

A Simple Optimized Search Heuristic for the

Job-Shop Scheduling Problem

Fernandes, S. and Lourenço, H.R. (2007), A Simple Optimized Search
Heuristic for the Job-Shop Scheduling Problem. In Proceeding of the V
Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y
Bioinspirados, MAEB’2007 F. Rodriguez, B. Mélian, J.A. Moreno, J.M.
Moreno (Eds.) Tenerife, Spain, February 14-16, pp. 763-770.

ISBN 978-84-690-3470-5.

Abstract-- This paper presents a simple algorithm for the job
shop scheduling problem that combines GRASP (a heuristic
with a local search phase), with a branch-and-bound exact
method of integer programming. The proposed method is
compared with similar approaches and leads to better results
in terms of solution quality and computational times.

Keywords—job-shop scheduling, hybrid metaheuristic,
GRASP, branch-and-bound.

I. INTRODUCTION

The job-shop scheduling problem has been
known to the operations research community since
the early 50’s (Jain and Meeran 1999). It is
considered a particularly hard combinatorial
optimization problem of the NP-hard class (Garey
and Johnson 1979) and it has numerous practical
applications; which makes it an excellent test
problem for the quality of new scheduling
algorithms. These are main reasons for the vast
bibliography on both exact and heuristic procedures
applied to this scheduling problem. The paper of
Jain and Meeran. (1999) includes an exhaustive
survey not only of the evolution of the definition of
the problem, but also of all the techniques applied to
it.

Recently a new class of procedures that combine
local search based (meta) heuristics and exact
algorithms have been developed, we denominate
them Optimized Search Heuristics (OSH),
(Fernandes and Lourenço 2006). This paper presents
a simple OSH procedure for the job shop scheduling
problem that combines a GRASP algorithm with a
branch-and-bound method.

We first introduce the job-shop scheduling
problem. We present a short review of existent OSH
methods applied to this problem and proceed
describing the procedure developed. Computational
results are presented along with comparisons to
other procedures.

II. THE JOB-SHOP SCHEDULING PROBLEM

The job-shop scheduling problem considers a set
of jobs to be processed in a set of machines. Each
job is defined by an ordered set of operations and
each operation is assigned to a machine with a

1 Universidade do Algarve, Faro Portugal. E-mail: sfer@ualg.pt
2 Univertitat Pompeu Fabra, Barcelona, Spain. E-mail: helena.
ramalhinho@upf.edu

predefined constant processing time. Preemption is
not allowed when processing operations. The order
of the operations within the jobs and its
correspondent machines are fixed a priory and
independent from job to job. To solve the problem
we need to find a sequence of operations in each
machine satisfying some constrains and optimizing
some objective function. It is assumed that two
consecutive operations of the same job are assigned
to different machines, each machine can only
process one operation at a time, and that different
machines can not process the same job
simultaneously. We will adopt the maximum of the
completion time of all jobs – the makespan – as the
objective function.

Formally let { }1,,0 += oO K be the set of

operations with 0 and o+1 being the dummy
operations representing the start and end of all jobs,
respectively. Let M be the set of machines, A the
set of pairs of consecutive operations of each job
and kE the set of all possible pairs of operations

processed by machine k , with Mk ∈ . We define
0>ip as the constant processing time of operation

i and it is the variable representing the starting

time of operation i . The mathematical formulation
for the job shop scheduling problem is as follows:

1min +ot

s.t.

iij ptt ≥− Aji ∈),((1)

0≥it Oi ∈ (2)

jjiiij pttptt ≥−∨≥− MkEji k ∈∈ ,),((3)

The job shop scheduling problem is usually

represented by a disjunctive graph (Roy and
Sussman 1964)),,(EAOG = . Where O is the node

set, corresponding to the set of operations. A is the
set of arcs between consecutive operations of the
same job, and E is the set of edges between
operations processed by the same machine. Each
node i has weight ip , with 010 == +opp . There is

a subset of nodes kO and a subset of edges kE for

each machine that together form the disjunctive
clique),(kkk EOC = of graph G. For every node j

of { }1,0/ +oO there are unique nodes i and l such

that arcs),(ji and),(lj are elements of A . Node i

A Simple Optimized Search Heuristic for the
Job-Shop Scheduling Problem

Susana Fernandes1, Helena R. Lourenço2

is called the job predecessor of node j -)(jjp and

l is the job successor of j -)(jjs .

