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Abstract-- This paper presents a simple algorithm for the job 
shop scheduling problem that combines GRASP (a heuristic 
with a local search phase), with a branch-and-bound exact 
method of integer programming. The proposed method is 
compared with similar approaches and leads to better results 
in terms of solution quality and computational times. 
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I. INTRODUCTION 
 

The job-shop scheduling problem has been 
known to the operations research community since 
the early 50’s (Jain and Meeran 1999). It is 
considered a particularly hard combinatorial 
optimization problem of the NP-hard class (Garey 
and Johnson 1979) and it has numerous practical 
applications; which makes it an excellent test 
problem for the quality of new scheduling 
algorithms. These are main reasons for the vast 
bibliography on both exact and heuristic procedures 
applied to this scheduling problem. The paper of 
Jain and Meeran. (1999) includes an exhaustive 
survey not only of the evolution of the definition of 
the problem, but also of all the techniques applied to 
it. 

Recently a new class of procedures that combine 
local search based (meta) heuristics and exact 
algorithms have been developed, we denominate 
them Optimized Search Heuristics (OSH), 
(Fernandes and Lourenço 2006). This paper presents 
a simple OSH procedure for the job shop scheduling 
problem that combines a GRASP algorithm with a 
branch-and-bound method. 

We first introduce the job-shop scheduling 
problem. We present a short review of existent OSH 
methods applied to this problem and proceed 
describing the procedure developed. Computational 
results are presented along with comparisons to 
other procedures.  

II. THE JOB-SHOP SCHEDULING PROBLEM 

The job-shop scheduling problem considers a set 
of jobs to be processed in a set of machines. Each 
job is defined by an ordered set of operations and 
each operation is assigned to a machine with a 
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predefined constant processing time. Preemption is 
not allowed when processing operations. The order 
of the operations within the jobs and its 
correspondent machines are fixed a priory and 
independent from job to job. To solve the problem 
we need to find a sequence of operations in each 
machine satisfying some constrains and optimizing 
some objective function. It is assumed that two 
consecutive operations of the same job are assigned 
to different machines, each machine can only 
process one operation at a time, and that different 
machines can not process the same job 
simultaneously. We will adopt the maximum of the 
completion time of all jobs – the makespan – as the 
objective function. 

Formally let { }1,,0 += oO K  be the set of 

operations with 0 and o+1 being the dummy 
operations representing the start and end of all jobs, 
respectively. Let M  be the set of machines, A the 
set of pairs of consecutive operations of each job 
and kE  the set of all possible pairs of operations 

processed by machine k , with Mk ∈ . We define 
0>ip  as the constant processing time of operation 

i  and it  is the variable representing the starting 

time of operation i . The mathematical formulation 
for the job shop scheduling problem is as follows: 

1min +ot   

s.t.  

iij ptt ≥−  Aji ∈),(                (1) 

0≥it  Oi ∈                     (2) 

jjiiij pttptt ≥−∨≥−  MkEji k ∈∈ ,),(  (3) 

 
The job shop scheduling problem is usually 

represented by a disjunctive graph (Roy and 
Sussman 1964) ),,( EAOG = . Where O  is the node 

set, corresponding to the set of operations. A  is the 
set of arcs between consecutive operations of the 
same job, and E  is the set of edges between 
operations processed by the same machine. Each 
node i  has weight ip , with 010 == +opp . There is 

a subset of nodes kO  and a subset of edges kE  for 

each machine that together form the disjunctive 
clique ),( kkk EOC =  of graph G. For every node j  

of { }1,0/ +oO  there are unique nodes i  and l such 

that arcs ),( ji and ),( lj are elements of A . Node i  
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is called the job predecessor of node j  - )( jjp  and 

l  is the job successor of j  - )( jjs . 

Finding a solution to the job-shop scheduling 
problem means replacing every edge of the 
respective graph with a directed arc, constructing an 
acyclic directed graph ),( SAODS ∪= . Graph 

),( AOD =  is obtained from G removing all edges 

and U
k

kSS =  corresponds to an acyclic union of 

sequences of operations for each machine k  (this 
implies that a solution can be built sequencing one 
machine at a time). 

