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ABSTRACT 
Problems arising in the logistics of commercial distribution are complex and involve several players 
and decision levels. One of the most important decisions is the design of the routes to distribute the 
products in an efficient and inexpensive way but also satisfying marketing objectives such as 
customer loyalty. This chapter explores three different distribution routing strategies. The first 
strategy corresponds to the classical vehicle routing problem where total distance or cost is 
minimized. This one is usually an objective of the Logistics department. The second strategy is a 
master route strategy with daily adaptations where customer loyalty is maximized, which is one of 
the objectives of the Marketing department. We propose a third strategy which takes into account 
the cross-functional planning between the Logistics and the Marketing department through a multi-
objective model. All strategies are analyzed in a multi-period scenario. A metaheuristic algorithm 
based on the Iterated Local Search is proposed and applied to optimize each strategy. An analysis 
and comparison of the three strategies is presented through a computational experiment. The cross-
functional planning strategy leads to solutions that put in practice the coordination between the two 
functional areas of Marketing and Logistics and better meet business objectives in general. 
 
INTRODUCTION 
The growing number of problems that firms are facing nowadays in relation to the distribution of 
their products and services has lead Logistics and Marketing  to be of primary concern to many 
industries. An important aspect of the logistics management task is to coordinate the activities of the 
traditional distribution functions together with purchasing, materials planning, manufacturing, 
marketing and often R&D. One important aspect of the integration process is cross-functional 
planning, which consists of coordinating different areas inside the firm, allowing for cost reductions 
and service improvement (Christopher, 1998). 
 
The motivation of our work arises in the context of integration of logistics functions with other 
functions of the firm. In our case, we will focus our study on two key areas: Distribution and 
Logistics management and Marketing management. One source of competitive advantage for many 
firms is the development of an integrated relationship between the firm's marketing and logistics 
functions, as this integration has the ability to further enhance the firm's customer focus. This 
integration can be obtained by doing an integrated and coordinated planning of the logistics 
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operations. In our case we focus on the distribution strategies. On one hand, the importance of good 
distribution strategies in today's competitive markets cannot be overstressed. In many industries, an 
important component of distribution systems is the design of the routes of vehicles to serve their 
customer's demand. On the other hand, as pointed out by some industry leaders, new trends in 
supply-chain management include, "…better customer service...greater customer sophistication" 
(Partyka & Hall, 2000). Customer service is becoming more important. Customers demand more 
than a product. They demand a product arriving on time via an easy ordering system or just-in-time 
distribution. 
 
In this work, we will study integrated distribution management from a strategic point of view. The 
logistics distribution problem consists of deciding how to assign customers to vehicles and how to 
design the routes made by each vehicle minimizing a transportation cost function. This is the well-
known Vehicle Routing Problem (VRP) (Toth & Vigo, 2002b). The transportation cost represents a 
large percentage of the total logistics costs, so it makes sense to try to reduce this cost.  Having the 
products arrive on time is also an important objective of the logistics department when planning 
distribution. 
 
However, after interviews with several retailing companies, we realized that many of them do not 
consider minimizing transportation cost as the prime objective, but rather place greater importance 
on the customer relationship and customer service in the designing of distribution routes (Ribeiro, 
2004). Marketing and Sales departments argue that drivers also perform sales activities and have 
responsibilities for promotion and the introduction of new products. So, if a driver is assigned 
always to the same customers this creates a good relationship and it leads to a sales increase.  
 
We thus identified the two different primary strategies in the design of distribution routes: the 
Logistics department wants to minimize transportation costs and the Marketing and Sales 
department wants to maximize customer relationships, i.e. assign the same driver to each customer 
every day or most days. 
 
This led us to the following question: What is the best strategy for an efficient distribution? On the 
one hand we have the classical VRP minimizing a transportation cost function. On the other hand, 
we have the strategy to always assign the same driver to the same customer to maximize customer 
loyalty. Beyond evaluating these two strategies, we propose a third one based on a bi-objective 
approach that tries to balance the two previous ones. This last strategy involves the implementation 
of integrated distribution processes. 
 
The motivation for the present work arose from distribution problems faced by the food and 
beverage industry. In these industries, the tendency is to have lower inventories and higher delivery 
frequencies. Please note that the objective of this work is not to provide a system to optimize a 
particular distribution problem, but to study and analyze what is the best planning strategy for the 
distribution of a product among a set of customers. 
 
In the next section, we present in detail the different distribution strategies proposed: 

1. the classical VRP strategy, where the objective is to minimize the transportation costs;  
2. the master routes strategy, where the main objective is maximizing the number of 

customers assigned to the same driver for a set period of time;  
3. the new bi-objective strategy we propose that considers the integration between the 

marketing and logistics departments. 
 
In third section, we present a brief literature review, followed by a section where we present the 
mathematical models for the three strategies proposed. Next section presents the tool designed to 
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optimize the routes. This tool is based on Iterated Local Search Heuristics, and we use the same tool 
to optimize the routes in order to be able to make a fair comparison. In the results section, we 
analyze the results and, in particular, the impact on integrated decision-making between the 
logistics and marketing departments. Finally, in the last section, we present the conclusions of the 
work. 
 
THE DISTRIBUTION STRATEGIES 
Distribution strategy has a great impact on the firm’s performance, in particular in the retailing area. 
Frequently, this strategy is defined by the Logistics department, but sometimes the decision is made 
by the Marketing department. The objectives when defining this distribution strategy can be very 
different depending on the department involved. In this work, we will define and analyze three 
different distribution strategies that reflect different potential distribution policies in an 
organization. 
 
The first strategy (Strategy 1) has a distribution policy that minimizes distance or transport costs. 
The objective consists in minimizing total routing cost, measured in distance units as in the classical 
VRP. This is a well-known problem and there exist a very large number of articles published on this 
subject. However, the objective function of this problem is often an object of criticism by users and 
planners, since it does not take into consideration other concerns of the company, for example, 
customer service and customer loyalty. The second strategy (Strategy 2) tries to implement a 
marketing policy based on customer service and loyalty. In an increasingly competitive 
environment, many firms adopt strategies of tight relationships with their customers where loyalty 
and friendship play a key role, through the delivering agents (Baker, Cronin, & Hopkins, 2009). By 
this strategy, routes are predefined so that each delivering agent or driver is associated with a 
specific set of customers. The third strategy (Strategy 3) is the one that considers marketing and 
distribution objectives at the same time, in an integrated manner. 
 