Finding a solution to the job-shop scheduling
problem means replacing every edge of the
respective graph with a directed arc, constructing an
acyclic directed graph),(SAODS ∪= . Graph

),(AOD = is obtained from G removing all edges

and U
k

kSS = corresponds to an acyclic union of

sequences of operations for each machine k (this
implies that a solution can be built sequencing one
machine at a time).

The optimal solution is the one represented by
the graph SD having the critical path from 0 to

1+o with the smallest length.
For any given solution, the operation processed

immediately before operation i in the same
machine is called the machine predecessor of i -

)(imp ; analogously)(ims is the operation that

immediately succeeds i at the same machine.

III. REVIEW OF OPTIMIZED SEARCH HEURISTICS

In the literature we can find a few works

combining metaheuristics with exact algorithms
applied to the job shop scheduling problem. They
vary not only on the procedures combined but also
in the way of combining them.

Chen et al. (1993) and Denzinger and Offermann
(1999) design parallel algorithms that use
asynchronous agents information to build solutions;
some of these agents are genetic algorithms, others
are branch-and-bound algorithms.

Tamura et al. (1994) design a genetic algorithm
where the fitness of each individual, whose
chromosomes represent each variable of the integer
programming formulation, is the bound obtained
solving lagrangian relaxations.

The works of Adams et al. (1988), Applegate
and Cook (1991), Caseau and Laburthe (1995) and
Balas and Vazacopoulos (1998) all use an exact
algorithm to solve a sub problem within a local
search heuristic for the job shop scheduling. Caseau
and Laburthe (1995) build a local search where the
neighborhood structure is defined by a subproblem
that is exactly solved using constraint programming.
Applegate and Cook (1991) develop the shuffle
heuristic. At each step of the local search the
processing orders of the jobs on a small number of
machines is fixed, and a branch-and-bound
algorithm completes the schedule. The shifting
bottleneck heuristic, due to Adams, Balas and
Zawack (1988), is an iterated local search with a
construction heuristic that uses a branch-and-bound
to solve the subproblems of one machine with
release and due dates. Balas and Vazacopoulos
(1998) work with the shifting bottleneck heuristic

and design a guided local search, over a tree search
structure, that reconstructs partially destroyed
solutions.

Lourenço (1995) and Lourenço and Zwijnenburg
(1996) use branch-and-bound algorithms to
strategically guide an iterated local search, and also
a tabu search algorithm. The diversification of the
search is achieved using the optimal solution of
subproblems (of one or two machines) to determine
the perturbation forced on the incumbent solution.

In the work of Schaal et al. (1999) an interior
point method generates initial solutions of the linear
relaxation. A genetic algorithm finds integer
solutions. A cut is generated based on the integer
solutions found and the interior point method is
applied again to diversify the search. This procedure
is defined for the generalized job shop problem.

The interesting work done by Danna Rothberg
and Le Pape (2005) “applies the spirit of
metaheuristics” in an exact algorithm. Within each
node of a branch-and-cut tree, the solution of the
linear relaxation is used to define the neighborhood
of the current best feasible solution. The local
search consists in solving the restricted MIP
problem defined by the neighborhood.

IV. OPTIMIZED SEARCH HEURISTIC – GRASP_B&B

We developed a simple optimized search
heuristic that combines a GRASP algorithm with a
branch-and-bound method. Here the branch-and-
bound is used within the GRASP to solve
subproblems of one machine scheduling.

GRASP (Feo and Resende 1995) means “greedy
randomized adaptive search procedure”. It is an
iterative process where each iteration consists of
two steps: a randomized building step of a greedy
nature and a local search step. At the building phase,
a feasible solution is constructed by joining one
element at a time. The element is defined
specifically for each problem. Each element is
evaluated by a heuristic function and incorporated
(or not) in a restricted candidate list (RCL)
according to its evaluation. The element to join the
solution is chosen randomly from the RCL.

Each time a new element is added to the partial
solution the algorithm proceeds with the local
search step. The current solution is updated by the
local optimum and this process of two steps is
repeated until the solution is complete.

A. Building Block

We define the sequence of operations at each
machine as the elements to join the solution, and
their makespan (() MkOipt kii ∈∈+ ,,max) as the

greedy function to evaluate them. In order to build
the restricted candidate list we find the optimal
solution for the one machine problems of machines
not yet scheduled, and identify the best ()f and

worse ()f makespans. A machine k is included in

the RCL if ()fffxf k −−≥ α)(, where)(kxf is

the makespan of machine k and α is a uniform
random number in ()1,0 . This semi-greedy

randomised procedure is biased towards the
machine with the highest makespan, the bottleneck
machine, in the sense that machines with low values
of makespan have less probability of being included
in the restricted candidate list.