The optimal solution is the one represented by 
the graph SD  having the critical path from 0  to 

1+o with the smallest length. 
For any given solution, the operation processed 

immediately before operation i  in the same 
machine is called the machine predecessor of i  - 

)(imp ; analogously )(ims  is the operation that 

immediately succeeds i at the same machine. 

III. REVIEW OF OPTIMIZED SEARCH HEURISTICS 

 
In the literature we can find a few works 

combining metaheuristics with exact algorithms 
applied to the job shop scheduling problem. They 
vary not only on the procedures combined but also 
in the way of combining them. 

Chen et al. (1993) and Denzinger and Offermann 
(1999) design parallel algorithms that use 
asynchronous agents information to build solutions; 
some of these agents are genetic algorithms, others 
are branch-and-bound algorithms. 

Tamura et al. (1994) design a genetic algorithm 
where the fitness of each individual, whose 
chromosomes represent each variable of the integer 
programming formulation, is the bound obtained 
solving lagrangian relaxations. 

The works of Adams et al. (1988), Applegate 
and Cook (1991), Caseau and Laburthe (1995) and 
Balas and Vazacopoulos (1998) all use an exact 
algorithm to solve a sub problem within a local 
search heuristic for the job shop scheduling. Caseau 
and Laburthe (1995) build a local search where the 
neighborhood structure is defined by a subproblem 
that is exactly solved using constraint programming. 
Applegate and Cook (1991) develop the shuffle 
heuristic. At each step of the local search the 
processing orders of the jobs on a small number of 
machines is fixed, and a branch-and-bound 
algorithm completes the schedule. The shifting 
bottleneck heuristic, due to Adams, Balas and 
Zawack (1988), is an iterated local search with a 
construction heuristic that uses a branch-and-bound 
to solve the subproblems of one machine with 
release and due dates. Balas and Vazacopoulos 
(1998) work with the shifting bottleneck heuristic 

and design a guided local search, over a tree search 
structure, that reconstructs partially destroyed 
solutions. 

Lourenço (1995) and Lourenço and Zwijnenburg 
(1996) use branch-and-bound algorithms to 
strategically guide an iterated local search, and also 
a tabu search algorithm. The diversification of the 
search is achieved using the optimal solution of 
subproblems (of one or two machines) to determine 
the perturbation forced on the incumbent solution. 

In the work of Schaal et al. (1999) an interior 
point method generates initial solutions of the linear 
relaxation. A genetic algorithm finds integer 
solutions. A cut is generated based on the integer 
solutions found and the interior point method is 
applied again to diversify the search. This procedure 
is defined for the generalized job shop problem. 

The interesting work done by Danna Rothberg 
and Le Pape (2005) “applies the spirit of 
metaheuristics” in an exact algorithm. Within each 
node of a branch-and-cut tree, the solution of the 
linear relaxation is used to define the neighborhood 
of the current best feasible solution. The local 
search consists in solving the restricted MIP 
problem defined by the neighborhood. 

IV. OPTIMIZED SEARCH HEURISTIC – GRASP_B&B 

We developed a simple optimized search 
heuristic that combines a GRASP algorithm with a 
branch-and-bound method. Here the branch-and-
bound is used within the GRASP to solve 
subproblems of one machine scheduling. 

GRASP (Feo and Resende 1995) means “greedy 
randomized adaptive search procedure”. It is an 
iterative process where each iteration consists of 
two steps: a randomized building step of a greedy 
nature and a local search step. At the building phase, 
a feasible solution is constructed by joining one 
element at a time. The element is defined 
specifically for each problem. Each element is 
evaluated by a heuristic function and incorporated 
(or not) in a restricted candidate list (RCL) 
according to its evaluation. The element to join the 
solution is chosen randomly from the RCL. 

Each time a new element is added to the partial 
solution the algorithm proceeds with the local 
search step. The current solution is updated by the 
local optimum and this process of two steps is 
repeated until the solution is complete. 

A. Building Block 

We define the sequence of operations at each 
machine as the elements to join the solution, and 
their makespan ( ( ) MkOipt kii ∈∈+ ,,max ) as the 

greedy function to evaluate them. In order to build 
the restricted candidate list we find the optimal 
solution for the one machine problems of machines 
not yet scheduled, and identify the best ( )f  and 



worse ( )f  makespans. A machine k  is included in 

the RCL if ( )fffxf k −−≥ α)( , where )( kxf  is 

the makespan of machine k and α  is a uniform 
random number in ( )1,0 . This semi-greedy 

randomised procedure is biased towards the 
machine with the highest makespan, the bottleneck 
machine, in the sense that machines with low values 
of makespan have less probability of being included 
in the restricted candidate list. 