The distribution strategies correspond to different situations and concerns inside the firm. By 
comparing them, we can analyze the effect that integrating two areas can have on the distribution 
policies. The objective of this analysis is to provide a set of possible alternative solutions to the 
decision maker, who, with the use of additional information on each particular distribution problem, 
can then make a good choice. 
 
The strategies are evaluated for a planning horizon of a week, five working days. The choice of this 
period is based on the need for a strategic perspective; we want to study the impact of a sequence of 
decisions on different objectives. As a consequence, we need several periods to analyze the 
marketing effect and a week seems to be a reasonable choice since in many industries, the behavior 
of the orders for a customer follows a weekly pattern (examples are the Beverage & Food industry). 
In any case, this assumption could be relaxed and the problem could be extended to a larger number 
of periods. 
 
Strategy 1: Distance Minimization 
In this strategy, the distribution policy is constructed based on routing cost or distance. Cost 
reduction is one of the biggest concerns in transportation and distribution management, but not the 
only one as we will see later. We want to find the route for each of the vehicles that will pass 
through the demand points in such a way as to satisfy all the demand with the smallest transport 
cost or distance. The classical VRP considers only one period at a time and chooses the optimal 
routes for that period. Strategy 1 corresponds to the classical Vehicle Routing Problem (VRP) 
repeated for each day of the planning horizon. 
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Strategy 2: Master Routes 
The second strategy is based on marketing principles, and the distribution strategy is based on 
service measures. An important source of value to the firm can be obtained from a close 
relationship between the firm and its customers. Drivers see customers regularly, and perform sales 
activities and have responsibilities for promotions and the introduction of new products. Therefore, 
it is believed by the Marketing department that if the same driver is assigned always to the same 
customer this can create a good relationship and leads to increased sales.  
 
This marketing policy is giving emphasis to the personal relationship between drivers and 
customers as a way to improve customer service. One of the identified advantages of this customer 
relationship management policy is that it makes it more difficult for a customer to switch to another 
provider. It is known that relationships require a time investment from both the customer and the 
provider (Simchi-Levi, Kaminsky, & Simchi-Levi, 2003). These marketing strategies allow the firm 
to obtain more information on customer needs. And, at the same time, it becomes easier to 
introduce new products, define promotions and even speeds up the delivery process due to 
experience effects on both sides. In the marketing literature, we can find several studies of 
relationships between firm employees and customers that lead to an improvement in customer 
satisfaction and loyalty, see for example (Baker et al., 2009), (Guenzi & Pelloni, 2004), (Chao, Fu, 
& Lu, 2007)  and (Barroso-Castro, Armario, & Marin-Ruiz, 2004). These authors mention that 
maintaining a long term relationship between employees (in our case drivers) and customers may 
improve customer perceptions of the quality of services received, and consequent company 
performance. 
 
In this strategy, each driver will serve always the same customers. So, master routes are designed 
considering all customers and an average daily demand, and then these routes are adapted daily so 
the driver always visits the same customers and he or she only visits customers with demand. 
Capacity constraints are also taken into account. 
 
Strategy 3: Multi-Objective 
The third strategy is the integrated distribution management model, which consists of taking into 
account in the decision process the concerns of the Logistics department and Marketing department 
i.e. the reduction of transportation costs and the emphasis on the personal relationship between 
driver and customer. We propose a multi-objective model with two objectives, each objective 
corresponds to a different function. The first is the transportation cost and the second a marketing 
function. This strategy tries to include in the same model the objectives of the two previous 
strategies. The best solution for the transportation problem might not always be the best solution for 
the marketing objective. In some cases, these two objectives may conflict and that is the main 
justification for a trade-off analysis between these two objectives. We need to find a solution (or 
several solutions) that integrate marketing and logistics objectives. 
 
In the next section, we will present a brief literature review. In following section, we will present 
the well-known mathematical model for the VRP that serves as the basis for the models of the 
different strategies, and also present the mathematical model for each strategy. 
 
LITERATURE REVIEW ON VRP 
The classical VRP model is behind the models for the three distribution strategies.  This problem is 
an NP-hard problem, which implies a non-polynomial increase in the size of the solutions space 
when the number of nodes is increased.  A significant amount of research effort has been dedicated 
to VRP. See the survey articles on VRP by (Laporte & Osman, 1995), (Laporte, 1992), (Bodin, 
Golden, Assad, & Ball, 1983), (Christofides, Mingozzi, & Toth, 1981), (Fisher, 1995), (Crainic & 
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Laporte, 1998), (Cordeau, Gendreau, Laporte, Potvin, & Semet, 2002), (Laporte, 2007), (Golden, 
Raghavan, & Wasil, 2008) and (Juan, Faulin, Ruiz, Barrios, & Caballé, 2010). An extensive list of 
VRP research papers can be found on http://www.imm.dtu.dk/ ~orgroup/VRP_ref/. Although this 
problem has been studied for decades, (Laporte, 2009), it still gets the attention of many 
researchers.  
 
Although the VRP is an important problem, the main contribution of this chapter is not regarding 
the VRP but rather Strategic Distribution Decisions. After several interviews with different Food & 
Beverages Companies we realized that in decision making about distribution routes, it was not only 
cost that was important, but also customer service and customer loyalty. We found that the 
Operations Research literature focuses mainly on minimizing transportation cost or distance, 
whereas Marketing literature has continuously emphasized the importance of human interactions 
and relationships in the process of delivery goods.  
 
Several studies indicate that good relationships between firm employees and customers lead to 
greater customer satisfaction and loyalty. Baker, Cronin & Hopkins (2009) conclude that higher 
levels of involvement lead to greater levels of consumer loyalty. Guenzi & Pelloni (2004) mention 
that building customer loyalty is increasingly a major goal for a large number of companies and, 
also that a strong relationship between front-line employees and customers positively affects 
customer satisfaction and loyalty to the company. Chao, Fu & Lu (2007) say that customer 
orientation and interpersonal relationships may reinforce the quality-loyalty linkage. Barroso-
Castro, Armario & Marin-Ruiz (2004) analyzes the effect that service company employee behavior 
has on customer perceptions of the quality of service received, and consequent company 
performance. 
 