SemiGreedy (K)
(1))1,0(: Random=α

(2) { }Kkxff k ∈=),(max:

(3) { }Kkxff k ∈=),(min:

(4) { }=RCL

(5) foreach Kk ∈

(6) if ()fffxf k −−≥ α)(

(7) { }kRCLRCL ∪=:

(8) return RandomChoice(RCL)

To solve the one machine scheduling problems

we use the branch-and-bound algorithm of Carlier
(1982). The objective function of the algorithm is to
minimize the completion time of all jobs and it
assumes that there are three values associated with
every job j to be scheduled at the machine: the

processing time ()jp , a release date ()jr and an

amount of time ()jq that the job stays in the system

after being processed.
At each node of the branch-and-bound tree the

upper bound is computed using the algorithm of
Schrage (1970). This algorithm gives priority to
higher values of the tails ()jq when scheduling

released jobs. We break ties preferring jobs with
bigger processing times.

The lower bound defined by Carlier (1982) is
based on a critical path (the one with more jobs) of
the solution found by the algorithm of Schrage
(1970). The value of the solution with preemption is
used to strengthen this lower bound. We introduce a
slight modification, forcing the lower bound of a
node never to be smaller than the one of its father in
the tree.

The algorithm of Carlier (1982) uses some
proven properties of the one machine scheduling
problem to define the branching strategy, and also to
reduce the number of inspected nodes of the branch-
and-bound tree.

When applying the algorithm to problems with
50 or more jobs, we observed that a lot of time was
spent inspecting nodes of the tree, after having
already found the optimal solution. So we
introduced a condition restricting the number of
nodes of the tree: the algorithm is stopped if there

have been inspected more then 3n nodes after the
last reduction of the difference between the upper
and lower bound of the tree (n is the number of
jobs).

Considering the job-shop problem and its
disjunctive graph representation, the release date of
each operation i - ()ir is defined as the longest path

from the beginning toi , and its tail ()iq as the

longest path from i to the end, without the
processing time of i .

At the first iteration we consider the graph
),(AOD = (without the edges connecting

operations that share the same machine) to compute
release dates and tails. Incorporating a new machine
in the solution means adding to the graph the arcs
representing the sequence of operations in that
machine. We then update the makespan of the
partial solution and the release dates and tails of
unscheduled operations, using the algorithm of
Taillard (1994).

B. Local Search

In order to build a simple local search algorithm
we need to design a neighborhood structure (defined
by moves between solutions), the way to inspect the
neighborhood of a given solution, and a procedure
to evaluate the quality of each solution. It is said
that a solution B is a neighbor of a solution A if we
can achieve B by performing a move in A.

We use a neighborhood structure very similar to
the NB neighborhood of Dell’Amico and Trubian
(1993) and the one of Balas and Vazacopoulos
(1998). To describe the moves that define this
neighborhood we use the notion of blocks of critical
operations. A block of critical operations is a
maximal ordered set of consecutive operations of a
critical path (in the disjunctive graph that represents
the solution), sharing the same machine. Let),(jiL

denote the length of the critical path from node i to
node j . Borrowing the name used by Balas and

Vazacopoulos (1998) we speak of forward and
backward moves over forward and backward critical
pairs of operations.

Two operations u and v form a forward critical
pair ()vu, if:

a) they both belong to the same block;
b) v is the last operation of the block;
c) operation)(vjs also belongs to the same

critical path;
d) the length of the critical path from v to 1+o

is not less than the length of the critical path from
)(ujs to 10+ ()1),(()1,(+≥+ oujsLovL).

Two operations u and v form a backward critical
pair ()vu, if:

a) they both belong to the same block;

b) u is the first operation of the block;
c) operation)(ujp also belongs to the same

critical path;
d) the length of the critical path from 0 to u ,

including the processing time of u , is not less than
the length of the critical path from 0 to)(vjp ,

including the processing time of)(vjp

()))(,0(),0()(vjpu pvjpLpuL +≥+).

Conditions d) are included to guarantee that all
moves lead to feasible solutions (Balas and
Vazacopoulos 1998).

