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1. Introduction 

The job shop scheduling problem has been known to the operations research 

community since the early 50’s (Jain and Meeran 1999). It is considered a particularly 

hard combinatorial optimisation problem of the NP-hard class (Garey and Johnson 

1979) and it has numerous practical applications; which makes it an excellent test 

problem for the quality of new scheduling algorithms. These are main reasons for the 

vast bibliography on both exact and heuristic methods applied to this particular 

scheduling problem. The paper of Jain and Meeran (1999) includes an exhaustive 

survey not only of the evolution of the definition of the problem, but also of all the 

techniques applied to it. 

Recently a new class of procedures that combine local search based (meta) 

heuristics and exact algorithms have been developed, we denominate them Optimised 

Search Heuristics (OSH) (Fernandes and Lourenço 2007). 

This paper presents a simple OSH procedure for the job shop scheduling problem 

that combines a GRASP heuristic with a branch-and-bound algorithm. 

In the next section, we introduce the job shop scheduling problem. In section 2, 

we present a short review of existent OSH methods applied to this problem and in 

section 3 we describe in detail the OSH method developed. In section 5, we present 
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the computational results along with comparisons to other similar procedures applied 

to the Job-Shop Scheduling problem. Section 6 concludes this paper and discusses 

some ideas for future research.  

 

2. The job shop scheduling problem 

The Job-Shop Scheduling Problem (JSSP) considers a set of jobs to be processed 

on a set of machines. Each job is defined by an ordered set of operations and each 

operation is assigned to a machine with a predefined constant processing time 

(preemption is not allowed). The order of the operations within the jobs and its 

correspondent machines are fixed a priori and independent from job to job. To solve 

the problem we need to find a sequence of operations on each machine respecting 

some constraints and optimising some objective function. It is assumed that two 

consecutive operations of the same job are assigned to different machines, each 

machine can only process one operation at a time and that different machines can not 

process the same job simultaneously. We will adopt the maximum of the completion 

time of all jobs – the makespan – as the objective function. 

Formally let { }1,,0 += oO   be the set of operations with 0 and o+1 dummy 

operations representing the start and end of all jobs, respectively. Let M be the set of 

machines, A  the set of arcs between consecutive operations of each job and kE  the 

set of all possible pairs of operations processed by machine k, with Mk ∈ . We define 

0>ip  as the constant processing time of operation i  and it  is the decision variable 

representing the start time of operation i . The following mathematical formulation for 

the job shop scheduling problem is widely used by researchers: 

)(JSSP     

..ts  1min +ot    

 iij ptt ≥−  Aji ∈),(  (1) 

 0≥it  Oi∈  (2) 

 jjiiij pttptt ≥−∨≥−  MkEji k ∈∈ ,),(  (3) 

 

The constraints (1) state the precedence of operations within jobs and also that no 

two operations of the same job can be processed simultaneously (because 0>ip ). 

Expressions (3) are named “capacity constraints” and assure there are no overlaps of 
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operations at the machines. A feasible solution for the problem is a schedule of 

operations respecting all these constraints. 

The job shop scheduling problem is usually represented by a disjunctive graph 

(Roy and Sussman 1964) ),,( EAOG = . Where O  is the node set, corresponding to 

the set of operations. A  is the set of arcs between consecutive operations of the same 

job, and E  is the set of edges between operations processed by the same machine. 

Each node i  has weight ip , with 010 == +opp . There is a subset of nodes kO  and a 

subset of edges kE  for each machine that together form the disjunctive clique 

),( kkk EOC =  of graph G . For every node j  of { }1,0/ +oO  there are unique nodes i  

and l  such that arcs ),( ji and ),( lj are elements of A . Node i  is called the job 

predecessor of node j  - )( jjp  and l  is the job successor of j  - )( jjs . 

