
A Simple Optimized Search Heuristics for the
Job-Shop Scheduling

Fernandes, S. and Lourenço, H.R. (2008), A Simple Optimized Search
Heuristics for the Job-Shop Scheduling. In Recent Advances in
Evolutionary Computation for Combinatorial
Optimization, Studies in Computational Intelligence, C. Cotta and J. van
Hemert (Eds.) Springer, 153:203-218.

Indexed at: SCOPUS (2011: 0.192), DBLP, Ulrichs, MathSciNet, Current
Mathematical Publications, Mathematical Reviews, Zentralblatt Math:
MetaPress and Springerlink.
ISBN 978-3-540-70806-3.
Link to publication

http://www.springer.com/series/7092�
http://link.springer.com/chapter/10.1007/978-3-540-70807-0_13�

1

A SIMPLE OPTIMISED SEARCH HEURISTIC FOR

THE JOB-SHOP SCHEDULING PROBLEM

Susana Fernandes
Universidade do Algarve, Faro, Portugal.

E-mail: sfer@ualg.pt

Helena R. Lourenço
Univertitat Pompeu Fabra, Barcelona, Spain.

E-mail: helena.ramalhinho@upf.edu

Abstract: This paper presents a simple Optimised Search Heuristic for the Job Shop

Scheduling problem that combines a GRASP heuristic with a branch-and-bound

algorithm. The proposed method is compared with similar approaches and leads to

better results in terms of solution quality and computing times.

Keywords: job-shop scheduling, hybrid metaheuristic, optimised search heuristics,

GRASP, exact methods.

1. Introduction

The job shop scheduling problem has been known to the operations research

community since the early 50’s (Jain and Meeran 1999). It is considered a particularly

hard combinatorial optimisation problem of the NP-hard class (Garey and Johnson

1979) and it has numerous practical applications; which makes it an excellent test

problem for the quality of new scheduling algorithms. These are main reasons for the

vast bibliography on both exact and heuristic methods applied to this particular

scheduling problem. The paper of Jain and Meeran (1999) includes an exhaustive

survey not only of the evolution of the definition of the problem, but also of all the

techniques applied to it.

Recently a new class of procedures that combine local search based (meta)

heuristics and exact algorithms have been developed, we denominate them Optimised

Search Heuristics (OSH) (Fernandes and Lourenço 2007).

This paper presents a simple OSH procedure for the job shop scheduling problem

that combines a GRASP heuristic with a branch-and-bound algorithm.

In the next section, we introduce the job shop scheduling problem. In section 2,

we present a short review of existent OSH methods applied to this problem and in

section 3 we describe in detail the OSH method developed. In section 5, we present

2

the computational results along with comparisons to other similar procedures applied

to the Job-Shop Scheduling problem. Section 6 concludes this paper and discusses

some ideas for future research.

2. The job shop scheduling problem

The Job-Shop Scheduling Problem (JSSP) considers a set of jobs to be processed

on a set of machines. Each job is defined by an ordered set of operations and each

operation is assigned to a machine with a predefined constant processing time

(preemption is not allowed). The order of the operations within the jobs and its

correspondent machines are fixed a priori and independent from job to job. To solve

the problem we need to find a sequence of operations on each machine respecting

some constraints and optimising some objective function. It is assumed that two

consecutive operations of the same job are assigned to different machines, each

machine can only process one operation at a time and that different machines can not

process the same job simultaneously. We will adopt the maximum of the completion

time of all jobs – the makespan – as the objective function.

Formally let { }1,,0 += oO  be the set of operations with 0 and o+1 dummy

operations representing the start and end of all jobs, respectively. Let M be the set of

machines, A the set of arcs between consecutive operations of each job and kE the

set of all possible pairs of operations processed by machine k, with Mk ∈ . We define

0>ip as the constant processing time of operation i and it is the decision variable

representing the start time of operation i . The following mathematical formulation for

the job shop scheduling problem is widely used by researchers:

)(JSSP

..ts 1min +ot

 iij ptt ≥− Aji ∈),((1)

 0≥it Oi∈ (2)

 jjiiij pttptt ≥−∨≥− MkEji k ∈∈ ,),((3)

The constraints (1) state the precedence of operations within jobs and also that no

two operations of the same job can be processed simultaneously (because 0>ip).