 
SemiGreedy (K) 
(1) )1,0(: Random=α  

(2) { }Kkxff k ∈= ),(max:  

(3) { }Kkxff k ∈= ),(min:  

(4) { }=RCL  

(5) foreach Kk ∈  

(6)  if ( )fffxf k −−≥ α)(  

(7)   { }kRCLRCL ∪=:  

(8) return RandomChoice(RCL) 
 
To solve the one machine scheduling problems 

we use the branch-and-bound algorithm of Carlier 
(1982). The objective function of the algorithm is to 
minimize the completion time of all jobs and it 
assumes that there are three values associated with 
every job j  to be scheduled at the machine: the 

processing time ( )jp , a release date ( )jr  and an 

amount of time ( )jq  that the job stays in the system 

after being processed.  
At each node of the branch-and-bound tree the 

upper bound is computed using the algorithm of 
Schrage (1970). This algorithm gives priority to 
higher values of the tails ( )jq  when scheduling 

released jobs. We break ties preferring jobs with 
bigger processing times. 

The lower bound defined by Carlier (1982) is 
based on a critical path (the one with more jobs) of 
the solution found by the algorithm of Schrage 
(1970). The value of the solution with preemption is 
used to strengthen this lower bound. We introduce a 
slight modification, forcing the lower bound of a 
node never to be smaller than the one of its father in 
the tree. 

The algorithm of Carlier (1982) uses some 
proven properties of the one machine scheduling 
problem to define the branching strategy, and also to 
reduce the number of inspected nodes of the branch-
and-bound tree. 

When applying the algorithm to problems with 
50 or more jobs, we observed that a lot of time was 
spent inspecting nodes of the tree, after having 
already found the optimal solution. So we 
introduced a condition restricting the number of 
nodes of the tree: the algorithm is stopped if there 

have been inspected more then 3n  nodes after the 
last reduction of the difference between the upper 
and lower bound of the tree (n is the number of 
jobs). 

Considering the job-shop problem and its 
disjunctive graph representation, the release date of 
each operation i  - ( )ir  is defined as the longest path 

from the beginning toi , and its tail ( )iq  as the 

longest path from i  to the end, without the 
processing time of i . 

At the first iteration we consider the graph 
),( AOD =  (without the edges connecting 

operations that share the same machine) to compute 
release dates and tails. Incorporating a new machine 
in the solution means adding to the graph the arcs 
representing the sequence of operations in that 
machine. We then update the makespan of the 
partial solution and the release dates and tails of 
unscheduled operations, using the algorithm of 
Taillard (1994). 

 

B. Local Search 

In order to build a simple local search algorithm 
we need to design a neighborhood structure (defined 
by moves between solutions), the way to inspect the 
neighborhood of a given solution, and a procedure 
to evaluate the quality of each solution. It is said 
that a solution B is a neighbor of a solution A if we 
can achieve B by performing a move in A. 

We use a neighborhood structure very similar to 
the NB neighborhood of Dell’Amico and Trubian 
(1993) and the one of Balas and Vazacopoulos 
(1998). To describe the moves that define this 
neighborhood we use the notion of blocks of critical 
operations. A block of critical operations is a 
maximal ordered set of consecutive operations of a 
critical path (in the disjunctive graph that represents 
the solution), sharing the same machine. Let ),( jiL  

denote the length of the critical path from node i  to 
node j . Borrowing the name used by Balas and 

Vazacopoulos (1998) we speak of forward and 
backward moves over forward and backward critical 
pairs of operations. 

Two operations u  and v  form a forward critical 
pair ( )vu,  if: 

a) they both belong to the same block; 
b) v is the last operation of the block; 
c) operation )(vjs  also belongs to the same 

critical path;  
d) the length of the critical path from v  to 1+o  

is not less than the length of the critical path from 
)(ujs  to 10+  ( )1),(()1,( +≥+ oujsLovL ). 

