 15*5 | 863 0.0149
(0.00)

la09 15*5 | 951 0.0028
(0.00)

la10 15*5 | 958 0.0014
(0.00)

lall 20*5 | 1222  0.0027
(0.00)

la12 20*5 | 1039  0.0027
(0.00)

lal3 20*5 | 1150 0.0038
(0.00)

lal4 20*5 | 1292  0.0022
(0.00)

lal5 205 | 1207  0.0453
(0.00)

lal6 1010 | 1012 0.0221
(7.09)

lal7 1010 | 787  0.0843
(0.38)

lal8 1010 | 854  0.3000
(0.71)

lal9 1010 | 861  0.4554
(2.26)

la20 1010 | 920  0.0813
(2.00)

la21 1510 | 1092  0.1023
(4.40)

la22 1510 | 955  0.9884
(3.02)

la23 15*10 | 1049  1.7388
(1.65)

la24 1510 | 971  0.6270
(3.85)

la25 1510 | 1027 0.5388
(5.12)

la26 20*10 | 1265 3.0375
(3.86)

la27 20*10 | 1308 0.1781
(5.91)

la28 20*10 | 1301  0.1500
(6.99)

la29 20*10 | 1248 0.8570
(8.33)

la30 20*10 | 1382  0.8653
(1.99)

la31 3010 | 1784 0.0702
(0.00)

la32 3010 | 1850 0.5612
(0.00)

la33 3010 | 1719  1.2650
(0.00)

la34 3010 | 1721  3.8093
(0.00)

la35 30*10 | 1888 0.2844
(0.00)

la36 15*15 | 1325 0.0853
(4.50)

la37 15*15 | 1479  4.0295
(5.87)

la38 15*15 | 1274 0.7153
(6.52)

la39 15*15 | 1309  2.9835
(6.16)

la40 15*15 | 1291  3.5581
(5.65)




TABLA Il is much faster. Whenever our GRASP achieves a
RESULTS OF THEORB INTANCES solution not worse than theirs, we present the
name | n*m min btime (s) respective value in bold. This happens for 25 ef th
53 instances whose results we present here.
orb01 | 10*10 1145 0.0296
(8.12) TABLA IV
orb02 10*10 918 0.0953 COMPARISON WITHBINATO ET. AL (2002)OF THEFT
(3.38) INSTANCES
orb03 | 10*10 1098 0.3350 name | GRASP_ ttime GRASP ! time (s)
(9.25) B&B (s) (Binato :
orb04 | 10*10 1066 0.8213 etal.
(6.07) ; 2002) |
orb05 | 10*10 911 0.1050 ft06 55 : 0.1400 55 . 70
(2.71) ft10 970 1.0000 938 ; 261290
orb06 10*10 1050 0.4812 ft20 1283 0.4690 1169: 387430
(3.96)
orb07 | 10*10 414 0.2764 TABLAV
(4.28) COMPARISON WITHBINATO ET. AL (2002)OF THELA
orb08 | 10*10 945 0.3093 INSTANCES
(5.12) name| GRASP_B&B ttimg GRASP: time (s)
orb09 | 10*10 978 0.2809 (s) | (Binato:
(4.71) etal.
orb10 | 10*10 991 0.2276 = 2002)
(4.98) la01 666 1 0.1720 666 : 140
la02 667 1 0.1560 655 | 140
la03 605 1 0.2190 604 1 65130
In a previous version of this algorithm la04 607 ; 0.1710 590 ; 130
(Fernandes 2002), where a slightly different bran¢hla05 593 1 0.1100 593 : 130
and-bound was only used the first time the onela06 926 1 0.1710] 926 | 240
machine subproblems were solved, the resultm07 890 1 0.2030 890 ! 250
achieved where worse than these ones. In that wprlg08 863 : 0.2970 863 | 240
the neighborhood used was the one of Balas ango9 951 ' 0.2810 951 | 200
Vazacopoulos (1998). Computational times can nog10 958 ' 0.1410 958 | 250
be compared since then the algorithm was coded 1311 1222 7 0.2660| 1222 . 410
Python which is much slower than C, and there wergy12 1039 | 0.2650| 1039 : 390
pnly used 1_3 of the 40 instances of Lawrence (1984}%13 1150 1 '0.3750| 1150 430
in the experiments. , lal4 1292 :0.2180] 1292 . 390
CRASP_B&B is a very simple GRASR ;157 1507 {09060 1207 | 410
the.one.of the.shifing botleneck. Therefore. welo | 1012 07350 946 | 155310
show comparison I’eSLﬁtS to two dther procedu ecl"al? 87 | 0.7660 784 ; 60300
desian for the iob sh blem: ol GRA‘EfalS 854 1 0.7500 848 1 58290
gn for the job shop problem; a simple Sf : :
procedure by Binato et al (2002) and the shiftid?L 861 , 0.9699 842 31310
bottleneck procedure (Adams et al. 1988), see 3abld?20 920 ; 08139 907 160320
IV to VIII. la21 1092 ; 2.046Q 1091 325630
The building block of the construction phase pfta22 955 1 1.7970] 960 ; 315630
the GRASP in (Binato et al. 2002) is a singlela23 1049 | 1.890Q0 1032} 65650
operation of a job. They use an intensificationla24 971 1 1.8440| 978 | 64640
strategy, based on a set of elite solutions, tedati | 1825 1027 1 1.7960| 1028 : 64640
the random choice of a new element. The locald26 1265  :3.3750| 1271 ; 109080
search applied uses the neighborhood defined| Bg27 1308  :3.5620| 1320 : 110090
exchanging two consecutive critical operations pria28 1301 1 3.0000 1293: 110090
the same machine. la29 1248 13.2960| 1293 112110
In their computational results, they present thda30 1382 | 3.328( 1368! 106030
time in seconds per thousand iterations (an itmati la31 1784 1 7.0160| 1784 : 231290
is one building phase followed by a local search)ja32 1850 ' 6.2350 1850 ' 241390
and the thousands of iterations. For a compari$op33 1719 "'7.9060| 1719 ! 241390
purpose we multiply these values to get the tdigh34 1721 1 8.2810| 1753 240380
computation time. As the tables show, our algoritiiz35 1888 56880 1888 | 222200