Expressions (3) are named “capacity constraints” and assure there are no overlaps of

3

operations at the machines. A feasible solution for the problem is a schedule of

operations respecting all these constraints.

The job shop scheduling problem is usually represented by a disjunctive graph

(Roy and Sussman 1964)),,(EAOG = . Where O is the node set, corresponding to

the set of operations. A is the set of arcs between consecutive operations of the same

job, and E is the set of edges between operations processed by the same machine.

Each node i has weight ip , with 010 == +opp . There is a subset of nodes kO and a

subset of edges kE for each machine that together form the disjunctive clique

),(kkk EOC = of graph G . For every node j of { }1,0/ +oO there are unique nodes i

and l such that arcs),(ji and),(lj are elements of A . Node i is called the job

predecessor of node j -)(jjp and l is the job successor of j -)(jjs .

Finding a solution to the job shop scheduling problem means replacing every edge

of the respective graph with a directed arc, constructing an acyclic directed graph

),(SAODS ∪= where 
k

kSS = corresponds to an acyclic union of sequences of

operations for each machine k (this implies that a solution can be built sequencing

one machine at a time). For any given solution, the operation processed immediately

before operation i in the same machine is called the machine predecessor of i -

)(imp ; analogously)(ims is the operation that immediately succeeds i at the same

machine.

The optimal solution is the one represented by the graph SD having the critical

path from 0 to 1+o with the smallest length.

3. Review of Optimised Search Heuristics

In the literature we can find a few works combining metaheuristics with exact

algorithms applied to the job shop scheduling problem, designated as Optimized

Search Heuristics (OSH) by Fernandes and Lourenço (2007). Different combinations

of different procedures are present in the literature, and there are several applications

of the OSH methods to different problems (see the web page of Fernandes and

Lourenço (2007))1

1 http://www.econ.upf.edu/~ramalhin/OSHwebpage/index.html

.

4

Chen et al. (1993) and Denzinger and Offermann (1999) design parallel

algorithms that use asynchronous agents information to build solutions; some of these

agents are genetic algorithms, others are branch-and-bound algorithms.

Tamura et al (1994) design a genetic algorithm where the fitness of each

individual, whose chromosomes represent each variable of the integer programming

formulation, is the bound obtained solving lagrangian relaxations.

The works of Adams et al. (1988), Applegate and Cook (1991), Caseau and

Laburthe (1995) and Balas and Vazacopoulos (1998) all use an exact algorithm to

solve a sub problem within a local search heuristic for the job shop scheduling.

Caseau and Laburthe (1995) build a local search where the neighbourhood structure is

defined by a subproblem that is exactly solved using constraint programming.

Applegate and Cook (1991) develop the shuffle heuristic. At each step of the local

search the processing orders of the jobs on a small number of machines is fixed, and a

branch-and-bound algorithm completes the schedule. The shifting bottleneck

heuristic, due to Adams Balas and Zawack (1988), is an iterated local search with a

construction heuristic that uses a branch-and-bound to solve the subproblems of one

machine with release and due dates. Balas and Vazacopoulos (1998) work with the

shifting bottleneck heuristic and design a guided local search, over a tree search

structure, that reconstructs partially destroyed solutions.

Lourenço (1995) and Lourenço and Zwijnenburg (1996) use branch-and-bound

algorithms to strategically guide an iterated local search and a tabu search algorithm.

The diversification of the search is achieved by applying a branch-and-bound method

to solve a one-machine scheduling problem subproblem obtained from the incumbent

solution.

In the work of Schaal Fadil Silti and Tolla (1999) an interior point method

generates initial solutions of the linear relaxation. A genetic algorithm finds integer

solutions. A cut is generated based on the integer solutions found and the interior

point method is applied again to diversify the search. This procedure is defined for the

generalized job shop problem.

The interesting work of Danna Rothberg and Le Pape (2005) “applies the spirit of

metaheuristics” in an exact algorithm. Within each node of a branch-and-cut tree, the

solution of the linear relaxation is used to define the neighbourhood of the current best

feasible solution. The local search consists in solving the restricted MIP problem

defined by the neighbourhood.