Two operations u and v form a backward critical 
pair ( )vu,  if: 

a) they both belong to the same block; 



b) u  is the first operation of the block; 
c) operation )(ujp  also belongs to the same 

critical path; 
d) the length of the critical path from 0  to u , 

including the processing time of u , is not less than 
the length of the critical path from 0 to )(vjp , 

including the processing time of )(vjp  

( )))(,0(),0( )(vjpu pvjpLpuL +≥+ ). 

Conditions d) are included to guarantee that all 
moves lead to feasible solutions (Balas and 
Vazacopoulos 1998). 

A forward move is executed by moving 
operation u  to be processed immediately after 
operation v . A backward move is executed by 
moving operation v  to be processed immediately 
before operation u . 

When inspecting the neighborhood ( ),( kMxN ) 

of a given solution x  with kM  machines already 

scheduled, we stop whenever we find a neighbor 
with a best evaluation value then the makespan ofx . 

To evaluate the quality of a neighbor of a 
solutionx , produced by a move over a critical pair 
( )vu, , we need only to compute the length of all the 

longest paths through the operations that were 
between u and v in the critical path of solutionx . 
This evaluation is computed using the algorithm of 
Balas and Vazacopoulos (1998), which is a variation 
of the one of Taillard (1994) for a subset of arcs. 

 
LocalSearch ( )( )0,, Mxfx  

(1) ( )0),(,: Mxfxneighbors =  

(2) while xs ≠  
(3)  sx =:  
(4)  ( )0),(,: Mxfxneighbors =  

(5) return s  
 
 
Neighbor ( )( )0,, Mxfx  

(1) foreach ( )0,MxNs∈  

(2) ( ))(:)( sxmoveevaluationsf →=  

(3)  if )()( xfsf <  

(4)   return s  
(5) return x  
 

C. GRASP_B&B 

We named the procedure GRASP_B&B. Let 
runs be the total number of runs, M  the set of 
machines of the instance and )(xf  the makespan of 

a solution x . The procedure can be generally 
described by the pseudo-code in the following 
figure: 

 

 
GRASP_B&B (runs) 
(1) { }mM ,,1: L=  

(2) for 1=r to runs 
(3) { }=:x  

(4) MK =:  
(5) while { }≠K  

(6)    foreach Kk ∈  
(7)             )(&_: kBBCARLIERxk =  

(8)  )(:* KSEMIGREEDYk =  

(9)  *:
k

xxx ∪=  

(10)  )(:)( xTAILLARDxf =  

(11)  { }*\: kKK =  

(12)  if 1−< MK  

(13)   )\,(: KMxHLOCALSEARCx =  

(14)  if *x  not initialized or *)( fxf <  

(15)     xx =:*  

(16)     )(:* xff =  

(17) return *x  
 
This metaheuristic has only one parameter to be 

defined: the number of runs to perform (line (2)). 
The step of line (8) is the only one using 
randomness. When applied to an instance with m  
machines, in each run of the metaheuristic, the 
branch-and-bound algorithm is called ( ) 2/1+× mm  

times (line (7)); the local search is executed 1−m  
times (lines (12) and (13)); the procedure semi-
greedy (line (8)) and the algorithm of Taillard (line 
(10)) are executed m  times. 

 

D. Computacional Results 

We have tested the algorithm GRASP_B&B on 
the benchmark instances abz5-9 (Adams et al. 
1988), ft6, ft10, ft20 (Fisher and Thompson 1963), 
la01-40 (Lawrence 1984), orb01-10 (Applegate and 
Cook 1991), swv01-20 (Storer et al. 1992), ta01-70 
(Taillard 1993) and yn1-4 (Yamada and Nakano 
1992). Because of space limitations, in this work we 
will only present the results for ft6, ft10, ft20 
(Fisher and Thompson 1963), la01-40 (Lawrence 
1984) and orb01-10 (Applegate and Cook 1991), in 
Tables I, II and III respectively. 

The tables have the following structure: in each 
line it is presented the name of the instance, the 
number of jobs and the number of machines of the 
instance (n*m), the best value (min) obtained, the 
percentage over the lower bound and the time to the 
best solution found (btime), in seconds. The total 
time of all runs (ttime) will be presented in next 
tables. We gathered the values of the lower bounds 
from the paper of Jain and Meeran (1999) and the 



papers of Nowicki and Smutnicki (1996, 2002, 
2005). Within brackets, next to the best known 
value (UB), is the percentage of relative error to the 
upper bound calculated as follows: 

( )
UB

UBx
xREUB

−×= %100  

The algorithm has been run 100 times for each 
instance on a Pentium 4 CPU 2.80 GHz and coded 
in C. 