Finding a solution to the job shop scheduling problem means replacing every edge 

of the respective graph with a directed arc, constructing an acyclic directed graph 

),( SAODS ∪=  where 
k

kSS =  corresponds to an acyclic union of sequences of 

operations for each machine k (this implies that a solution can be built sequencing 

one machine at a time). For any given solution, the operation processed immediately 

before operation i  in the same machine is called the machine predecessor of i  - 

)(imp ; analogously )(ims  is the operation that immediately succeeds i  at the same 

machine. 

The optimal solution is the one represented by the graph SD  having the critical 

path from 0  to 1+o with the smallest length. 

 

3. Review of Optimised Search Heuristics 

In the literature we can find a few works combining metaheuristics with exact 

algorithms applied to the job shop scheduling problem, designated as Optimized 

Search Heuristics (OSH) by Fernandes and Lourenço (2007). Different combinations 

of different procedures are present in the literature, and there are several applications 

of the OSH methods to different problems (see the web page of Fernandes and 

Lourenço (2007))1

                                                 
1 http://www.econ.upf.edu/~ramalhin/OSHwebpage/index.html 

. 



4 

Chen et al. (1993) and Denzinger and Offermann (1999) design parallel 

algorithms that use asynchronous agents information to build solutions; some of these 

agents are genetic algorithms, others are branch-and-bound algorithms. 

Tamura et al (1994) design a genetic algorithm where the fitness of each 

individual, whose chromosomes represent each variable of the integer programming 

formulation, is the bound obtained solving lagrangian relaxations. 

The works of Adams et al. (1988), Applegate and Cook (1991), Caseau and 

Laburthe (1995) and Balas and Vazacopoulos (1998) all use an exact algorithm to 

solve a sub problem within a local search heuristic for the job shop scheduling. 

Caseau and Laburthe (1995) build a local search where the neighbourhood structure is 

defined by a subproblem that is exactly solved using constraint programming. 

Applegate and Cook (1991) develop the shuffle heuristic. At each step of the local 

search the processing orders of the jobs on a small number of machines is fixed, and a 

branch-and-bound algorithm completes the schedule. The shifting bottleneck 

heuristic, due to Adams Balas and Zawack (1988), is an iterated local search with a 

construction heuristic that uses a branch-and-bound to solve the subproblems of one 

machine with release and due dates. Balas and Vazacopoulos (1998) work with the 

shifting bottleneck heuristic and design a guided local search, over a tree search 

structure, that reconstructs partially destroyed solutions. 

Lourenço (1995) and Lourenço and Zwijnenburg (1996) use branch-and-bound 

algorithms to strategically guide an iterated local search and a tabu search algorithm. 

The diversification of the search is achieved by applying a branch-and-bound method 

to solve a one-machine scheduling problem subproblem obtained from the incumbent 

solution. 

In the work of Schaal Fadil Silti and Tolla (1999) an interior point method 

generates initial solutions of the linear relaxation. A genetic algorithm finds integer 

solutions. A cut is generated based on the integer solutions found and the interior 

point method is applied again to diversify the search. This procedure is defined for the 

generalized job shop problem. 

The interesting work of Danna Rothberg and Le Pape (2005) “applies the spirit of 

metaheuristics” in an exact algorithm. Within each node of a branch-and-cut tree, the 

solution of the linear relaxation is used to define the neighbourhood of the current best 

feasible solution. The local search consists in solving the restricted MIP problem 

defined by the neighbourhood. 
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4. Optimised search heuristic – GRASP_B&B 

We developed a simple Optimised Search Heuristic that combines a GRASP 

algorithm with a branch-and-bound method. Here the branch-and-bound is used 

within the GRASP to solve subproblems of one machine scheduling. 

GRASP  means “Greedy Randomised Adaptive Search Procedure”, (Feo and 

Resende 1995). It is an iterative process where each iteration consists of two steps: a 

randomised building step of a greedy nature and a local search step. At the building 

phase, a feasible solution is constructed joining one element at a time. Each element is 

evaluated by a greedy function and incorporated (or not) in a restricted candidate list 

(RCL) according to its evaluation. The element to join the solution is chosen 

randomly from the RCL. 