5

4. Optimised search heuristic – GRASP_B&B

We developed a simple Optimised Search Heuristic that combines a GRASP

algorithm with a branch-and-bound method. Here the branch-and-bound is used

within the GRASP to solve subproblems of one machine scheduling.

GRASP means “Greedy Randomised Adaptive Search Procedure”, (Feo and

Resende 1995). It is an iterative process where each iteration consists of two steps: a

randomised building step of a greedy nature and a local search step. At the building

phase, a feasible solution is constructed joining one element at a time. Each element is

evaluated by a greedy function and incorporated (or not) in a restricted candidate list

(RCL) according to its evaluation. The element to join the solution is chosen

randomly from the RCL.

Each time a new element is added to the partial solution, if it has already more

than one element, the algorithm proceeds with the local search step. The current

solution is updated by the local optimum and this process of two steps is repeated

until the solution is complete.

Next, we describe the OSH method GRASP_B&B developed to solve the Job-

Shop Scheduling problem. The main spirit of this heuristic is combining a GRASP

method with a branch-and-bound to efficiently solve the JSSP.

4.1 The Building step

In this section, we describe in detail the building step of the GRASP_B&B

heuristic. We define the sequence of operations at each machine as the elements to

join the solution, and the makespan (() MkOipt kii ∈∈+ ,,max) as the greedy

function to evaluate them. In order to build the restricted candidate list (RCL), we find

the optimal solution and optimal makespan,)(kxf , for the one machine problems

corresponding to all machines not yet scheduled. We identify the best ()f and worst

()f optimal makespans over all machines considered. A machine k is included in the

RCL if ()fffxf k −−≥ α)(, where)(kxf is the makespan of machine k and α is a

uniform random number in ()1,0 . This semi-greedy randomised procedure is biased

towards the machine with the higher makespan, the bottleneck machine, in the sense

6

that machines with low values of makespan have less probability of being included in

the restricted candidate list.

SemiGreedy (K)

(1))1,0(: Random=α

(2) { }Kkxff k ∈=),(max:

(3) { }Kkxff k ∈=),(min:

(4) { }=RCL

(5) foreach Kk ∈

 (6) if ()fffxf k −−≥ α)(

(7) { }kRCLRCL ∪=:

(8) return RandomChoice(RCL)

The building step requires a procedure to solve the one-machine scheduling

problem. To solve this problem we use the branch-and-bound algorithm of Carlier

(1982). The objective function of the algorithm is to minimize the completion time of

all jobs. This one machine scheduling problem considers that to each job j it is

associated the following values that are obtained from the current solution: the

processing time ()jp , a release date ()jr and an amount of time ()jq that the job stays

in the system after being processed. Considering the job shop problem and its

disjunctive graph representation, the release date of each operation i - ()ir is obtained

as the longest path from the beginning to i , and its tail ()iq as the longest path from i

to the end, without the processing time of i .

The one-machine branch-and-bound procedure implemented work as follows. At

each node of the branch-and-bound tree the upper bound is computed using the

algorithm of Schrage (1970). This algorithm gives priority to higher values of the tails

()jq when scheduling released jobs. We break ties by preferring larger processing

times. The computation of the lower bound is based on the critical path with more

jobs of the solution found by the algorithm of Schrage (1970) and on a critical job,

defined by some properties proved by Carlier (1982). The value of the solution with

preemption is used to strengthen this lower bound. We introduce a slight

modification, forcing the lower bound of a node never to be smaller than the one of its

7

father in the tree. The algorithm of Carlier (1982) uses some proven properties of the

one machine scheduling problem to define the branching strategy, and also to reduce

the number of inspected nodes of the branch-and-bound tree. When applying the

algorithm to problems with 50 or more jobs, we observed that a lot of time was spent

inspecting nodes of the tree, after having already found the optimal solution. So, to

reduce the computational times, we introduced a condition restricting the number of

nodes of the tree: the algorithm is stopped if there have been inspected more then 3n

nodes after the last reduction of the difference between the upper and lower bound of

the tree (n is the number of jobs). We designated this procedure as Carlier_B&B(k),

where k is the machine considered to be optimized and output the optimal one-

machine schedule and the respective optimal value.