A forward move is executed by moving
operation u to be processed immediately after
operation v . A backward move is executed by
moving operation v to be processed immediately
before operation u .

When inspecting the neighborhood (),(kMxN)

of a given solution x with kM machines already

scheduled, we stop whenever we find a neighbor
with a best evaluation value then the makespan ofx .

To evaluate the quality of a neighbor of a
solutionx , produced by a move over a critical pair
()vu, , we need only to compute the length of all the

longest paths through the operations that were
between u and v in the critical path of solutionx .
This evaluation is computed using the algorithm of
Balas and Vazacopoulos (1998), which is a variation
of the one of Taillard (1994) for a subset of arcs.

LocalSearch ()()0,, Mxfx

(1) ()0),(,: Mxfxneighbors =

(2) while xs ≠
(3) sx =:
(4) ()0),(,: Mxfxneighbors =

(5) return s

Neighbor ()()0,, Mxfx

(1) foreach ()0,MxNs∈

(2) ())(:)(sxmoveevaluationsf →=

(3) if)()(xfsf <

(4) return s
(5) return x

C. GRASP_B&B

We named the procedure GRASP_B&B. Let
runs be the total number of runs, M the set of
machines of the instance and)(xf the makespan of

a solution x . The procedure can be generally
described by the pseudo-code in the following
figure:

GRASP_B&B (runs)
(1) { }mM ,,1: L=

(2) for 1=r to runs
(3) { }=:x

(4) MK =:
(5) while { }≠K

(6) foreach Kk ∈
(7))(&_: kBBCARLIERxk =

(8))(:* KSEMIGREEDYk =

(9) *:
k

xxx ∪=

(10))(:)(xTAILLARDxf =

(11) { }*\: kKK =

(12) if 1−< MK

(13))\,(: KMxHLOCALSEARCx =

(14) if *x not initialized or *)(fxf <

(15) xx =:*

(16))(:* xff =

(17) return *x

This metaheuristic has only one parameter to be

defined: the number of runs to perform (line (2)).
The step of line (8) is the only one using
randomness. When applied to an instance with m
machines, in each run of the metaheuristic, the
branch-and-bound algorithm is called () 2/1+× mm

times (line (7)); the local search is executed 1−m
times (lines (12) and (13)); the procedure semi-
greedy (line (8)) and the algorithm of Taillard (line
(10)) are executed m times.

D. Computacional Results

We have tested the algorithm GRASP_B&B on
the benchmark instances abz5-9 (Adams et al.
1988), ft6, ft10, ft20 (Fisher and Thompson 1963),
la01-40 (Lawrence 1984), orb01-10 (Applegate and
Cook 1991), swv01-20 (Storer et al. 1992), ta01-70
(Taillard 1993) and yn1-4 (Yamada and Nakano
1992). Because of space limitations, in this work we
will only present the results for ft6, ft10, ft20
(Fisher and Thompson 1963), la01-40 (Lawrence
1984) and orb01-10 (Applegate and Cook 1991), in
Tables I, II and III respectively.

The tables have the following structure: in each
line it is presented the name of the instance, the
number of jobs and the number of machines of the
instance (n*m), the best value (min) obtained, the
percentage over the lower bound and the time to the
best solution found (btime), in seconds. The total
time of all runs (ttime) will be presented in next
tables. We gathered the values of the lower bounds
from the paper of Jain and Meeran (1999) and the

papers of Nowicki and Smutnicki (1996, 2002,
2005). Within brackets, next to the best known
value (UB), is the percentage of relative error to the
upper bound calculated as follows:

()
UB

UBx
xREUB

−×= %100

The algorithm has been run 100 times for each
instance on a Pentium 4 CPU 2.80 GHz and coded
in C.

Whenever the values are not worse than the best
known upper bound, we present them in bold.
Although this is a very simple (and fast) algorithm,
it happens in 22 of the 152 instances used in this
study.