Therefore the proposed distribution strategies are based not only on the classical VRP, but also on a 
multi-period and multi-objective vehicle-routing problem. As far as we know there are no studies 
on routing problems with multiple periods and this type of marketing oriented objective function. 
There are some multi-objective VRP that consider other types of objectives. Hong & Park (1999) 
consider the minimization of customer waiting time as the second objective function, in a VRP with 
time windows constraints. Lee & Ueng (1999) developed an integer linear model that searches for 
the shortest travel path and balances driver's load simultaneously. The objectives are related to 
travel and loading time. Pasia, Doerner, Hartl, & Reimann (2007) present a population-based local 
search for solving a bi-objective vehicle routing problem. The objectives of the problem are 
minimization of the tour length and balancing the routes. Muller (2010) presents an approximate 
method to the bi-criterion Vehicle Routing Problem with soft time-windows. Jozefowiez, Semet, & 
Talbi (2008) surveys the existing research related to multi-objective optimization in routing 
problems. It examines routing problems in terms of their definitions, their objectives, and the multi-
objective algorithms proposed for solving them.  
 
Also, some work on periodic VRP has been done. Baptista, Oliveira, & Zúquete (2002) present a 
period vehicle routing problem based on the assignment problem and the vehicle routing problem. 
Collection days have to be assigned to each customer and vehicle routes have to be designed for 
each day of the period (time horizon) so that the total distribution cost is minimized. Francis, 
Smilowitz, & Tzur (2006) present a variation of the periodic VRP in which service frequency is a 
decision of the model. Mourgaya & Vanderbeck (2007) propose a column generation-based 
heuristic for the periodic VRP. Hemmelmayr, Doerner, & Hartl (2009) propose a new heuristic for 
the Periodic Vehicle Routing Problem (PVRP) based on variable neighborhood search.  
 
The main contribution of this work is to present a new model and new method to solve a multi-
period and multi-objective vehicle-routing problem, but the most important contribution is to 
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analyze three different alternative distribution strategies that can be adopted in a firm when 
planning their routing and evaluate the consequences of adopting each one of them. 
 
THE MODELS FOR THE DISTRIBUTION STRATEGIES 
The most well known model for routing is a basic VRP. This model considers a set of nodes, 
representing retailers or customers, at a known location, that must be served by one depot. Each 
node has a known demand. A set of vehicles, with equal capacity is available to serve the 
customers. The routes must start and finish at the depot. The objective is to define the set of routes 
to serve all customers with minimal cost. 
 
For each pair of nodes, a fixed known cost is associated. We assume this cost matrix is symmetric 
and can represent a real cost, distance or time. The main constraints of the problem are that all the 
demand must be satisfied and the vehicles’ capacity cannot be exceeded. 
 
The basic VRP is a generalization of the Traveling Salesman Problem, where more than one vehicle 
is available, for TSP references see for example (Lawler, Lenstra, Rinnooy Kan, & Shmoys, 1985). 
There are several formulations of the classical VRP in the literature, for some of these formulations 
see (Fisher & Jaikumar, 1978),  (Fisher & Jaikumar, 1981), (Kulkarni & Bhave, 1985), (Gouveia, 
1995)and (Toth & Vigo, 2002a). 
 
The classical model of the VRP can be formulated as an integer linear programming and this is the 
formulation we will use throughout later chapters. 
 
Consider the following data: 

I = 1,…, n, set of nodes, that correspond to the different locations of the customers, node 1 

corresponds to the depot. 

K = 1,..., m, set of vehicles; 

Q, capacity of each vehicle;  

iq , demand of customer i, i =1,...,n; 

ijc cost of going from i to j, i =1,...,n ; j = 1,...,n. 

This formulation considers two types of variables: 








otherwise,0

customer after  immediatly

customer   visits  vehicleif
,1

i

jk
xijk  

The formulation of the problem is: 

Objective Function: 
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Constraint (2) ensures that each customer is visited by one vehicle only. Constraint (3) guarantees 
that all vehicles visit the depot. Constraint (4) represents the vehicle capacity constraint. For each 
vehicle k, we guarantee that the sum of the demand of the nodes that the vehicle covers is less than 
or equal to its maximum capacity. Here we assume that none of the customers has a daily demand 
that exceeds Q. The constraint (5) ensures that if a vehicle visits a customer it also has to leave that 
customer. Constraint (6) is the sub-tour elimination constraint. This constraint implies that the arcs 
selected contain no sub-cycles. It states that for every vehicle, the following holds: for every non-
empty subset S of {2,..,n}, the number of arcs that are in the route of this vehicle, with both nodes 
belonging to S, has to be less than or equal to the number of elements of S minus 1. The last 
constraint (7) defines the variables x and y as binary. The objective function is minimizing the total 
cost of the routes. 
 
The TSP is a sub-problem of the VRP, the TSP belongs to the class of NP-hard (non-deterministic 
polynomial time) problems, and so do the basic VRP and extensions. This means that the 
computational complexity of the problem grows exponentially with its size, i.e., it grows 
exponentially with the number of customers. 
 
In this section we will present the mathematical models associated with the three strategies. First of 
all, we describe the assumptions of the model. 
 
We assume that the firm is responsible for the distribution of its own products. Therefore, there are 
no questions of outsourcing to be handled. These firms face the pressures of a competitive market 
making them concerned about both consumer satisfaction and internal efficiency. 
 
The classical VRP considers only one period and chooses the optimal routes for that period. Here 
we will introduce more periods by considering a week-long analysis. Each day we have a different 
set of customers to serve and different corresponding quantities to deliver. Reduction of inventory 
levels, and increasing frequency of orders are tendencies in many businesses to lower stock 
handling costs. 
 
Other assumptions of the model are: 
 All the demand is satisfied on the same day that it is required and not on any other day of the week. 
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 Only unloading is done at each customer. 

 The number of vehicles is fixed and there are no fixed costs associated with the use of the vehicles. 
They all have the same capacity. Moreover, the number of vehicles available is enough to satisfy all 
the demand. 

 Each vehicle is assigned to a driver. We consider that each driver works every day of the period in 
question. 

 One vehicle can only be used once a day and the time it takes to deliver the full capacity is less than 
a working day. 

Next, we will present the model in detail. The following data is considered in the mathematical 
formulation: 

i, I, index and set of nodes, I=1,...,n where 1 is the depot and 2 to n are the customers locations; 

k, K, index and set of vehicles, K=1,...,m; 

t, T, index and set of days which represent the period, T=1,...,p; 

Ti, set of days where customer i has a demand that is greater than zero, i = 2,...,n; 

qi
t, demand of customer i on day t, i = 1,...,n and t = 1,...,p; 

cij, the cost of going from i to j, this is a fixed matrix , i=1,...,n and j=1,...,n; 

Q, capacity of a vehicle. 

The variables of the model are: 








otherwise

day on  customer after  immediatly

customer   visits  vehicleif

,0

,1
ti

jk
t
ijkx   






otherwise

day on   by vehicle  visitedis customer  if

,0

,1 tkit
iky  

Strategy 1: Distance Minimization 
The objective function minimizes routing costs, for all customers during the week period. This 
strategy corresponds to repeating a classical VRP for each day of the week. 
 