The way the one-machine branch-and-bound procedure is used within the building

step is described next. At the first iteration we consider the graph),(AOD =

(without the edges connecting operations that share the same machine) to compute

release dates and tails. Incorporating a new machine in the solution means adding to

the graph the arcs representing the sequence of operations in that machine. In terms of

the mathematical formulation, this means choosing one of the inequalities of the

disjunctive constraints (3) correspondent to the machine. We then update the

makespan of the partial solution and the release dates and tails of unscheduled

operations using the same procedure as the one used in the algorithm of Taillard

(1994). We designate this procedure as TAILLARD(x) that computes the makespan of

a partial solution x for the JSSP.

4.2 The Local Search step

In order to build a simple local search procedure we need to design a

neighbourhood structure (defined by moves between solutions), the way to inspect the

neighbourhood of a given solution, and a procedure to evaluate the quality of each

neighbour solution. It is said that a solution B is a neighbour of a solution A if we can

achieve B by performing a neighbourhood defining move in A.

We use a neighbourhood structure very similar to the NB neighbourhood of

Dell’Amico and Trubian (1993) and the one of Balas and Vazacopoulos (1998). To

describe the moves that define this neighbourhood we use the notion of blocks of

critical operations. A block of critical operations is a maximal ordered set of

8

consecutive operations of a critical path (in the disjunctive graph that represents the

solution), sharing the same machine. Let),(jiL denote the length of the critical path

from node i to node j . Borrowing the nomination of Balas and Vazacopoulos (1998)

we speak of forward and backward moves over forward and backward critical pairs of

operations.

Two operations u and v form a forward critical pair ()vu, if:

a) they both belong to the same block;

b) v is the last operation of the block;

c) operation)(vjs also belongs to the same critical path;

d) the length of the critical path from v to 1+o is not less than the length of

the critical path from)(ujs to 1+o ()1),(()1,(+≥+ oujsLovL).

Two operations u and v form a backward critical pair ()vu, if:

a) they both belong to the same block;

b) u is the first operation of the block;

c) operation)(ujp also belongs to the same critical path;

d) the length of the critical path from 0 to u , including the processing time of

u , is not less than the length of the critical path from 0 to)(vjp , including the

processing time of)(vjp ()))(,0(),0()(vjpu pvjpLpuL +≥+).

Conditions d) are included to guarantee that all moves lead to feasible solutions

(Balas and Vazacopoulos 1998). A forward move is executed by moving operation u

to be processed immediately after operation v . A backward move is executed by

moving operation v to be processed immediately before operation u .

The neighbourhood considered in the GRASP_B&B is slightly different from the

one considered in Dell’Amico and Trubian (1993) and Balas and Vazacopoulos

(1998) since it considers partial solutions obtained at each iteration of the

GRASP_B&B heuristic. Therefore the local search is applied to a partial solution

where a subset of all machines is scheduled. This neighbourhood is designated by

)\,(KMxN , where x is a partial solution, M is the set of all machines and K is the

set of machines not yet scheduled in the building phase. When inspecting the

neighbourhood)\,(KMxN , we stop whenever we find a neighbour with a best

evaluation value than the makespan of x .

9

To evaluate the quality of a neighbour of a partial solution x , obtained by a move

over a critical pair ()vu, , we need only to compute the length of all the longest paths

through the operations that were between u and v in the critical path of solution x .

This evaluation is computed using the same procedure as the one used in the

algorithm of Taillard (1994), TAILLARD(x).

The local search phase consists in the two procedures described in pseudo-code

below:

LocalSearch(x,f(x), M \K)

(1) ()K\Mxfxneighbours),(,:=

(2) while xs ≠
(3) sx =:

(4) ()K\Mxfxneighbours),(,:=

(5) return s

Neighbour(x,f(x),M\K)

(1) foreach)\,(KMxNs∈

(2) ())(:)(sxmoveevaluationsf →=

(3) if)()(xfsf <

(4) return s

(5) return x

4.3 GRASP_B&B

In this section, we present the complete GRASP_B&B implemented, that

considers the two phases previously described. Let runs be the total number of runs,

M the set of machines of the instance and)(xf the makespan of a solution x . The

full GRASP_B&B method can be generally described by the pseudo-code as follows:

GRASP_B&B (runs)

(1) { }mM ,,1: =

(2) for 1=r to runs

(3) { }=:x

(4) MK =:

(5) while { }≠K

10

(6) foreach Kk ∈

(7))(&_: kBBCARLIERxk =

(8))(:* KSEMIGREEDYk =

(9) *: kxxx ∪=

(10))(:)(xTAILLARDxf =

(11) { }*\: kKK =

(12) if 1−< MK

(13))\,(: KMxHLOCALSEARCx =

(14) if *x not initialised or *)(fxf <

(15) xx =:*

(16))(:* xff =

(17) return *x

This metaheuristic has only one parameter to be defined: the number of runs to

perform (line (2)). The step of line (8) is the only one using randomness. When

applied to an instance with m machines, in each run of the metaheuristic, the branch-

and-bound algorithm is called () 2/1+× mm times (line (7)); the local search is

executed 1−m times (lines (12) and (13)); the procedure semigreedy (line (8)) and

the algorithm of Taillard (line (10)) are executed m times.

5. Computational results

We have tested the algorithm GRASP_B&B on the benchmark instances abz5-9

(Adams et al. 1988), ft6, ft10, ft20 (Fisher and Thompson 1963), la01-40 (Lawrence

1984), orb01-10 (Applegate and Cook 1991), swv01-20 (Storer et al. 1992), ta01-70

(Taillard 1993) and yn1-4 (Yamada and Nakano 1992). The algorithm has been run

100 times for each instance on a Pentium 4 CPU 2.80 GHz and coded in C.

We show the results of running the algorithm for each instance using the boxplots

of UBRE , the percentage of relative error to the best known upper bound (UB) (see

figures below) calculated as follows:

() ()
UB

UBxfxREUB
−

×= %100

The boxplots show that the quality achieved is more dependent on the ratio mn /

than on the absolute numbers of jobs and machines. There is no big dispersion of the

11

solution values achieved by the algorithm in the 100 runs executed, except maybe for

instance la3. The number of times the algorithm achieves the best values reported is

high enough, so these values are not considered outliers of the distribution of the

results, except for instances ft06 and la38. On the other end, the worse values occur

very seldom and are outliers for the majority of the instances. We gathered the values

of the best known upper bounds from the paper of Jain and Meeran (1999) and the

papers of Nowicki and Smutnicki (1996; 2002 and 2005).

12

13

14

5.1. Comparison to other procedures

GRASP_B&B OSH heuristic is a very simple GRASP algorithm with a

construction phase very similar to the one of the shifting bottleneck. Therefore, we

show comparative results to two other very similar methods: a simple GRASP

heuristic of Binato et al (2001) and the Shifting Bottleneck heuristic by Adams et al

(1988).

5.1.1. Comparison to GRASP of Binato et al (2001)

The GRASP heuristic by Binato et al (2001) has a different building step in the

construction phase, which consists in scheduling one operation at each step. In their

computational results, they present the time in seconds per thousand iterations (an

iteration is one building phase followed by a local search) and the thousands of

iterations. For a comparison purpose we multiply these values to get the total

computation time. For GRASP_B&B we present the total time of all runs (ttime), in

seconds. As the tables show, our algorithm is much faster. Whenever our GRASP

achieves a solution not worse than theirs, we present the respective value in bold. This

happens for 26 of the 58 instances whose results where compared.

name GRASP_B&B ttime (s) GRASP time (s)

abz5 1258 0.7650 1238 6030

abz6 952 0.7660 947 62310

abz7 725 10.9070 667 349740

abz8 734 10.5160 729 365820

15

abz9 754 10.4690 758 343710

name GRASP_B&B ttime (s) GRASP time (s)

ft06 55 0.1400 55 70

ft10 970 1.0000 938 261290

ft20 1283 0.4690 1169 387430

name GRASP_B&B ttime (s) GRASP time (s)