TABLA I

RESULTS OF THE FT INSTANCES
name

n*m min btime (s)

ft06 6*6 55 0.1274
 (0.00)

ft10 10*10 970 0.5800
 (4.30)

ft20 20*5 1283 0.0094
 (10.13)

TABLA II

RESULTS OF THE LA INSTANCES
name

n*m min btime (s)

la01 10*5 666 0.0017
 (0.00)

la02 10*5 667 0.0437
 (1.83)

la03 10*5 605 0.0066
 (1.34)

la04 10*5 607 0.0051
 (2.88)

la05 10*5 593 0.0011
 (0.00)

la06 15*5 926 0.0017
 (0.00)

la07 15*5 890 0.0020
 (0.00)

la08 15*5 863 0.0149
 (0.00)

la09 15*5 951 0.0028
 (0.00)

la10 15*5 958 0.0014
 (0.00)

la11 20*5 1222 0.0027
 (0.00)

la12 20*5 1039 0.0027
 (0.00)

la13 20*5 1150 0.0038
 (0.00)

la14 20*5 1292 0.0022
 (0.00)

la15 20*5 1207 0.0453
 (0.00)

la16 10*10 1012 0.0221
 (7.09)

la17 10*10 787 0.0843
 (0.38)

la18 10*10 854 0.3000
 (0.71)

la19 10*10 861 0.4554
 (2.26)

la20 10*10 920 0.0813
 (2.00)

la21 15*10 1092 0.1023
 (4.40)

la22 15*10 955 0.9884
 (3.02)

la23 15*10 1049 1.7388
 (1.65)

la24 15*10 971 0.6270
 (3.85)

la25 15*10 1027 0.5388
 (5.12)

la26 20*10 1265 3.0375
 (3.86)

la27 20*10 1308 0.1781
 (5.91)

la28 20*10 1301 0.1500
 (6.99)

la29 20*10 1248 0.8570
 (8.33)

la30 20*10 1382 0.8653
 (1.99)

la31 30*10 1784 0.0702
 (0.00)

la32 30*10 1850 0.5612
 (0.00)

la33 30*10 1719 1.2650
 (0.00)

la34 30*10 1721 3.8093
 (0.00)

la35 30*10 1888 0.2844
 (0.00)

la36 15*15 1325 0.0853
 (4.50)

la37 15*15 1479 4.0295
 (5.87)

la38 15*15 1274 0.7153
 (6.52)

la39 15*15 1309 2.9835
 (6.16)

la40 15*15 1291 3.5581
 (5.65)

TABLA III
RESULTS OF THE ORB INTANCES

name

n*m min btime (s)

orb01 10*10 1145 0.0296
 (8.12)

orb02 10*10 918 0.0953
 (3.38)

orb03 10*10 1098 0.3350
 (9.25)

orb04 10*10 1066 0.8213
 (6.07)

orb05 10*10 911 0.1050
 (2.71)

orb06 10*10 1050 0.4812
 (3.96)

orb07 10*10 414 0.2764
 (4.28)

orb08 10*10 945 0.3093
 (5.12)

orb09 10*10 978 0.2809
 (4.71)

orb10 10*10 991 0.2276
 (4.98)

In a previous version of this algorithm

(Fernandes 2002), where a slightly different branch-
and-bound was only used the first time the one-
machine subproblems were solved, the results
achieved where worse than these ones. In that work,
the neighborhood used was the one of Balas and
Vazacopoulos (1998). Computational times can not
be compared since then the algorithm was coded in
Python which is much slower than C, and there were
only used 13 of the 40 instances of Lawrence (1984)
in the experiments.

GRASP_B&B is a very simple GRASP
algorithm with a construction phase very similar to
the one of the shifting bottleneck. Therefore we
show comparison results to two other procedures
design for the job shop problem; a simple GRASP
procedure by Binato et al (2002) and the shifting
bottleneck procedure (Adams et al. 1988), see tables
IV to VIII.

The building block of the construction phase of
the GRASP in (Binato et al. 2002) is a single
operation of a job. They use an intensification
strategy, based on a set of elite solutions, to ‘direct’
the random choice of a new element. The local
search applied uses the neighborhood defined by
exchanging two consecutive critical operations on
the same machine.

In their computational results, they present the
time in seconds per thousand iterations (an iteration
is one building phase followed by a local search),
and the thousands of iterations. For a comparison
purpose we multiply these values to get the total
computation time. As the tables show, our algorithm

is much faster. Whenever our GRASP achieves a
solution not worse than theirs, we present the
respective value in bold. This happens for 25 of the
53 instances whose results we present here.