Each time a new element is added to the partial solution, if it has already more 

than one element, the algorithm proceeds with the local search step. The current 

solution is updated by the local optimum and this process of two steps is repeated 

until the solution is complete. 

Next, we describe the OSH method GRASP_B&B developed to solve the Job-

Shop Scheduling problem. The main spirit of this heuristic is combining a GRASP 

method with a branch-and-bound to efficiently solve the JSSP. 

 

4.1 The Building step 

In this section, we describe in detail the building step of the GRASP_B&B 

heuristic. We define the sequence of operations at each machine as the elements to 

join the solution, and the makespan ( ( ) MkOipt kii ∈∈+ ,,max ) as the greedy 

function to evaluate them. In order to build the restricted candidate list (RCL), we find 

the optimal solution and optimal makespan, )( kxf , for the one machine problems 

corresponding to all machines not yet scheduled. We identify the best ( )f  and worst 

( )f  optimal makespans over all machines considered. A machine k  is included in the 

RCL if ( )fffxf k −−≥ α)( , where )( kxf  is the makespan of machine k  and α  is a 

uniform random number in ( )1,0 . This semi-greedy randomised procedure is biased 

towards the machine with the higher makespan, the bottleneck machine, in the sense 
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that machines with low values of makespan have less probability of being included in 

the restricted candidate list. 

SemiGreedy (K) 

(1) )1,0(: Random=α  

(2) { }Kkxff k ∈= ),(max:  

(3) { }Kkxff k ∈= ),(min:  

(4) { }=RCL  

(5) foreach Kk ∈  

 (6)  if ( )fffxf k −−≥ α)(  

(7)   { }kRCLRCL ∪=:  

(8) return RandomChoice(RCL) 

 

The building step requires a procedure to solve the one-machine scheduling 

problem. To solve this problem we use the branch-and-bound algorithm of Carlier 

(1982). The objective function of the algorithm is to minimize the completion time of 

all jobs. This one machine scheduling problem considers that to each job j  it is 

associated the following values that are obtained from the current solution: the 

processing time ( )jp , a release date ( )jr  and an amount of time ( )jq  that the job stays 

in the system after being processed. Considering the job shop problem and its 

disjunctive graph representation, the release date of each operation i  - ( )ir  is obtained 

as the longest path from the beginning to i , and its tail ( )iq  as the longest path from i  

to the end, without the processing time of i . 

The one-machine branch-and-bound procedure implemented work as follows. At 

each node of the branch-and-bound tree the upper bound is computed using the 

algorithm of Schrage (1970). This algorithm gives priority to higher values of the tails 

( )jq  when scheduling released jobs. We break ties by preferring larger processing 

times. The computation of the lower bound is based on the critical path with more 

jobs of the solution found by the algorithm of Schrage (1970) and on a critical job, 

defined by some properties proved by Carlier (1982). The value of the solution with 

preemption is used to strengthen this lower bound. We introduce a slight 

modification, forcing the lower bound of a node never to be smaller than the one of its 
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father in the tree. The algorithm of Carlier (1982) uses some proven properties of the 

one machine scheduling problem to define the branching strategy, and also to reduce 

the number of inspected nodes of the branch-and-bound tree. When applying the 

algorithm to problems with 50 or more jobs, we observed that a lot of time was spent 

inspecting nodes of the tree, after having already found the optimal solution. So, to 

reduce the computational times,  we introduced a condition restricting the number of 

nodes of the tree: the algorithm is stopped if there have been inspected more then 3n  

nodes after the last reduction of the difference between the upper and lower bound of 

the tree ( n  is the number of jobs). We designated this procedure as Carlier_B&B(k), 

where k  is the machine considered to be optimized and output the optimal one-

machine schedule and the respective optimal value. 