la01 666 0.1720 666 140

la02 667 0.1560 655 140

la03 605 0.2190 604 65130

la04 607 0.1710 590 130

la05 593 0.1100 593 130

la06 926 0.1710 926 240

la07 890 0.2030 890 250

la08 863 0.2970 863 240

la09 951 0.2810 951 290

la10 958 0.1410 958 250

la11 1222 0.2660 1222 410

la12 1039 0.2650 1039 390

la13 1150 0.3750 1150 430

la14 1292 0.2180 1292 390

la15 1207 0.9060 1207 410

la16 1012 0.7350 946 155310

la17 787 0.7660 784 60300

la18 854 0.7500 848 58290

la19 861 0.9690 842 31310

la20 920 0.8130 907 160320

la21 1092 2.0460 1091 325650

la22 955 1.7970 960 315630

la23 1049 1.8900 1032 65650

la24 971 1.8440 978 64640

la25 1027 1.7960 1028 64640

la26 1265 3.3750 1271 109080

la27 1308 3.5620 1320 110090

la28 1301 3.0000 1293 110090

la29 1248 3.2960 1293 112110

la30 1382 3.3280 1368 106050

la31 1784 7.0160 1784 231290

16

la32 1850 6.2350 1850 241390

la33 1719 7.9060 1719 241390

la34 1721 8.2810 1753 240380

la35 1888 5.6880 1888 222200

la36 1325 4.2650 1334 115360

la37 1479 4.7970 1457 115360

la38 1274 5.1090 1267 118720

la39 1309 4.4530 1290 115360

la40 1291 5.3910 1259 123200

name GRASP_B&B ttime (s) GRASP time (s)

orb01 1145 0.9850 1070 116290

orb02 918 0.9530 889 152380

orb03 1098 1.0150 1021 124310

orb04 1066 1.1250 1031 124310

orb05 911 0.8750 891 112280

orb06 1050 1.0460 1013 124310

orb07 414 1.0630 397 128320

orb08 945 1.0310 909 124310

orb09 978 0.9060 945 124310

orb10 991 0.8430 953 116290

5.1.2. Comparison to the Shifting Bottleneck (Adams et al. 1988)

The main difference of the Shifting Bottleneck procedure (Adams et al. 1988) and

GRASP_B&B is the random selection of the machine to be scheduled. In the Shifting

Bottleneck the machine to be scheduled is always the bottleneck machine. The

comparison between the shifting bottleneck procedure (Adams et al. 1988) and the

GRASP_B&B is also presented next. Comparing the computation times of both

procedures, the GRASP_B&B is slightly faster than the shifting bottleneck for smaller

instances. Given the distinct computers used in the experiments we would say that this

is not meaningful, but the difference does get accentuated as the dimensions grow.

Whenever GRASP_B&B achieves a solution better than the shifting bottleneck

procedure, we present its value in bold. This happens in 29 of the 48 instances whose

results where compared, and in 16 of the remaining 19 instances the best value found

was the same.

17

name GRASP_B&B ttime (s) Shifting

Bottleneck

time (s)

abz5 1258 0.7650 1306 5.7

abz6 952 0.7660 962 12.67

abz7 725 10.9070 730 118.87

abz8 734 10.5160 774 125.02

abz9 754 10.4690 751 94.32

name GRASP_B&B ttime (s) Shifting

Bottleneck

time (s)

ft06 55 0.1400 55 1.5

ft10 970 1.0000 1015 10.1

ft20 1283 0.4690 1290 3.5

name GRASP_B&B ttime (s) Shifting

Bottleneck

time (s)