TABLA IV
COMPARISON WITH BINATO ET. AL (2002) OF THE FT

INSTANCES
name GRASP_

B&B
ttime
(s)

GRASP
(Binato
et al.
2002)

time (s)

ft06 55 0.1400 55 70
ft10 970 1.0000 938 261290
ft20 1283 0.4690 1169 387430

TABLA V

COMPARISON WITH BINATO ET. AL (2002) OF THE LA

INSTANCES
name GRASP_B&B ttime

(s)
GRASP
(Binato
et al.
2002)

time (s)

la01 666 0.1720 666 140
la02 667 0.1560 655 140
la03 605 0.2190 604 65130
la04 607 0.1710 590 130
la05 593 0.1100 593 130
la06 926 0.1710 926 240
la07 890 0.2030 890 250
la08 863 0.2970 863 240
la09 951 0.2810 951 290
la10 958 0.1410 958 250
la11 1222 0.2660 1222 410
la12 1039 0.2650 1039 390
la13 1150 0.3750 1150 430
la14 1292 0.2180 1292 390
la15 1207 0.9060 1207 410
la16 1012 0.7350 946 155310
la17 787 0.7660 784 60300
la18 854 0.7500 848 58290
la19 861 0.9690 842 31310
la20 920 0.8130 907 160320
la21 1092 2.0460 1091 325650
la22 955 1.7970 960 315630
la23 1049 1.8900 1032 65650
la24 971 1.8440 978 64640
la25 1027 1.7960 1028 64640
la26 1265 3.3750 1271 109080
la27 1308 3.5620 1320 110090
la28 1301 3.0000 1293 110090
la29 1248 3.2960 1293 112110
la30 1382 3.3280 1368 106050
la31 1784 7.0160 1784 231290
la32 1850 6.2350 1850 241390
la33 1719 7.9060 1719 241390
la34 1721 8.2810 1753 240380
la35 1888 5.6880 1888 222200

la36 1325 4.2650 1334 115360
la37 1479 4.7970 1457 115360
la38 1274 5.1090 1267 118720
la39 1309 4.4530 1290 115360
la40 1291 5.3910 1259 123200

TABLA VI

COMPARISON WITH BINATO ET. AL (2002) OF THE

ORB INSTANCES
name GRASP_B&B ttime

(s)
GRASP
(Binato
et al.
2002)

time
(s)

orb01 1145 0.9850 1070 116290
orb02 918 0.9530 889 152380
orb03 1098 1.0150 1021 124310
orb04 1066 1.1250 1031 124310
orb05 911 0.8750 891 112280
orb06 1050 1.0460 1013 124310
orb07 414 1.0630 397 128320
orb08 945 1.0310 909 124310
orb09 978 0.9060 945 124310
orb10 991 0.8430 953 116290

The comparison between the shifting bottleneck
procedure (Adams et al. 1988) and the
GRASP_B&B are presented in tables VII and VIII.
The main differences between these two simple
heuristics are as follows: the machine added to the
solution is always the one with higher makespan;
every time a new machine is included, the
subproblem of each of the already scheduled
machines is reoptimized, restricted to all the other
scheduled machines; when the solution is complete,
the cycle of reoptimizing each one-machine problem
is repeated until there are no changes.

Comparing the computational times of both
procedure, our GRASP is slightly faster than the
shifting bottleneck for smaller instances. Given the
distinct computers used in the experiments we
would say that this is not meaningful, but the
difference does get accentuated as the dimensions
grow. Whenever GRASP_B&B achieves a solution
better than the shifting bottleneck procedure, we
present it’s value in bold. This happens in 29 of the
48 instances whose results where compared, and in
16 of the remaining 19 instances the best value
found was the same.

TABLA VII

COMPARISON WITH ADAMS ET AL.(1988) OF THE FT

INSTANCES
name GRASP_B&B ttime

(s)
Shifting

Bottleneck
time
(s)

ft06 55 0.1400 55 1.5
ft10 970 1.0000 1015 10.1
ft20 1283 0.4690 1290 3.5

TABLA VIII

COMPARISON WITH ADAMS ET AL.(1988) OF THE LA

INSTANCES
name GRASP_B&B ttime

(s)
Shifting

Bottleneck
time
(s)