Whenever the values are not worse than the best 
known upper bound, we present them in bold. 
Although this is a very simple (and fast) algorithm, 
it happens in 22 of the 152 instances used in this 
study. 

 
TABLA I  

RESULTS OF THE FT INSTANCES 
name 

 
n*m min btime (s) 

ft06 6*6 55 0.1274 
  (0.00)  

ft10 10*10 970 0.5800 
  (4.30)  

ft20 20*5 1283 0.0094 
  (10.13)  

 
TABLA II  

RESULTS OF THE LA INSTANCES 
name 

 
n*m min btime (s) 

la01 10*5 666 0.0017 
  (0.00)  

la02 10*5 667 0.0437 
  (1.83)  

la03 10*5 605 0.0066 
  (1.34)  

la04 10*5 607 0.0051 
  (2.88)  

la05 10*5 593 0.0011 
  (0.00)  

la06 15*5 926 0.0017 
  (0.00)  

la07 15*5 890 0.0020 
  (0.00)  

la08 15*5 863 0.0149 
  (0.00)  

la09 15*5 951 0.0028 
  (0.00)  

la10 15*5 958 0.0014 
  (0.00)  

la11 20*5 1222 0.0027 
  (0.00)  

la12 20*5 1039 0.0027 
  (0.00)  

la13 20*5 1150 0.0038 
  (0.00)  

la14 20*5 1292 0.0022 
  (0.00)  

la15 20*5 1207 0.0453 
  (0.00)  

la16 10*10 1012 0.0221 
  (7.09)  

la17 10*10 787 0.0843 
  (0.38)  

la18 10*10 854 0.3000 
  (0.71)  

la19 10*10 861 0.4554 
  (2.26)  

la20 10*10 920 0.0813 
  (2.00)  

la21 15*10 1092 0.1023 
  (4.40)  

la22 15*10 955 0.9884 
  (3.02)  

la23 15*10 1049 1.7388 
  (1.65)  

la24 15*10 971 0.6270 
  (3.85)  

la25 15*10 1027 0.5388 
  (5.12)  

la26 20*10 1265 3.0375 
  (3.86)  

la27 20*10 1308 0.1781 
  (5.91)  

la28 20*10 1301 0.1500 
  (6.99)  

la29 20*10 1248 0.8570 
  (8.33)  

la30 20*10 1382 0.8653 
  (1.99)  

la31 30*10 1784 0.0702 
  (0.00)  

la32 30*10 1850 0.5612 
  (0.00)  

la33 30*10 1719 1.2650 
  (0.00)  

la34 30*10 1721 3.8093 
  (0.00)  

la35 30*10 1888 0.2844 
  (0.00)  

la36 15*15 1325 0.0853 
  (4.50)  

la37 15*15 1479 4.0295 
  (5.87)  

la38 15*15 1274 0.7153 
  (6.52)  

la39 15*15 1309 2.9835 
  (6.16)  

la40 15*15 1291 3.5581 
  (5.65)  

 



TABLA III  
RESULTS OF THE ORB INTANCES 

name 
 

n*m min btime (s) 

orb01 10*10 1145 0.0296 
  (8.12)  

orb02 10*10 918 0.0953 
  (3.38)  

orb03 10*10 1098 0.3350 
  (9.25)  

orb04 10*10 1066 0.8213 
  (6.07)  

orb05 10*10 911 0.1050 
  (2.71)  

orb06 10*10 1050 0.4812 
  (3.96)  

orb07 10*10 414 0.2764 
  (4.28)  

orb08 10*10 945 0.3093 
  (5.12)  

orb09 10*10 978 0.2809 
  (4.71)  

orb10 10*10 991 0.2276 
  (4.98)  

 
 
In a previous version of this algorithm 

(Fernandes 2002), where a slightly different branch-
and-bound was only used the first time the one-
machine subproblems were solved, the results 
achieved where worse than these ones. In that work,  
the neighborhood used was the one of Balas and 
Vazacopoulos (1998). Computational times can not 
be compared since then the algorithm was coded in 
Python which is much slower than C, and there were 
only used 13 of the 40 instances of Lawrence (1984) 
in the experiments. 