la01 666 0.1720 666 1.26

la02 667 0.1560 720 1.69

la03 605 0.2190 623 2.46

la04 607 0.1710 597 2.79

la05 593 0.1100 593 0.52

la06 926 0.1710 926 1.28

la07 890 0.2030 890 1.51

la08 863 0.2970 868 2.41

la09 95º1 0.2810 951 0.85

la10 958 0.1410 959 0.81

la11 1222 0.2660 1222 2.03

la12 1039 0.2650 1039 0.87

la13 1150 0.3750 1150 1.23

la14 1292 0.2180 1292 0.94

la15 1207 0.9060 1207 3.09

la16 1012 0.7350 1021 6.48

la17 787 0.7660 796 4.58

la18 854 0.7500 891 10.2

la19 861 0.9690 875 7.4

la20 920 0.8130 924 10.2

la21 1092 2.0460 1172 21.9

la22 955 1.7970 1040 19.2

la23 1049 1.8900 1061 24.6

18

la24 971 1.8440 1000 25.5

la25 1027 1.7960 1048 27.9

la26 1265 3.3750 1304 48.5

la27 1308 3.5620 1325 45.5

la28 1301 3.0000 1256 28.5

la29 1248 3.2960 1294 48

la30 1382 3.3280 1403 37.8

la31 1784 7.0160 1784 38.3

la32 1850 6.2350 1850 29.1

la33 1719 7.9060 1719 25.6

la34 1721 8.2810 1721 27.6

la35 1888 5.6880 1888 21.3

la36 1325 4.2650 1351 46.9

la37 1479 4.7970 1485 6104

la38 1274 5.1090 1280 57.5

la39 1309 4.4530 1321 71.8

la40 1291 5.3910 1326 76.7

6. Conclusions

In this work we present a very simple Optimized Search Heuristic, the

GRASP_B&B to solve the Job-Shop Scheduling problem. This method is intended to

be a starting point for a more elaborated metaheuristic, since it obtains reasonable

solutions in very short running times. The main idea behind the GRASP_B&B

heuristic is to insert in each iteration of the building phase of the GRASP method the

complete solution of one-machine scheduling problems solved by a branch-an-bound

method, instead of insert one sequence of two individual operations as it is usual in

other GRASP methods for this problem.

We have compared it with other similar methods also used as an initialization

phase within more complex algorithms; namely a GRASP of Binato et. al (2001),

which is the base for a GRASP with path-relinking procedure of Aiex et. al (2003),

and the Shifting Bottleneck procedure of Adams et. al (1988), incorporated in the

successful guided local search of Balas and Vazacopoulos (1991). The comparison to

the GRASP of Binato et al (2001) shows that the GRASP_B&B is much faster than

theirs. The quality of their best solution is slightly better than ours in 60% of the

instances tested. When comparing GRASP_B&B with the Shifting Bottleneck, the

first one is still faster, and it achieves better solutions, except for 3 of the comparable

19

instances. Therefore we can conclude, that the GRASP_B&B is a good method to use

as the initialization phase of more elaborated and complex methods to solve the job-

shop scheduling problem. As future research, we are working on this elaborated

method also using OSH ideas, i.e. combing heuristic and exact methods procedures.

Acknowledgement

Susana Fernandes’ work is suported by the the programm POCI2010 of the

Portuguese Fundação para a Ciência e Tecnologia. Helena R. Lourenço’s work is

supported by Ministerio de Educación y Ciencia, Spain, SEC2003-01991/ECO.

References

1 Adams, J., E. Balas and D. Zawack (1988). "The Shifting Bottleneck Procedure for

Job Shop Scheduling." Management Science, vol. 34(3): pp. 391-401.

2 Applegate, D. and W. Cook (1991). "A Computational Study of the Job-Shop

Scheduling Problem." ORSA Journal on Computing, vol. 3(2): pp. 149-156.

3 Balas, E. and A. Vazacopoulos (1998). "Guided Local Search with Shifting

Bottleneck for Job Shop Scheduling." Management Science, vol. 44(2): pp. 262-

275.

4 Binato, S., W. J. Hery, D. M. Loewenstern and M. G. C. Resende (2001). "A

GRASP for Job Shop Scheduling." In C.C. Ribeiro and P. Hansen, editors, Essays

and surveys on metaheuristics, pp. 59-79. Kluwer Academic Publishers.

5 Carlier, J. (1982). "The one-machine sequencing problem." European Journal of

Operational Research, vol. 11: pp. 42-47.

6 Caseau, Y. and F. Laburthe (1995), "Disjunctive scheduling with task intervals",

Technical Report LIENS, 95-25, Ecole Normale Superieure Paris.

7 Chen, S., S. Talukdar and N. Sadeh (1993). "Job-shop-scheduling by a team of

asynchronous agentes", Proceedings of the IJCAI-93 Workshop on Knowledge-

Based Production, Scheduling and Control. Chambery France.

8 Danna, E., E. Rothberg and C. L. Pape (2005). "Exploring relaxation induced

neighborhoods to improve MIP solutions." Mathematical Programming, Ser. A, vol.

102: pp. 71-90.