la01 666 0.1720 666 1.26
la02 667 0.1560 720 1.69
la03 605 0.2190 623 2.46
la04 607 0.1710 597 2.79
la05 593 0.1100 593 0.52
la06 926 0.1710 926 1.28
la07 890 0.2030 890 1.51
la08 863 0.2970 868 2.41
la09 951 0.2810 951 0.85
la10 958 0.1410 959 0.81
la11 1222 0.2660 1222 2.03
la12 1039 0.2650 1039 0.87
la13 1150 0.3750 1150 1.23
la14 1292 0.2180 1292 0.94
la15 1207 0.9060 1207 3.09
la16 1012 0.7350 1021 6.48
la17 787 0.7660 796 4.58
la18 854 0.7500 891 10.2
la19 861 0.9690 875 7.4
la20 920 0.8130 924 10.2
la21 1092 2.0460 1172 21.9
la22 955 1.7970 1040 19.2
la23 1049 1.8900 1061 24.6
la24 971 1.8440 1000 25.5
la25 1027 1.7960 1048 27.9
la26 1265 3.3750 1304 48.5
la27 1308 3.5620 1325 45.5
la28 1301 3.0000 1256 28.5
la29 1248 3.2960 1294 48
la30 1382 3.3280 1403 37.8
la31 1784 7.0160 1784 38.3
la32 1850 6.2350 1850 29.1
la33 1719 7.9060 1719 25.6
la34 1721 8.2810 1721 27.6
la35 1888 5.6880 1888 21.3
la36 1325 4.2650 1351 46.9
la37 1479 4.7970 1485 6104
la38 1274 5.1090 1280 57.5
la39 1309 4.4530 1321 71.8
la40 1291 5.3910 1326 76.7

V. CONCLUSIONS

We have designed a very simple optimized
search heuristic, the GRASP_B&B. It is intended to
be a starting point for a more elaborated
metaheuristic. We have compared it to other base
procedures used within more complex algorithms;
namely a GRASP of Binato et al. (2002), which is
the base for a GRASP with path-relinking procedure

(Aiex et al. 2003), and the shifting bottleneck
procedure, incorporated in the successful guided
local search of Balas and Vazacopoulos (1998). The
comparison to the work of Binato et al. (2002)
shows that our GRASP is much faster than theirs,
with differences as big as less than one second to
hundreds of thousands of seconds. The quality of
their best solution is slightly better than ours in 60%
of the instances tested. When comparing
GRASP_B&B with the shifting bottleneck, ours is
still faster, and it achieves better solutions, except
for 3 of the comparable instances.

ACKNOWLEDGEMENT

S. Fernandes’ work is suported by the the
programm POCI2010 of the portuguese Fundação
para a Ciência e Tecnologia. Helena R. Lourenço’s
work is supported by Ministerio de Educación y
Ciencia, Spain, SEC2003-01991/ECO.

REFERENCES
[1] Adams, J., E. Balas and D. Zawack (1988). "The Shifting

Bottleneck Procedure for Job Shop Scheduling."
Management Science, vol. 34(3): pp. 391-401.

[2] Aiex, R. M., S. Binato and M. G. C. Resende (2003).
"Parallel GRASP with path-relinking for job shop
scheduling." Parallel Computing, vol. 29(4): pp. 393-430.

[3] Applegate, D. and W. Cook (1991). "A Computational Study
of the Job-Shop Scheduling Problem." ORSA Journal on
Computing, vol. 3(2): pp. 149-156.

[4] Balas, E. and A. Vazacopoulos (1998). "Guided Local
Search with Shifting Bottleneck for Job Shop Scheduling."
Management Science, vol. 44(2): pp. 262-275.

[5] Binato, S., W. J. Hery, D. M. Loewenstern and M. G. C.
Resende (2002). "A GRASP for Job Shop Scheduling." In P.
Hansen and C.C. Ribeiro, editors, Essays and surveys on
metaheuristics. Kluwer Academic Publishers, 2001.

[6] Carlier, J. (1982). "The one-machine sequencing problem."
European Journal of Operational Research, vol. 11: pp. 42-
47.

[7] Caseau, Y. and F. Laburthe (1995), "Disjunctive scheduling
with task intervals", Technical Report LIENS, 95-25, Ecole
Normale Superieure Paris.

[8] Chen, S., S. Talukdar and N. Sadeh (1993). "Job-shop-
scheduling by a team of asynchronous agentes", Proceedings
of the IJCAI-93 Workshop on Knowledge-Based Production,
Scheduling and Control. Chambery France.

[9] Danna, E., E. Rothberg and C. L. Pape (2005). "Exploring
relaxation induced neighborhoods to improve MIP
solutions." Mathematical Programming, Ser. A, vol. 102: pp.
71-90.

[10] Dell'Amico, M. and M. Trubian (1993). "Applying Tabu-
Search to the Job-Shop Scheduling Problem."