GRASP_B&B is a very simple GRASP 
algorithm with a construction phase very similar to 
the one of the shifting bottleneck. Therefore we 
show comparison results to two other procedures 
design for the job shop problem; a simple GRASP 
procedure by Binato et al (2002) and the shifting 
bottleneck procedure (Adams et al. 1988), see tables 
IV to VIII. 

The building block of the construction phase of 
the GRASP in (Binato et al. 2002) is a single 
operation of a job. They use an intensification 
strategy, based on a set of elite solutions, to ‘direct’ 
the random choice of a new element. The local 
search applied uses the neighborhood defined by 
exchanging two consecutive critical operations on 
the same machine.  

In their computational results, they present the 
time in seconds per thousand iterations (an iteration 
is one building phase followed by a local search), 
and the thousands of iterations. For a comparison 
purpose we multiply these values to get the total 
computation time. As the tables show, our algorithm 

is much faster. Whenever our GRASP achieves a 
solution not worse than theirs, we present the 
respective value in bold. This happens for 25 of the 
53 instances whose results we present here. 
 

TABLA IV  
COMPARISON WITH BINATO ET. AL (2002) OF THE FT 

INSTANCES 
name GRASP_

B&B 
ttime 
(s) 

GRASP 
(Binato 
et al. 
2002) 

time (s) 

ft06 55 0.1400 55 70 
ft10 970 1.0000 938 261290 
ft20 1283 0.4690 1169 387430 

 
TABLA V  

COMPARISON WITH BINATO ET. AL (2002) OF THE LA 

INSTANCES 
name GRASP_B&B ttime 

(s) 
GRASP 
(Binato 
et al. 
2002) 

time (s) 

la01 666 0.1720 666 140 
la02 667 0.1560 655 140 
la03 605 0.2190 604 65130 
la04 607 0.1710 590 130 
la05 593 0.1100 593 130 
la06 926 0.1710 926 240 
la07 890 0.2030 890 250 
la08 863 0.2970 863 240 
la09 951 0.2810 951 290 
la10 958 0.1410 958 250 
la11 1222 0.2660 1222 410 
la12 1039 0.2650 1039 390 
la13 1150 0.3750 1150 430 
la14 1292 0.2180 1292 390 
la15 1207 0.9060 1207 410 
la16 1012 0.7350 946 155310 
la17 787 0.7660 784 60300 
la18 854 0.7500 848 58290 
la19 861 0.9690 842 31310 
la20 920 0.8130 907 160320 
la21 1092 2.0460 1091 325650 
la22 955 1.7970 960 315630 
la23 1049 1.8900 1032 65650 
la24 971 1.8440 978 64640 
la25 1027 1.7960 1028 64640 
la26 1265 3.3750 1271 109080 
la27 1308 3.5620 1320 110090 
la28 1301 3.0000 1293 110090 
la29 1248 3.2960 1293 112110 
la30 1382 3.3280 1368 106050 
la31 1784 7.0160 1784 231290 
la32 1850 6.2350 1850 241390 
la33 1719 7.9060 1719 241390 
la34 1721 8.2810 1753 240380 
la35 1888 5.6880 1888 222200 



la36 1325 4.2650 1334 115360 
la37 1479 4.7970 1457 115360 
la38 1274 5.1090 1267 118720 
la39 1309 4.4530 1290 115360 
la40 1291 5.3910 1259 123200 

 
TABLA VI  

COMPARISON  WITH BINATO ET. AL (2002) OF THE 

ORB INSTANCES 
name GRASP_B&B ttime 

(s) 
GRASP 
(Binato 
et al. 
2002) 

time 
(s) 

orb01 1145 0.9850 1070 116290 
orb02 918 0.9530 889 152380 
orb03 1098 1.0150 1021 124310 
orb04 1066 1.1250 1031 124310 
orb05 911 0.8750 891 112280 
orb06 1050 1.0460 1013 124310 
orb07 414 1.0630 397 128320 
orb08 945 1.0310 909 124310 
orb09 978 0.9060 945 124310 
orb10 991 0.8430 953 116290 
 
 

The comparison between the shifting bottleneck 
procedure (Adams et al. 1988) and the 
GRASP_B&B are presented in tables VII and VIII. 
The main differences between these two simple 
heuristics are as follows: the machine added to the 
solution is always the one with higher makespan; 
every time a new machine is included, the 
subproblem of each of the already scheduled 
machines is reoptimized, restricted to all the other 
scheduled machines; when the solution is complete, 
the cycle of reoptimizing each one-machine problem 
is repeated until there are no changes. 