The formulation of this objective will be the same as the one used for the classical model but with a 
new parameter, t, representing the day of the week. 
 
Objective function: 

   
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Strategy 2: Master Routes 
This strategy and the associated model are very close to common practice in many companies. It 
consists of: first defining "master routes" and, afterwards performing daily adjustments depending 
on the demand of the customer and on the capacity of the vehicle. To obtain the "master routes" we 
consider a VRP model, where all customers are in the input data and the demand of each customer 
depends on the average daily demand. To adjust the daily routes we consider other constraints such 
as capacity and number of vehicles. The requirement that a customer will always be served by the 
same driver may have to be sacrificed but we will try to enforce this at least for the best customers. 
Therefore, the idea is: the better the customer, the more interest we have in maintaining the same 
driver. 
 
The mathematical formulation for this strategy is identical to the one for the classical VRP for one 
period, but in this case all customers are considered for the "master routes". 
 
Strategy 3: Multi-Objective 
In this strategy, we propose a multi-objective model with two objectives: minimization of routing 
costs and maximization of service levels that reflect an integration of the strategies of the Logistics 
and Marketing departments. 
 
In most cases of multiple objectives it is unlikely that the problem is optimized by the same 
alternative parameter choices. Hence, some trade-off between the criteria is needed to ensure a 
satisfactory design. 

In the multi-objective optimization an important relation is the dominance relation. Let (z1) and (z2) be 
two solutions of a multi-objective minimization problem with R objectives. We say that: Solution (z1) 
dominates (z2) if z1r ≤ z2r for all objectives r in {1,...,R} and z1r < z2r for at least one r and (z1r) ≠ (z2r). A 
feasible solution is efficient if it is non-dominated. Based on this concept we will optimize the two 
objective functions to find non-dominated solutions. 

Ideally, we would like to find the solution that would be optimal for both objectives at the same 
time. In multi-objective programming, this solution point rarely exists. So, we would like to find 
solutions that are close to this ideal point. 
 
Mathematically, all non-dominated solutions are equally acceptable. It is the decision maker who is 
responsible for choosing the final solution. The decision maker is someone who has a deep 
knowledge of the problems, the relationships and the implications of each solution. The choice 
among these non-dominated solutions is determined by the decision maker's preferences among the 
multiple objectives. 
 
The two objective functions considered within the integrated strategy are: 
 
Objective A: Minimizing Cost 
The formulation of this objective will be the same as in equation (8), the one used for the model of 
strategy 1. 
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Objective B: Marketing Objective 
In terms of mathematical formulation, the second objective works as follows: For each customer  we 
have a set of pairs of days with positive demand, iT , for each pair of days (g, h) in iT  (with g ≠ h) we 

want to minimize the difference in the assignment to a vehicle k. The objective is to minimize h
ik

g
ik yy  . 

 
The importance is given by the total demand for the period, therefore a weight is introduced: the total 
amount ordered by each customer. The objective function becomes: 
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The importance of a customer is measured in terms of sales. In some cases other measures could be used 
to classify the goodness of a customer, for example, frequency of orders, credit history, etc. This function 
is non linear. 

Considering a multi-period model is an essential aspect of our study. Since objective B is not static but 
measures decisions across more than one period, it only makes sense to consider a multi-period base. 

In the integrated strategy the objective is to find a set of non-dominated solutions and give the decision 
maker the possibility to choose not only between strategies but also between solutions. 

The constraints of the model for strategy 1 and 3 are: 
 
 

i

m

k

t
ik Ttniy 



;,...,2   ,1
1   9 

1;   ,
1




iTtmy i

m

k

t
ik

  10 

ptmkQyq
n

i

t
ik

t
i ,...,1;,...,1   ,

2


   11 

ptmkniyxx t
ik

n

j

t
jik

n

j

t
ijk ,...,1;,..,1;,...,2   ,

11


   12 

i

m

k

t
ik Ttniy 



;,...,2   ,0
1   13 

  ptmknSx
Sij

t
ijk ,...,1;,..,1;,...,2 ofsubset nonempty  S   ,1

,


   14 

    ptmkniyx t
ik

t
ijk ,...,1;,..,1;,...,1   ,1,0;1,0 

  15 

Constraints (9) to (15) are similar to the ones in the basic model, but for each day of the period in 
question. Constraint (9) ensures that on the days where a customer has a positive demand, that customer is 
visited by only one vehicle. Constraint (10) imposes that each day all vehicles go to the depot. Constraint 
(11) ensures that, the daily loading of a vehicle does not exceed its capacity. Constraint (12) guarantees 
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that if the vehicle enters a node, on day t, it also has to leave that node, on the same day. Constraint (13) 
prohibits a vehicle from visiting a customer on a day where that customer has zero demand. Finally 
constraint (14) avoids sub-tours, but now not only for each vehicle but also for each day. The sub-tour 
elimination constraint represents an exponential number of constraints. The last constraint (15) defines 
all variables as binary. 
 
SOLUTION APPROACH 
The main objective of this work is to make a fair comparison of the three distribution strategies 
therefore we will use the same solution technique to optimize each strategy. As mentioned, the 
proposed problems are NP-hard, so they require an heuristic methodology in order to solve large 
instances. A heuristic algorithm is a solution method that does not guarantee an optimal solution, 
but in general has a good level of performance in terms of solution quality and convergence. 
Heuristics may be constructive (producing a single solution), local search (starting from one given 
random solution and moving iteratively to other nearby solutions) or a combination of the two. 
Heuristics for VRP have been extensively studied. Cordeau et al. (2002) summarize the most 
important classical and modern heuristics for the VRP.  
 
Local search is the most powerful general approach for finding high quality solutions to hard 
combinatorial optimization problem in reasonable time. It is based on the iterative exploration of 
neighborhoods of solutions trying to improve the current solution by local changes. The type of 
local search that may be applied to a solution is defined by a neighborhood structure. 
 
Our proposal is to use a metaheuristic algorithm that has proven to give quite good results for other 
problems and that is easy to implement, modify and adapt to different strategies: the Iterated Local 
Search (ILS). 
 
The Iterated Local Search for the VRP 
ILS is a simple and generally applicable meta-heuristic which iteratively applies local search to 
modifications of the current search point. For more detailed information on ILS see (Lourenço, 
Martin, & Stützle, 2003), (Lourenço, Martin, & Stützle, 2010) and (Stützle, 1998). At the start of 
the algorithm a local search is applied to some initial solution. Then, a main loop is repeated until a 
stopping criterion is satisfied. This main loop consists of a modification step ("perturbation"), which 
returns an intermediate solution corresponding to a modification of a previously found locally 
optimal solution. 
 