9 Dell'Amico, M. and M. Trubian (1993). "Applying Tabu-Search to the Job-Shop

Scheduling Problem."

20

10 Denzinger, J. and T. Offermann (1999). "On Cooperation between Evolutionary

Algorithms and other Search Paradigms", Proceedings of the 1999 Congress on

Evolutionary Computational.

11 Feo, T. and M. Resende (1995). "Greedy Randomized Adaptive Search

Procedures." Journal of Global Optimization, vol. 6: pp. 109-133.

12 Fernandes, S. and H.R. Lourenço (2007), "Optimized Search Heuristics",

Universitat Pompeu Fabra, Barcelona, Spain.

(http://www.econ.upf.edu/~ramalhin/OSHwebpage/index.html)

13 Fisher, H. and G. L. Thompson (1963). Probabilistic learning combinations of

local job-shop scheduling rules. In J. F. Muth and G. L. Thompson eds. Industrial

Scheduling. pp. 225-251. Prentice Hall, Englewood Cliffs.

14 Garey, M. R. and D. S. Johnson (1979). Computers and Intractability: A Guide to

the Theory of NP-Completeness. San Francisco, Freeman.

15 Jain, A. S. and S. Meeran (1999). "Deterministic job shop scheduling: Past, present

and future." European Journal of Operational Research, vol. 133: pp. 390-434.

16 Lawrence, S. (1984), "Resource Constrained Project Scheduling: an Experimental

Investigation of Heuristic Scheduling techniques", Graduate School of Industrial

Administration, Carnegie-Mellon University.

17 Lourenço, H. R. (1995). "Job-shop scheduling: Computational study of local

search and large-step optimization methods." European Journal of Operational

Research, vol. 83: pp. 347-367.

18 Lourenço, H. R. and M. Zwijnenburg (1996). Combining large-step optimization

with tabu-search: Application to the job-shop scheduling problem. In I. H. Osman

and J. P. Kelly eds. Meta-heuristics: Theory & Applications. Kluwer Academic

Publishers.

19 Nowicki, E. and C. Smutnicki (2002), "Some new tools to solve the job shop

problem", Technical Report, 60/2002, Institute of Engineering Cybernetics,

Wroclaw University of Technology.

20 Nowicki, E. and C. Smutnicki (2005). "An Advanced Tabu Search Algorithm for

the Job Shop Problem." Journal of Scheduling, vol. 8: pp. 145-159.

21 Nowicki, E. and C. Smutniki (1996). "A Fast Taboo Search Algorithm for the Job

Shop Problem." Management Science, vol. 42(6): pp. 797-813.

22 Roy, B. and B. Sussman (1964), "Les probèms d'ordonnancement avec

constraintes disjonctives", Note DS 9 bis, SEMA, Paris.

21

23 Schaal, A., A. Fadil, H. M. Silti and P. Tolla (1999). "Meta heuristics

diversification of generalized job shop scheduling based upon mathematical

programming techniques", Proceedings of the Cp-ai-or'99.

24 Schrage, L. (1970). "Solving resource-constrained network problems by implicit

enumeration: Non pre-emptive case." Operations Research, vol. 18: pp. 263-278.

25 Storer, R. H., S. D. Wu and R. Vaccari (1992). "New search spaces for sequencing

problems with application to job shop scheduling." Management Science, vol.

38(10): pp. 1495-1509.

26 Taillard, E. D. (1993). "Benchmarks for Basic Scheduling Problems." European

Journal of Operational Research, vol. 64(2): pp. 278-285.

27 Taillard, É. D. (1994). "Parallel Taboo Search Techniques for the Job Shop

Scheduling Problem." ORSA Journal on Computing, vol. 6(2): pp. 108-117.

28 Tamura, H., A. Hirahara, I. Hatono and M. Umano (1994). "An approximate

solution method for combinatorial optimisation." Transactions of the Society of

Instrument and Control Engineers, vol. 130: pp. 329-336.

29 Yamada, T. and R. Nakano (1992). A genetic algorithm applicable to large-scale

job-shop problems. In R. Manner and B. Manderick eds. Parallel Problem Solving

from Nature 2. pp. 281-290. Elsevier Science.

	FP_SOSH
	GRASP-B&B_SCI