[11] Denzinger, J. and T. Offermann (1999). "On Cooperation
between Evolutionary Algorithms and other Search
Paradigms", Proceedings of the 1999 Congress on
Evolutionary Computational.

[12] Feo, T. and M. Resende (1995). "Greedy Randomized
Adaptive Search Procedures." Journal of Global
Optimization, vol. 6: pp. 109-133.

[13] Fernandes, S. (2002), "Técnicas heurísticas para o problema
Job Shop Scheduling", Masters Thesis, Departamento de
Estatística e Investigação Operacional, Faculdade de
Ciências, Universidade de Lisboa.

[14] Fernandes, S. and H.R. Lourenço (2006), "Optimized Search
methods", Working paper, Universitat Pompeu Fabra,
Barcelona, Spain.

[15] Fisher, H. and G. L. Thompson (1963). Probabilistic learning
combinations of local job-shop scheduling rules. In J. F.
Muth and G. L. Thompson eds. Industrial Scheduling. pp.
225-251. Prentice Hall, Englewood Cliffs.

[16] 15 Garey, M. R. and D. S. Johnson (1979). Computers and
Intractability: A Guide to the Theory of NP-Completeness.
San Francisco, Freeman.

[17] Jain, A. S. and S. Meeran (1999). "Deterministic job shop
scheduling: Past, present and future." European Journal of
Operational Research, vol. 133: pp. 390-434.

[18] Lawrence, S. (1984), "Resource Constrained Project
Scheduling: an Experimental Investigation of Heuristic
Scheduling techniques", Graduate School of Industrial
Administration, Carnegie-Mellon University.

[19] Lourenço, H. R. (1995). "Job-shop scheduling:
Computational study of local search and large-step
optimization methods." European Journal of Operational
Research, vol. 83: pp. 347-367.

[20] Lourenço, H. R. and M. Zwijnenburg (1996). Combining
large-step optimization with tabu-search: Application to the
job-shop scheduling problem. In I. H. Osman and J. P. Kelly
eds. Meta-heuristics: Theory & Applications. Kluwer
Academic Publishers.

[21] Nowicki, E. and C. Smutnicki (2002), "Some new tools to
solve the job shop problem", Technical Report, 60/2002,
Institute of Engineering Cybernetics, Wroclaw University of
Technology.

[22] Nowicki, E. and C. Smutnicki (2005). "An Advanced Tabu
Search Algorithm for the Job Shop Problem." Journal of
Scheduling, vol. 8: pp. 145-159.

[23] Nowicki, E. and C. Smutniki (1996). "A Fast Taboo Search
Algorithm for the Job Shop Problem." Management Science,
vol. 42(6): pp. 797-813.

[24] Roy, B. and B. Sussman (1964), "Les probèms
d'ordonnancement avec constraintes disjonctives", Note DS 9
bis, SEMA, Paris.

[25] Schaal, A., A. Fadil, H. M. Silti and P. Tolla (1999). "Meta
heuristics diversification of generalized job shop scheduling
based upon mathematical programming techniques",
Proceedings of the Cp-ai-or'99.

[26] Schrage, L. (1970). "Solving resource-constrained network
problems by implicit enumeration: Non pre-emptive case."
Operations Research, vol. 18: pp. 263-278.

[27] Storer, R. H., S. D. Wu and R. Vaccari (1992). "New search
spaces for sequencing problems with application to job shop
scheduling." Management Science, vol. 38(10): pp. 1495-
1509.

[28] Taillard, E. D. (1993). "Benchmarks for Basic Scheduling
Problems." European Journal of Operational Research, vol.
64(2): pp. 278-285.

[29] Taillard, É. D. (1994). "Parallel Taboo Search Techniques
for the Job Shop Scheduling Problem." ORSA Journal on
Computing, vol. 6(2): pp. 108-117.

[30] Tamura, H., A. Hirahara, I. Hatono and M. Umano (1994).
"An approximate solution method for combinatorial
optimisation." Transactions of the Society of Instrument and
Control Engineers, vol. 130: pp. 329-336.

[31] Yamada, T. and R. Nakano (1992). A genetic algorithm
applicable to large-scale job-shop problems. In R. Manner
and B. Manderick eds. Parallel Problem Solving from Nature
2. pp. 281-290. Elsevier Science.

	FP_2007_MAEB2
	2007_MAEB_OSH-JSC