Next, local search is applied to yielding a locally optimal solution. An "acceptance criterion" then 
decides from which solution the search is continued by applying the next "perturbation". Both, the 
perturbation step and the acceptance test may be influenced by the search history. ILS is expected to 
perform better than if we just restart local search from a new randomly generated solution. 
 
The architecture of the ILS is as follows: 
 

Architecture of the ILS Algorithm 
Procedure ILS:

   s0 = GenerateInitialSolution

   s* = LocalSearch(s0)

   Repeat 

   s′ = Perturbation(s*, history)
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   s*′ = Local search(s′)

   s* = Acceptance Criterion(s*, s*′, history)

   Until termination condition met

   End 

 
The proposed ILS heuristics is based on the ILS metaheuristic developed by (Stützle, 1998)and 
(Kunz, 2000) to solve the classical VRP. The ILS used for the VRP is the following: 
 

ILS for the VRP 
Step 1. Savings Heuristic - Initial Solution

Step 2. ILS for TSP on each tour:

   Step 2.1. Local Search for TSP

   Step 2.2. Perturbation for TSP

   Step 2.3. Acceptance criterion

Step 3. ILS for the VRP

   Step 3.1. LS for the Assignment Problem

   Step 3.2. Perturbation for VRP

   Step 3.3 Acceptance Criterion

Step 4. ILS for the TSP on the new routes

We will now present the implementation of each step of the above algorithm in more detail. 
 
Savings Heuristic 
This is a greedy heuristic to construct an initial solution, (Clarke & Wright, 1964). It has been 
proved that starting from a random solution gives worse results (Stützle, 1998)). This savings 
heuristic obtains the initial solution. 
 
ILS for the TSP 
On each of the tours obtained in the savings heuristic, we apply an ILS. At this step of the 
algorithm, we ignore any relation between routes. 
 
LS for TSP: The LS used was a 2-opt local search. The 2-opt move can be defined as follows: on 
one tour, 2 connections are removed and two others are included, since there is only one possibility 
for reconstructing the tour. We tested for all combinations. Only when a complete run without 
improvements finishes has one reached a 2-opt solution. 
 

 
 

Figure 1: Example of a 2-opt move for the TSP 
 
Searching in a complete 2-opt would not be efficient. So, to reduce the search space, some 
techniques are introduced that quicken the process whilst still generating good quality solutions: a 
list of candidates and "don't look bits". One "don't look bit" is associated with each node. Initially, 
all "don't look bits" =0, if for a node no improving move can be found, then "don't look bit" is 



 

 

14

turned on (set to 1) and is not considered as a starting node in the next iteration. If an edge incident 
to a node is changed by a move, the node's "don't look bit" is turned off again - reduces to O(n). 
 
Perturbation (Kick-move) for TSP: On the local minimum that has been reached, we apply the kick-
move and arrive at a new start solution. The goal here is to escape from local optima by applying 
perturbations to the current local minimum. 
 
For the LS on the TSP we use a "double bridge" move. This perturbation cuts four edges and 
introduces 4 new ones. 

 
Figure 2: Example of a Double Bridge move 

 
Acceptance criterion: The acceptance criterion used at this step is ‘better’; this means that the new 
tour is accepted if it has a lower cost. 
  
ILS for the VRP 
The ILS for the VRP is implemented considering the initial solution for the routes obtained from the 
ILS of the TSP. 
 
LS for the assignment problem: The local search for the VRP is a 2-opt and again a list of candidates 
and "don't look bits " techniques are applied to restrict the search. 
 
We have two possibilities for a 2-opt: A customer of a tour is postponed until a later tour or a 
customer trades with another customer from another tour. First, if capacity restrictions allow and it 
reduces costs, a city is inserted in the tour. Only if it cannot be inserted do we check if an exchange 
with another tour improves the solution. 
 

 
Figure 3: Example of a 2-opt move for the VRP 

 
 

The same techniques as those used in LS for the TSP are used: "don't look bit" and list of 
candidates. 

Kick-moves: "Numb-crosser": This perturbation consists of exchanging a group of customers from 

2 tours. In this case, 1/3 of the customers of the tour are exchanged. 

Acceptance criterion: ‘Best’, the same as the acceptance criterion for the TSP. 

ILS for the TSP on the new routes 
Repeats the ILS procedure for the TSP. 
 
The ILS for each strategy 
The ILS for the VRP is now adapted to solve the 3 models for the different strategies. Next we will 
describe in detail the ILS for each of them. 
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Strategy 1: Since in this strategy we have a classical VRP model, for each day we apply the ILS to 
find the best daily routes, according to the capacity of the vehicle and the daily demand. The 
algorithm is repeated for several runs and chooses the best solution for each day. 
 
Let L be the total number of loops: 
 

Structure of the algorithm for Strategy 1 
Step 1: Set loop = 0

Step 2: Set day = 1

Step 3. Savings Heuristic - Initial Solution

Step 4. ILS for TSP on each tour

Step 5. ILS for the VRP

Step 6. ILS for the TSP on the new routes

Step 7. Set day = day + 1; Repeat Step 3 to 6 until day = 5;

Step 8. Set loop = loop + 1

Step 9. Repeat Step 2 to 8 until loop = L

 
Strategy 2: In this strategy, we have considered a classical VRP model to obtain the "master 
routes", where all customers are taken into account based on average demand. Therefore, to obtain 
the master routes we apply an ILS. Afterwards, the routes for each day of the week are obtained in 
the following way: consider the master routes for each day and eliminate from these the customers 
that have no demand on that day. If on any of the routes the capacity constraint is violated, we 
identify the least important customer, and we delete it from this tour and insert it on another tour. 
This tour is chosen in such a way as to minimize routing costs within capacity constraints. 

 
Structure of the algorithm for Strategy 2 

Step 1: For all customers do

   Step 1.1. Savings Heuristic - Initial Solution

   Step 4. ILS for TSP on each tour

   Step 5. ILS for the VRP

   Step 6. ILS for the TSP on the new routes

Step 2: Set day = 1 
Step 3: For each tour eliminate customers with zero demand 

Step 4: For each tour, if capacity constraints are violated remove 
customer with lowest total demand

Step 5: ILS for the TSP on the new routes

Step 6: Set day = day + 1

Step 7: Repeat Step 3 to 6 until day = 5;

 
Strategy 3: In this strategy we face a multi-objective combinatorial optimization problem 
(MOCOP). Ehrgott & Gandibleux (2002) provide an annotated bibliography on MOCOP. 
 