The way the one-machine branch-and-bound procedure is used within the building 

step is described next.  At the first iteration we consider the graph ),( AOD =  

(without the edges connecting operations that share the same machine) to compute 

release dates and tails. Incorporating a new machine in the solution means adding to 

the graph the arcs representing the sequence of operations in that machine. In terms of 

the mathematical formulation, this means choosing one of the inequalities of the 

disjunctive constraints (3) correspondent to the machine. We then update the 

makespan of the partial solution and the release dates and tails of unscheduled 

operations using the same procedure as the one used in the algorithm of Taillard 

(1994). We designate this procedure as TAILLARD(x) that computes the makespan of 

a partial solution x  for the JSSP. 

 

4.2 The Local Search step 

In order to build a simple local search procedure we need to design a 

neighbourhood structure (defined by moves between solutions), the way to inspect the 

neighbourhood of a given solution, and a procedure to evaluate the quality of each 

neighbour solution. It is said that a solution B is a neighbour of a solution A if we can 

achieve B by performing a neighbourhood defining move in A. 

We use a neighbourhood structure very similar to the NB neighbourhood of 

Dell’Amico and Trubian (1993) and the one of Balas and Vazacopoulos (1998). To 

describe the moves that define this neighbourhood we use the notion of blocks of 

critical operations. A block of critical operations is a maximal ordered set of 
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consecutive operations of a critical path (in the disjunctive graph that represents the 

solution), sharing the same machine. Let ),( jiL  denote the length of the critical path 

from node i  to node j . Borrowing the nomination of Balas and Vazacopoulos (1998) 

we speak of forward and backward moves over forward and backward critical pairs of 

operations. 

Two operations u  and v  form a forward critical pair ( )vu,  if: 

a) they both belong to the same block; 

b) v  is the last operation of the block; 

c) operation )(vjs  also belongs to the same critical path;  

d) the length of the critical path from v  to 1+o  is not less than the length of 

the critical path from )(ujs  to 1+o  ( )1),(()1,( +≥+ oujsLovL ). 

Two operations u  and v  form a backward critical pair ( )vu,  if: 

a) they both belong to the same block; 

b) u  is the first operation of the block; 

c) operation )(ujp  also belongs to the same critical path; 

d) the length of the critical path from 0 to u , including the processing time of 

u , is not less than the length of the critical path from 0 to )(vjp , including the 

processing time of )(vjp  ( )))(,0(),0( )(vjpu pvjpLpuL +≥+ ). 

Conditions d) are included to guarantee that all moves lead to feasible solutions 

(Balas and Vazacopoulos 1998). A forward move is executed by moving operation u  

to be processed immediately after operation v . A backward move is executed by 

moving operation v  to be processed immediately before operation u . 

The neighbourhood considered in the GRASP_B&B is slightly different from the 

one considered in Dell’Amico and Trubian (1993) and Balas and Vazacopoulos 

(1998) since it considers partial solutions obtained at each iteration of the 

GRASP_B&B heuristic. Therefore the local search is applied to a partial solution 

where a subset of all machines is scheduled. This neighbourhood is designated by 

)\,( KMxN , where x  is a partial solution, M  is the set of all machines and K  is the 

set of machines not yet scheduled in the building phase. When inspecting the 

neighbourhood )\,( KMxN , we stop whenever we find a neighbour with a best 

evaluation value than the makespan of x . 
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To evaluate the quality of a neighbour of a partial solution x , obtained by a move 

over a critical pair ( )vu, , we need only to compute the length of all the longest paths 

through the operations that were between u  and v  in the critical path of solution x . 

This evaluation is computed using the same procedure as the one used in the 

algorithm of Taillard (1994),  TAILLARD(x). 