la36 1325 1 42650 1334 115360
la37 1479 1 47970 1457 115360 TABLA VIII
la38 1274 5.1090 1267: 118720 COMPARISON WITHADAMS ET AL.(1988)OF THELA
la39 1309 44530 1290: 115360 INSTANCES
la40 1291 5.391Q0 1259 1232Qpname| GRASP_B&B ttimg Shifting : time
r(s) Bottleneck: (s)
TABLA VI la01 666 1 0.1720 666 1.26
COMPARISON WITHBINATO ET. AL (2002)OF THE la02 667 0.1560 720 1.69
ORB INSTANCES 1a03 605 » 0.2190 623 2.46
name| GRASP_B&B ttimg¢ GRASP: time || |a04 607 1 0.1710 597 2.79
(s) (Binato:  (s) la05 593 i 0.1100 593 0.52
etal. 1a06 926 + 0.1710Q 926 1.28
2002) la07 890 + 0.2030 890 151
orb01 1145 0.9850 1070. 11629D la08 863 1 0.2970 868 2.41
orb02 918 0.953( 889 : 152380 1a09 951 1 0.2810 951 0.85
orb03 1098 1.0150 1021; 124310 1al0 958 1 0.1410 959 0.81
orb04 1066 1.1250 1031 12431Dlall 1222 1 0.2660 1222 1 2.0B
orb05 911 0.875( 891! 112280 lal12 1039 0.265( 1039 © 0.8f
orb06 1050 1.0460 1013 12431plal3 1150 0.3750 1150 ¢ 1.28
orb07 414 1.0630 397! 128320 lal4 1292 0.218d0 1292 ©  0.94
orb08 945 1.031d 909: 124310 lal5 1207 1 0.9060 1207 :  3.09
orb09 978 0.906( 945 124310 lal6 1012 1 0.7350 1021 : 6.48
orb10 991 0.843( 953 116290 lal7 787 1 0.7660 796 4.58
lal8 854 1 0.7500 891 10.2
la19 861 1 0.9690 875 7.4
The comparison between the shifting bottlenecka20 920 ' 0.8130 924 10.2
procedure (Adams et al. 1988) and theg21 1092 " 2 0460 1172 21.9
GRASP_B&B are presented in tables VIl and VIl ja22 955 1 1.7970 1040 19.2
The main differences between these two simplgz33 1049 1 1.8900 1061 24 8
heurllstlcs. are as follows: the machme added to g4 971 | 1.8440 1000 25 5
solut|on_|s always the one \_/wth hlgher makespan->g 1027 "1.7960 1048 27 4
every time a new machine is included, th‘elp126 1265 3.3750 1304 48 5
subproblem of each of the already schedule ; , =
machines is reoptimized, restricted to all the oth C‘I‘a27 1308 35620 1325 | 453
scheduled machines; Wh,en the solution is compl :t'l‘a28 1301 . 3.0000 1256 ;. 285
L : Ta29 1248 1 3.2960 1294 | 48
the cycle of reoptimizing each one-machine problesy :
is repeated until there are no changes. la30 1382 : 3.3280 1403 : 37.8
Comparing the computational times of bo h|a3l 1784 7.0160 1784 ; 38.8
procedure, our GRASP is slightly faster than thda32 1850 6.235( 1850 : 29.1
shifting bottleneck for smaller instances. Givee th la33 1719 7.9060 1719 ; 25.6
distinct computers used in the experiments w34 1721 8.2810 1721 ¢ 276
would say that this is not meaningful, but thela35 1888 | 5.688( 1888 | 218
difference does get accentuated as the dimensjot®36 1325 1 4.2650 1351 | 46.9
grow. Whenever GRASP_B&B achieves a solutipna37 1479 1 4.7970 1485 6104
better than the shifting bottleneck procedure, wea38 1274 + 5.1090 1280 57.5
present it's value in bold. This happens in 29haf | 1a39 1309  4.4530 1321 71.8
48 instances whose results where compared, and le40 1291 1 5.3910 1326 76.7
16 of the remaining 19 instances the best value