Two main approaches can be found in the metaheuristics for the MOCOP: methods of local search 
(LS) in object space and population based methods. In the LS methods, we start from an initial 
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solution and the procedure approximates a part of the non-dominated frontier corresponding to the 
given search direction. A local aggregation mechanism of the objectives, based on the weighted 
sum, produces the effect to focus the search on a part of the non-dominated frontier. The principle is 
repeated for several search directions. In the population-based methods, the whole population 
contributes to the evolution process toward the non-dominated frontier. Here we will use the first 
approach, i.e. methods based on local search. 
 
In this case, after having decided the routes for the first day, the program takes into consideration 
objective B, through a weighted function of both objectives. To do this, we calculate the effect of a 
move in the weighted function of the objectives. Then, the acceptance criterion determines that a 
new solution is accepted if the weighted function has improved. The algorithm is repeated for 
several different sets of weights. All the non-dominated solutions are retained during the run of the 
algorithm. 
 
An objective function Z is used as the weighted function. Z is the weighted sum of the single 
objectives A and B. 
Let  be the single objective function of objective r, 





2

1

2

1

1 and 
r

r
r

rr wfwZ
 

The solution is very sensitive to the weights that have been defined. The problem lies also in having 
objectives with different variables and scales. In our case, for example, we are adding costs and 
quantities. Notation: 

wa = weight for Objective A, with 0 ≤ wa ≤1; 

wb = weight for Objective B, with 0≤ wb ≤1; 

and 

wa + wb = 1 

)()( ObjectiveBwObjectiveAwZ ba   

Structure of the algorithm for Strategy 3 
Step 1: Set wa = 1 and wb = 0

Step 2: Set day = 1 

Step 3. Savings Heuristic - Initial Solution

Step 4. ILS for TSP on each tour

Step 5. ILS for the VRP

   Step 5.1. LS for the Assignment Problem

      Step 5.1.1 For each move calculate the effect on objective A 

      Step 5.1.1 Accept only if the new z is smaller

   Step 5.2. Perturbation for VRP

   Step 5.3. Repeat Step 3.1

   Step 5.4 Acceptance Criterion

Step 6. ILS for the TSP on the new routes

Step 7. Set day = day + 1; Repeat Step 3 to 6 until day = 5;
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Step 8. Set wa = wa - 0.1 and wb = wb + 0.1

Step 9. Repeat Step 2 to 8 until wa =1 and wb=0

 
 
ANALYSIS OF THE RESULTS 
The main objective of this experiment is to evaluate the three strategies and analyze the effect of 
each objective on the solutions. With this purpose, we applied the above algorithms to several sets 
of randomly generated examples. The results are expressed in terms of the values of the objectives 
and total number of vehicles needed. For each strategy two values were calculated: the Routing 
Cost and the Marketing (or service) Value. The first is measured in distance and the second can be 
interpreted as the unit cost for the distributor for not serving a customer with the same driver, 
working in a similar way as a penalty cost. Next we will explain the data used and analyze some 
important results of this experiment. 
 
The data 
For the computational experiment, we have generated several sets of examples concerning the total 
number of customers (50,100,200,400). Also, we have examples with two types of demand (low 
variation and high variation) and two types of vehicles capacity, high and low. 
 
To obtain the demand, we have used a normal distribution with mean 50 and standard deviation 20 
for the case where demand has a high variation and a standard deviation of 5 for the examples with 
low variation. The probability to obtain a negative value is very small, and we have never found 
one. On each day, on average, 25% of the customers have zero demand. This implies that for a 
problem with 100 customers, there will be about 375 deliveries to make during the 5 day week. The 
customer locations are uniformly generated in a 100×100 square with the depot located in the centre 
with the coordinates (50, 50). 
 
Truck capacity is 300 for problems with 50, 100 and 200 customers and 700 for problems with 400 
customers. We also run cases with 200 customers and a truck capacity of 500. In total, we have 
studied 30 examples for each strategy, therefore we will consider 90 problems per run.  
 
All data is available ot the first author’s web page: http://www.econ.upf.edu/~ramalhin/. A 
standard personal computer, Intel ® Core™ 2 Duo CPU T9300 @ 2.50 GHz and 3 GB RAM, was 
used to solve all instances. 
 
 
Analysis of the results 
In this section, we will present the results obtained for each example in terms of the objective 
function values, the number of vehicles used, the non-dominated solutions and the run times. 
 
We can illustrate the aim of the different strategies by looking at a small example with 2 days and a 
few customers: in Figure 4 we have the routes for two days, for strategies 1, 2 and 3. Strategy 1 has 
fewer and more efficient routes in terms of distance, Strategy 2 has more routes, but the routes are 
the same for each day. And, Strategy 3, has a solutions that is not completely efficient in terms of 
distance, but allowing for a better service level. 

 
 

Figure 4: Routes for Strategies 1, 2 and 3 
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Table 1 (1.1, 1.2 and 1.3) shows the results for each example and for each strategy. Strategy 1 tries 
to find lowest cost, strategy 2 the best service level and strategy 3 the set of non-dominated 
solutions with respect to the integrated strategy. Note that objective (a) can be decimal due to the 
calculation of the distance based on the coordinates, however objective (b) is always an integer 
value. We can observe that, as expected, strategy 1 will always give us the solution with the lowest 
objective A and the highest objective B when compared with strategy 2. For strategy 2, we have 
much lower marketing values but the cost of routes increases significantly.  
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  Strategy 1  Strategy 2 Strategy 3 
N Example a b  a b a b 

50 1 14,344.15 36,840  17,018.93 3,306 14,510.34 32,327 
       14,344.15 36,840 
 2 13,589.47 38,538  16,304.18 4,590 13,755.11 35,826 
       13,697.92 38,148 
       13,589.47 38,538 
       13,680.72 38,278 
 3 13,225.97 40,284  15,744.37 4,997 13,289.63 36,178 
       13,228.96 40,284 
       13,278.06 40,140 
 4 11,710.86 32,341  15,597.20 5,950 11,850.30 25,753 
       11,811.55 31,776 
       11,710.86 32,341 
       11,788.70 32,289 
 5 13,452.19 38,084  16,832.34 3,012 13,541.62 30,733 
       13,462.15 38,426 
       13,473.14 38,198 
       13,485.40 37,925 
       13,534.13 37,952 