The local search phase consists in the two procedures described in pseudo-code 

below: 

LocalSearch(x,f(x), M \K) 

(1) ( )K\Mxfxneighbours ),(,:=  

(2) while xs ≠  
(3)  sx =:  

(4)  ( )K\Mxfxneighbours ),(,:=  

(5) return s 

 

Neighbour(x,f(x),M\K) 

(1) foreach )\,( KMxNs∈  

(2)  ( ))(:)( sxmoveevaluationsf →=  

(3)  if )()( xfsf <  

(4)   return s 

(5) return x 

 

4.3 GRASP_B&B 

In this section, we present the complete GRASP_B&B implemented, that 

considers the two phases previously described. Let runs  be the total number of runs, 

M  the set of machines of the instance and )(xf  the makespan of a solution x . The 

full GRASP_B&B method can be generally described by the pseudo-code as follows: 

GRASP_B&B (runs) 

(1) { }mM ,,1: =  

(2) for 1=r to runs 

(3)  { }=:x  

(4)  MK =:  

(5)  while { }≠K  
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(6)   foreach Kk ∈  

(7)    )(&_: kBBCARLIERxk =  

(8)   )(:* KSEMIGREEDYk =  

(9)   *: kxxx ∪=  

(10)   )(:)( xTAILLARDxf =  

(11)   { }*\: kKK =  

(12)   if 1−< MK  

(13)    )\,(: KMxHLOCALSEARCx =  

(14)  if *x  not initialised or *)( fxf <  

(15)   xx =:*  

(16)   )(:* xff =  

(17) return *x  

This metaheuristic has only one parameter to be defined: the number of runs to 

perform (line (2)). The step of line (8) is the only one using randomness. When 

applied to an instance with m  machines, in each run of the metaheuristic, the branch-

and-bound algorithm is called ( ) 2/1+× mm  times (line (7)); the local search is 

executed 1−m  times (lines (12) and (13)); the procedure semigreedy (line (8)) and 

the algorithm of Taillard (line (10)) are executed m  times. 

 

5. Computational results 

We have tested the algorithm GRASP_B&B on the benchmark instances abz5-9 

(Adams et al. 1988), ft6, ft10, ft20 (Fisher and Thompson 1963), la01-40 (Lawrence 

1984), orb01-10 (Applegate and Cook 1991), swv01-20 (Storer et al. 1992), ta01-70 

(Taillard 1993) and yn1-4 (Yamada and Nakano 1992). The algorithm has been run 

100 times for each instance on a Pentium 4 CPU 2.80 GHz and coded in C.  

We show the results of running the algorithm for each instance using the boxplots 

of UBRE , the percentage of relative error to the best known upper bound (UB ) (see 

figures below) calculated as follows: 

( ) ( )
UB

UBxfxREUB
−

×= %100  

The boxplots show that the quality achieved is more dependent on the ratio mn /  

than on the absolute numbers of jobs and machines. There is no big dispersion of the 
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solution values achieved by the algorithm in the 100 runs executed, except maybe for 

instance la3. The number of times the algorithm achieves the best values reported is 

high enough, so these values are not considered outliers of the distribution of the 

results, except for instances ft06 and la38. On the other end, the worse values occur 

very seldom and are outliers for the majority of the instances. We gathered the values 

of the best known upper bounds from the paper of Jain and Meeran (1999) and the 

papers of Nowicki and Smutnicki (1996; 2002 and 2005). 
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5.1. Comparison to other procedures  

GRASP_B&B OSH heuristic is a very simple GRASP algorithm with a 

construction phase very similar to the one of the shifting bottleneck. Therefore, we 

show comparative results to two other very similar methods: a simple GRASP 

heuristic of Binato et al (2001) and the Shifting Bottleneck heuristic by Adams et al 

(1988). 