found was the same.

TABLA VI
COMPARISON WITHADAMS ET AL.(1988)OF THEFT
INSTANCES
name| GRASP_B&B ttimg Shifting : time
b (s) Bottleneck: (s)
ft06 55 ' 0.1400 55 1.5
ft10 970 ' 1.0000 1015 10.1
ft20 1283 1 0.4690 1290 3.5

V. CONCLUSIONS
We have designed a very simple optimized

search heuristic, the GRASP_B&B. It is intended to
be a starting point for
metaheuristic. We have compared it to other base
procedures used within more complex algorithms;
namely a GRASP of Binato et al. (2002), which is
the base for a GRASP with path-relinking procedure

a more elaborated



(Aiex et al. 2003), and the shifting bottleneck15]Fisher, H. and G. L. Thompson (1963). Probabilitarning

; ; ; combinations of local job-shop scheduling rules.JInF.
procedure, incorporated in the successful guided Muth and G, L. Thompson eds. Industrial Schedulipg.

local search of Balas and Vazacopoulos (1998). The 355751 prentice Hall, Englewood Cliffs.

comparison to the work of Binato et al. (2002)16]15 Garey, M. R. and D. S. Johnson (1979). Computeds
shows that our GRASP is much faster than theirs, Intractability: A Guide to the Theory of NP-Compieess.
with differences as big as less than one second I)E'onsan Francisco, Freeman.

. Jain, A. S. and S. Meeran (1999). "Deterministic ghop
hundreds of thousands of seconds. The qua“ty scheduling: Past, present and future." Europeamndbwof

their best solution is slightly better than our$0%6 Operational Research, vol. 133: pp. 390-434.
of the instances tested. When comparin{i8lLawrence, S. (1984), "Resource Constrained Project

; ey ; Scheduling: an Experimental Investigation of Heiris
GRASP_B&B with the Shlftlng bottleneck, ours is Scheduling techniques", Graduate School of Indaistri

still faster, and it achieves better solutions, eptc Administration, Carmegie-Mellon University.
for 3 of the comparable instances. [19]Lourengo, H. R. (1995). "Job-shop scheduling:
Computational study of local search and large-step
optimization methods." European Journal of Openatio
ACKNOWLEDGEMENT Research, vol. 83: pp. 347-367.

S. Fernandes’ work is suported by the thé20]Lourenco, H. R. and M. Zwijnenburg (1996). Combinin

=~ large-step optimization with tabu-search: Appliocatito the
programm POCI2010 of the portuguese Funda@ao job-shop scheduling problem. In I. H. Osman ani. Xelly

para a Ciéncia e TecnOIOg'a- Helena R. Lourengo’s eds. Meta-heuristics: Theory & Applications. Kluwer
work is supported by Ministerio de Educacién y Academic Publishers.
Ciencia, Spain, SEC2003-01991/ECO. [21]Nowicki, E. and C. Smutnicki (2002), "Some new toth
solve the job shop problem”, Technical Report, 602
Institute of Engineering Cybernetics, Wroclaw Umgity of
Technology.
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