100 6 22,970.35 75,096  28,356.94 8,368 23,240.29 64,967 
       23,033.35 75,012 
       22,971.54 75,096 
       23,162.88 74,404 
       23,153.66 74,601 
 7 21,999.94 73,497  27,755.47 7,209 22,045.08 61,244 
       22,041.77 73,416 
       21,999.94 73,497 
 8 21,839.25 74,834  26,873.79 10,264 21,907.99 63,623 
       21,839.25 74,834 
 9 20,638.13 70,492  24,874.82 5,045 20,836.26 59,365 
       20,820.51 69,385 
       20,612.55 69,987 
 10 22,383.01 76,252  27,892.60 5,987 22,632.56 63,871 
       22,467.32 76,110 
       22,493.46 75,632 
       22,462.16 76,252 
 

Table 1.1: Routing Cost (a) and Marketing Level (b) for Strategies 1, 2 and 3 
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  Strategy 1  Strategy 2 Strategy 3 
N Example a b  a b A b 

200 11 40,438.90 152,536  52,738.09 19,418 40,682.92 132,320 
       40,438.90 152,536 
       40,484.58 152,292 
 12 40,420.19 152,564  52,089.76 9,967 40,757.39 134,118 
       40,420.19 152,564 
 13 38,484.12 151,187  49,881.28 19,803 38,498.67 131,916 
       38,423.14 150,677 
 14 38,481.27 148,056  47,837.33 9,999 38,681.92 129,944 
       38,601.73 148,056 
       38,502.60 148,186 
       38,581.57 148,113 
       38,624.36 147,863 
       38,457.64 148,254 
       38,649.81 147,718 
 15 40,047.94 130,399  50,744.95 15,778 40,047.94 130,399 
       40,028.26 151,554 
200*  16 28,589.23 152,040  35,849.68 8,375 28,883.37 132,744 
       28,782.42 151,361 
       28,780.13 151,569 
       28,686.55 151,883 
       28,551.03 152,164 
       28,630.92 152,040 
 17 28,675.59 150,844  34,171.20 2,096 28,814.46 130,891 
       28,711.49 150,542 
       28,704.59 150,844 
 18 27,350.06 149,576  33,919.54 9,715 27,511.87 130,867 
       27,474.54 149,315 
       27,255.56 150,108 
       27,503.72 149,261 
       27,397.52 149,435 
       27,371.86 149,576 
 19 27,674.99 147,608  33,632.54 9,637 27,676.81 128579 
       27,613.74 147754 
 20 27,836.23 152,388  34,002.28 9,320 28,035.45 130,763 
       27,896.09 151,456 
       27,824.33 151,509 
       27,990.09 151,355 
* Truck capacity =500 

Table 2.2: Routing Cost (a) and Marketing Level (b) for Strategies 1, 2 and 3 
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  Strategy 1  Strategy 2 Strategy 3 
N Example a b  a b A b 

400 21 40,013.36 304,388  49,637.55 9,607 40,120.90 260,814 
       40,101.29 304,184 
       40,023.38 304,388 
 22 39,758.16 308,956  47,691.43 9,401 39,961.71 270,449 
       39,845.07 308,604 
       39,842.23 308,956 
 23 39,576.78 300,057  47,635.00 6,954 39,658.17 255,775 
       39,584.53 299,568 
       39,579.08 300,084 
 24 39,949.22 302,980  47,978.58 9,525 40,022.79 266,906 
       39,956.93 303,057 
       39,970.21 302,980 
 25 39,552.16 299,976  46,682.14 9,538 39,593.30 264,664 
       39,583.25 299,976 
50 26 12,606.09 37,756  15,118.07 2,396 12,870.39 33,258 
(low stdev)      12,716.23 37,124 
       12,606.09 37756 
       12,867.78 36802 
 27 13,752.04 37,759  16,724.64 3,329 13,861.01 34,403 
       13,715.64 37,757 
       13,855.72 37,428 
 28 12,723.78 39,888  14,507.04 777 12,820.79 33,940 
       12,781.62 39,888 
 29 12,468.30 32,983  14,737.70 1,335 12,571.04 25,854 
       12,489.20 32,330 
 30 12,687.26 36,396  15,024.22 1,894 12,765.22 31,287 
       12,657.08 36,504 
       12,685.23 36,352 
       12,747.45 36,043 
 

Table 3.3: Routing Cost (a) and Marketing Level (b) for Strategies 1, 2 and 3 

 
Concerning Strategy 3, we can say that, in almost every example, we can find more than one non-
dominated solution. In case 4, for example, we have 4 non-dominated solutions and it would be the 
responsibility of the decision maker to decide between the alternatives. 
 

Figure 5: Example 4 - set of dominated and non-dominated solutions for Strategy 3 
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In Figures 5 and 6 we can see the set of all solutions obtained after 22 iterations of the strategy 3 
heuristic for examples 4 and 30 with 50 customers. The diamonds correspond to the dominated 
solutions and the squares correspond to non-dominated solutions. 
 

Figure 6: Example 30 - set of dominated and non-dominated solutions for Strategy 3 
 
The number of vehicles needed for each solution strategy also varies and this is reflected in the total 
distance cost. In Table 2, we can observe these differences. The master routes approach always 
requires a much higher number of vehicles each week. This is due to the route design procedure. 
The routes are constructed considering all customers, and then for each day eliminating the ones 
with no demand. When constructing the "master routes" we have used the daily average demand of 
each customer. The higher the values used for the demand associated with each customer, the 
higher the number of vehicles used in the "master routes" and the lower the marketing values. 
 
Comparing the number of vehicles for Strategy 1 and Strategy 3 we observe that, on average, 
Strategy 3 has the same or a higher number of vehicles. This is due to the existence of the second 
objective, which introduces a preference for service rather than just distance. To achieve better 
service we need to sacrifice the routing efficiency and this can require the use of an additional 
vehicle. 
 

N Strategy 1 Strategy 2 Strategy 3 
50 36 44 36 
100 68 84 68 
200 135 167 135 
200(cap=500) 81 99 81 
400 114 141 114 
50 (low stdev) 36 43 36 

 
Table 2: Average number of vehicles needed per week, for Strategies 1, 2 and 3 

 
The running time should not be overemphasized. The first and third strategies are the ones that take 
more time to compute. But, since we are referring to strategic planning, it does not seem impractical 
for a firm with a network of 400 customers to spend one hour run prior to strategic decision making 
each week. Table 3 summarizes running times. For Strategies 1 and 3 we have done the same 
number of iterations. The magnitude of the difference in running time for strategy 2 is due to the 
fact that we only run the VRP once for the master case. For the other two strategies we have to run 
the VRP for each day of the planning period several times. 
 