 

5.1.1. Comparison to GRASP of Binato et al (2001) 

The GRASP heuristic by Binato et al (2001) has a different building step in the 

construction phase, which consists in scheduling one operation at each step. In their 

computational results, they present the time in seconds per thousand iterations (an 

iteration is one building phase followed by a local search) and the thousands of 

iterations. For a comparison purpose we multiply these values to get the total 

computation time. For GRASP_B&B we present the total time of all runs (ttime), in 

seconds. As the tables show, our algorithm is much faster. Whenever our GRASP 

achieves a solution not worse than theirs, we present the respective value in bold. This 

happens for 26 of the 58 instances whose results where compared. 

 
name GRASP_B&B ttime (s) GRASP time (s) 

abz5 1258 0.7650 1238 6030 

abz6 952 0.7660 947 62310 

abz7 725 10.9070 667 349740 

abz8 734 10.5160 729 365820 
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abz9 754 10.4690 758 343710 

 

name GRASP_B&B ttime (s) GRASP time (s) 

ft06 55 0.1400 55 70 

ft10 970 1.0000 938 261290 

ft20 1283 0.4690 1169 387430 

 

name GRASP_B&B ttime (s) GRASP time (s) 

la01 666 0.1720 666 140 

la02 667 0.1560 655 140 

la03 605 0.2190 604 65130 

la04 607 0.1710 590 130 

la05 593 0.1100 593 130 

la06 926 0.1710 926 240 

la07 890 0.2030 890 250 

la08 863 0.2970 863 240 

la09 951 0.2810 951 290 

la10 958 0.1410 958 250 

la11 1222 0.2660 1222 410 

la12 1039 0.2650 1039 390 

la13 1150 0.3750 1150 430 

la14 1292 0.2180 1292 390 

la15 1207 0.9060 1207 410 

la16 1012 0.7350 946 155310 

la17 787 0.7660 784 60300 

la18 854 0.7500 848 58290 

la19 861 0.9690 842 31310 

la20 920 0.8130 907 160320 

la21 1092 2.0460 1091 325650 

la22 955 1.7970 960 315630 

la23 1049 1.8900 1032 65650 

la24 971 1.8440 978 64640 

la25 1027 1.7960 1028 64640 

la26 1265 3.3750 1271 109080 

la27 1308 3.5620 1320 110090 

la28 1301 3.0000 1293 110090 

la29 1248 3.2960 1293 112110 

la30 1382 3.3280 1368 106050 

la31 1784 7.0160 1784 231290 
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la32 1850 6.2350 1850 241390 

la33 1719 7.9060 1719 241390 

la34 1721 8.2810 1753 240380 

la35 1888 5.6880 1888 222200 

la36 1325 4.2650 1334 115360 

la37 1479 4.7970 1457 115360 

la38 1274 5.1090 1267 118720 

la39 1309 4.4530 1290 115360 

la40 1291 5.3910 1259 123200 

 

name GRASP_B&B ttime (s) GRASP time (s) 

orb01 1145 0.9850 1070 116290 

orb02 918 0.9530 889 152380 

orb03 1098 1.0150 1021 124310 

orb04 1066 1.1250 1031 124310 

orb05 911 0.8750 891 112280 

orb06 1050 1.0460 1013 124310 

orb07 414 1.0630 397 128320 

orb08 945 1.0310 909 124310 

orb09 978 0.9060 945 124310 

orb10 991 0.8430 953 116290 

 

5.1.2. Comparison to the Shifting Bottleneck (Adams et al. 1988) 

 

The main difference of the Shifting Bottleneck procedure (Adams et al. 1988) and 

GRASP_B&B is the random selection of the machine to be scheduled. In the Shifting 

Bottleneck the machine to be scheduled is always the bottleneck machine. The 

comparison between the shifting bottleneck procedure (Adams et al. 1988) and the 

GRASP_B&B is also presented next. Comparing the computation times of both 

procedures, the GRASP_B&B is slightly faster than the shifting bottleneck for smaller 

instances. Given the distinct computers used in the experiments we would say that this 

is not meaningful, but the difference does get accentuated as the dimensions grow. 