Comparing the computational times of both 
procedure, our GRASP is slightly faster than the 
shifting bottleneck for smaller instances. Given the 
distinct computers used in the experiments we 
would say that this is not meaningful, but the 
difference does get accentuated as the dimensions 
grow. Whenever GRASP_B&B achieves a solution 
better than the shifting bottleneck procedure, we 
present it’s value in bold. This happens in 29 of the 
48 instances whose results where compared, and in 
16 of the remaining 19 instances the best value 
found was the same. 

 
TABLA VII  

COMPARISON  WITH ADAMS ET AL.(1988) OF THE FT 

INSTANCES  
name GRASP_B&B ttime 

(s) 
Shifting 

Bottleneck 
time 
(s) 

ft06 55 0.1400 55 1.5 
ft10 970 1.0000 1015 10.1 
ft20 1283 0.4690 1290 3.5 

 
TABLA VIII  

COMPARISON  WITH ADAMS ET AL.(1988) OF THE LA 

INSTANCES  
name GRASP_B&B ttime 

(s) 
Shifting 

Bottleneck 
time 
(s) 

la01 666 0.1720 666 1.26 
la02 667 0.1560 720 1.69 
la03 605 0.2190 623 2.46 
la04 607 0.1710 597 2.79 
la05 593 0.1100 593 0.52 
la06 926 0.1710 926 1.28 
la07 890 0.2030 890 1.51 
la08 863 0.2970 868 2.41 
la09 951 0.2810 951 0.85 
la10 958 0.1410 959 0.81 
la11 1222 0.2660 1222 2.03 
la12 1039 0.2650 1039 0.87 
la13 1150 0.3750 1150 1.23 
la14 1292 0.2180 1292 0.94 
la15 1207 0.9060 1207 3.09 
la16 1012 0.7350 1021 6.48 
la17 787 0.7660 796 4.58 
la18 854 0.7500 891 10.2 
la19 861 0.9690 875 7.4 
la20 920 0.8130 924 10.2 
la21 1092 2.0460 1172 21.9 
la22 955 1.7970 1040 19.2 
la23 1049 1.8900 1061 24.6 
la24 971 1.8440 1000 25.5 
la25 1027 1.7960 1048 27.9 
la26 1265 3.3750 1304 48.5 
la27 1308 3.5620 1325 45.5 
la28 1301 3.0000 1256 28.5 
la29 1248 3.2960 1294 48 
la30 1382 3.3280 1403 37.8 
la31 1784 7.0160 1784 38.3 
la32 1850 6.2350 1850 29.1 
la33 1719 7.9060 1719 25.6 
la34 1721 8.2810 1721 27.6 
la35 1888 5.6880 1888 21.3 
la36 1325 4.2650 1351 46.9 
la37 1479 4.7970 1485 6104 
la38 1274 5.1090 1280 57.5 
la39 1309 4.4530 1321 71.8 
la40 1291 5.3910 1326 76.7 

 
 

V. CONCLUSIONS 

We have designed a very simple optimized 
search heuristic, the GRASP_B&B. It is intended to 
be a starting point for a more elaborated 
metaheuristic. We have compared it to other base 
procedures used within more complex algorithms; 
namely a GRASP of Binato et al. (2002), which is 
the base for a GRASP with path-relinking procedure 



(Aiex et al. 2003), and the shifting bottleneck 
procedure, incorporated in the successful guided 
local search of Balas and Vazacopoulos (1998). The 
comparison to the work of Binato et al. (2002) 
shows that our GRASP is much faster than theirs, 
with differences as big as less than one second to 
hundreds of thousands of seconds. The quality of 
their best solution is slightly better than ours in 60% 
of the instances tested. When comparing 
GRASP_B&B with the shifting bottleneck, ours is 
still faster, and it achieves better solutions, except 
for 3 of the comparable instances. 
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