N Strategy 1 Strategy 2 Strategy 3 
50 39.62 0.69 39.68
100 106.98 1.97 104.16
200 294.63 4.53 290.01
200(cap=500) 394.25 5.60 388.28
400 899.01 7.70 746.59
50 (low stdev) 42.42 0.67 0.67

 
Table 3: Average run time in seconds, per problem size, for Strategies 1, 2 and 3 
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Finally, in Table 4 we show the results of the other versions of the algorithm for strategy 3. In 
version 2 we have introduced more iterations for each weight. And, in version 3 we have done more 
iterations for the ILS for each day, and kept the same number of iterations per weight. From the 
results we can conclude that by allowing more running time, the algorithm of version 2, on average, 
gives more non-dominated solutions in 3 of the 5 problems. In version 3, on average the number of 
non-dominated solutions is smaller than in the other versions but we are able to improve the 
solutions, when comparing with version 1 and 2. 
 
  Startegy 3, version 1 Startegy 3, version 2 Startegy 3, version 3
N Example a b a b a b

50 1 14,510.34 32,327 14,510.34 32,327 14,372.34 32,327
  14,344.15 36,840 14,376.34 36,570 14,251.39 36,840
   14,318.05 36,840  
 Run Time 40.59  103.29  110.75  

 2 13,755.11 35,826 13,589.45 38,538 13,631.61 38148
  13,697.92 38,148 13,644.05 38,376 13,657.49 35826
  13,589.47 38,538 13,680.72 38,278 13,629.26 39450
  13,680.72 38,278 13,697.92 38,148  
   13,755.11 35,826  
 Run Time 40.92  99.03  105.43  

 3 13,289.63 36,178 13,289.63 36,178 13,235.85 35,668
  13,228.96 40,284 13,224.70 40,284 13,229.69 40,148
  13,278.06 40,140 13,183.31 40,284
 Run Time 41.75  106  112.48  

 4 11,850.30 25,753 11710.85523 32,341 11812.68164 25,393
  11,811.55 31,776 11751.11426 32,062 11676.1062 31,848
  11,710.86 32,341 11805.80127 31,416 11641.05762 32,182
  11,788.70 32,289 11850.29736 25,753  
 Run Time 34.46  88.04  93.06  

 5 13,541.62 30,733 13,452.19 38,084 13,515.69141 30,336
  13,462.15 38,426 13,485.39 37,925 13,411.3667 37,662
  13,473.14 38,198 13,541.62 30,733 13,364.65 38,084
  13,485.40 37,925 13,441.13 36,998
  13,534.13 37,952  
 Run Time 40.69  103.7  109.28  

    
Table 4: Routing Cost (a) and Marketing Level (b) for the non dominated solutions of Strategy 3, 

for 3 different versions of the algorithm 
 
 
SUMMARY AND CONCLUSIONS 
In this chapter, we have explored different distribution strategies to analyze an integrated 
distribution problem. The strategies cover a week-long planning horizon and reflect different ways 
of looking at the distribution problem. The first strategy is the classical VRP approach, which 
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reflects only transportation cost: For each day of the planning horizon the routes are designed 
minimizing routing costs. The second strategy is a more customer oriented strategy based on 
customer relationship management principles, where master routes are constructed to ensure a 
marketing policy where each customer is always served by the same driver. The third strategy is a 
multi-objective combinatorial optimization problem with two objectives: minimizing cost and 
improving customer service. This third strategy results from the integration of the two other 
strategies and brings together two areas of great importance in many industries: Distribution and 
Marketing. The idea was to compare this new approach with the other two strategies. 
 
For each of the above strategies we have presented a mathematical model and a heuristic procedure, 
based on the ILS, to solve the problems. Then, the three algorithms were applied to a set of 
randomly generated instances.  
 
The main conclusion is that the multi-objective model gives several non-dominated solutions that 
can be seen as a good balance between optimizing the transportation cost or customer service and 
loyalty. The decision maker has to choose the solution that best meets business needs, since cost 
minimization is not the only concern in distribution management. 
 
There are several possible extensions of this work, one is in the area of the metaheuristics and here 
it would be interesting to develop multi-objective population based metaheuristic to solve the multi-
objective model and to perform a comparison with the current approach. The second extension 
would be to include other objectives that would reflect different business needs, as for example, the 
one of balancing the routes. This is particularly interesting if we assume that driver's remuneration 
can be related to truck loading. In this case, we would be studying the integration of decisions of the 
Human Resources department. 
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KEY TERMS & DEFINITIONS 
 
Cross-functional planning at distribution: consists of coordinating different areas inside the firm, 
as marketing and logistics for example, allowing for cost reductions and service improvement. 
 
Iterated Local Search (ILS): ILS is a simple and generally applicable meta-heuristic which 
iteratively applies local search to modifications of the current search point. At the start of the 
algorithm a local search is applied to some initial solution. Then, a main loop is repeated until a 
stopping criterion is satisfied. This main loop consists of a modification step ("perturbation"), which 
returns an intermediate solution corresponding to a modification of a previously found locally 
optimal solution. 
 
Local Search Methods (LS): Local search is the most powerful general approach for finding high 
quality solutions to hard combinatorial optimization problem in reasonable time. It is based on the 
iterative exploration of neighborhoods of solutions trying to improve the current solution by local 
changes. The type of local search that may be applied to a solution is defined by a neighborhood 
structure. 
 
Multi-Objective Combinatorial Optimization Problem (MOCOP): Combinatorial problems 
are characterized by the consideration of a selection or permutation of a discrete set of 
“items” or by an assignment among these. The MOCOP are combinatorial optimization 
problems with several objective functions. 
 
Savings Heuristic: This is a greedy heuristic to construct an initial solution based on the saving 
calculations and tour construction. This savings heuristic (Clarke & Wright, 1964),  obtains the 
initial tour for the VRP problem. 
 
Traveling Salesman problem (TSP): Given a collection of cities (or points) and the cost (or 
distance) of travel between each pair of them, the traveling salesman problem is to find the cheapest 
way of visiting all of the cities and returning to your starting point. 
 
Vehicle Routing Problem (VRP): This problem considers a set of nodes, representing retailers or 
customers, at a known location, that must be served by one depot. Each node has a known demand. 
A set of vehicles K, with equal capacity is available to serve the customers. The routes must start 
and finish at the depot. The objective is to define the set of routes to serve all customers with 
minimal cost. 
 
 
 
 
 
 