Whenever GRASP_B&B achieves a solution better than the shifting bottleneck 

procedure, we present its value in bold. This happens in 29 of the 48 instances whose 

results where compared, and in 16 of the remaining 19 instances the best value found 

was the same. 
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name GRASP_B&B ttime (s) Shifting 

Bottleneck 

time (s) 

abz5 1258 0.7650 1306 5.7 

abz6 952 0.7660 962 12.67 

abz7 725 10.9070 730 118.87 

abz8 734 10.5160 774 125.02 

abz9 754 10.4690 751 94.32 

 

name GRASP_B&B ttime (s) Shifting 

Bottleneck 

time (s) 

ft06 55 0.1400 55 1.5 

ft10 970 1.0000 1015 10.1 

ft20 1283 0.4690 1290 3.5 

 

name GRASP_B&B ttime (s) Shifting 

Bottleneck 

time (s) 

la01 666 0.1720 666 1.26 

la02 667 0.1560 720 1.69 

la03 605 0.2190 623 2.46 

la04 607 0.1710 597 2.79 

la05 593 0.1100 593 0.52 

la06 926 0.1710 926 1.28 

la07 890 0.2030 890 1.51 

la08 863 0.2970 868 2.41 

la09 95º1 0.2810 951 0.85 

la10 958 0.1410 959 0.81 

la11 1222 0.2660 1222 2.03 

la12 1039 0.2650 1039 0.87 

la13 1150 0.3750 1150 1.23 

la14 1292 0.2180 1292 0.94 

la15 1207 0.9060 1207 3.09 

la16 1012 0.7350 1021 6.48 

la17 787 0.7660 796 4.58 

la18 854 0.7500 891 10.2 

la19 861 0.9690 875 7.4 

la20 920 0.8130 924 10.2 

la21 1092 2.0460 1172 21.9 

la22 955 1.7970 1040 19.2 

la23 1049 1.8900 1061 24.6 
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la24 971 1.8440 1000 25.5 

la25 1027 1.7960 1048 27.9 

la26 1265 3.3750 1304 48.5 

la27 1308 3.5620 1325 45.5 

la28 1301 3.0000 1256 28.5 

la29 1248 3.2960 1294 48 

la30 1382 3.3280 1403 37.8 

la31 1784 7.0160 1784 38.3 

la32 1850 6.2350 1850 29.1 

la33 1719 7.9060 1719 25.6 

la34 1721 8.2810 1721 27.6 

la35 1888 5.6880 1888 21.3 

la36 1325 4.2650 1351 46.9 

la37 1479 4.7970 1485 6104 

la38 1274 5.1090 1280 57.5 

la39 1309 4.4530 1321 71.8 

la40 1291 5.3910 1326 76.7 

 

6. Conclusions 

In this work we present a very simple Optimized Search Heuristic, the 

GRASP_B&B to solve the Job-Shop Scheduling problem. This method is intended to 

be a starting point for a more elaborated metaheuristic, since it obtains reasonable 

solutions in very short running times. The main idea behind the GRASP_B&B 

heuristic is to insert in each iteration of the building phase of the GRASP method the 

complete solution of one-machine scheduling problems solved by a branch-an-bound 

method, instead of insert one sequence of two individual operations as it is usual in 

other GRASP methods for this problem. 

We have compared it with other similar methods also used as an initialization 

phase within more complex algorithms; namely a GRASP of Binato et. al (2001), 

which is the base for a GRASP with path-relinking procedure of Aiex et. al (2003), 

and the Shifting Bottleneck procedure of Adams et. al (1988), incorporated in the 

successful guided local search of Balas and Vazacopoulos (1991). The comparison to 

the GRASP of Binato et al (2001) shows that the GRASP_B&B is much faster than 

theirs. The quality of their best solution is slightly better than ours in 60% of the 

instances tested. When comparing GRASP_B&B with the Shifting Bottleneck, the 

first one is still faster, and it achieves better solutions, except for 3 of the comparable 
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instances. Therefore we can conclude, that the GRASP_B&B is a good method to use 

as the initialization phase of more elaborated and complex methods to solve the job-

shop scheduling problem. As future research, we are working on this elaborated 

method also using OSH ideas, i.e. combing heuristic and exact methods procedures. 
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