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Abstract This paper discusses the use of probabilistic or randomized algorithms
for solving vehicle routing problems with non-smooth objective functions. Our ap-
proach employs non-uniform probability distributions to add a biased random be-
havior to the well-known savings heuristic. By doing so, a large set of alternative
good solutions can be quickly obtained in a natural way and without complex con-
figuration processes. Since the solution-generation process is based on the criterion
of maximizing the savings, it does not need to assume any particular property of the
objective function. Therefore, the procedure can be especially useful in problems
where properties such as non-smoothness or non-convexity lead to a highly irregu-
lar solution space, for which the traditional optimization methods -both of exact and
approximate nature- may fail to reach their full potential. The results obtained so
far are promising enough to suggest that the idea of using biased probability distri-
butions to randomize classical heuristics is a powerful one that can be successfully
applied in a variety of cases.
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1 Introduction

Combinatorial optimization problems have posed numerous challenges to the hu-
man mind throughout the past few centuries. From a theoretical perspective, they
have a well-structured definition consisting of an objective function that needs to
be minimized and/or maximized and a series of constraints. In addition to having
useful applications arising from abstract study, the primary reason for which they
have been so actively investigated is the tremendous amount of real-life applica-
tions that can be successfully modeled in this way. For example, areas like routing
or scheduling contain plentiful hard challenges that can be expressed as a combina-
torial optimization problem (see [65]).

A considerable number of methods and techniques that search the solution space
and try to find the optimum have been developed. In a few cases, the solution space
can easily be explored due to certain properties of the functions involved, such as
convexity. For those instances, the problem can often be solved efficiently and ex-
actly. However, in other circumstances, the solution space is highly irregular and
finding the optimum is in general impossible -at least if it has to be done in a rea-
sonable amount of time. An exhaustive method that checks every single point in the
solution space would be of very little help in these difficult cases, since it would
take exponential time. Also, some approaches are fairly complex while others need
to take into account the particular features of the problem at hand. Therefore, design-
ing such approaches usually takes a substantial amount of time and the methodology
has a limited application range. In fact, every method has its drawbacks. We believe
that accuracy (quality of results), simplicity of design and implementation (includ-
ing the avoidance of complex and time consuming fine-tuning processes), efficiency
(relation between computational time employed and quality of results), robustness
(regarding changes in the inputs and constraints), and flexibility (the ability to deal
with general combinatorial optimization problems under different scenarios) are the
attributes that can make one approach better or more suitable than another (see [16]).

The main idea of this paper is that combining a heuristic biased randomization
with an adapted (problem-specific) local search can be a natural and efficient way
to deal with realistic vehicle routing problems under more complex scenarios domi-
nated by non-smooth/non-convex objective functions and non-convex regions. Thus,
we propose a method named MIRHA (Multi-start bIased Randomization of classical
Heuristics with Adaptive local search), which pertains to the class of nondetermin-
istic or stochastic methods and relies on biased (non-uniform and non-symmetric)
random sampling. Therefore, on different runs of the algorithm we get different
good solutions that depend on which points are randomly sampled. Having a pool
of solutions to choose from can be especially useful in real-life problems, when
the best-known solution may be unfeasible due to external constraints. While opti-
mization of non-smooth/non-convex functions is an important issue that has been
already discussed in other combinatorial optimization problems, in the context of
vehicle routing problems there is very few literature regarding this matter. There-
fore, one of the main contributions of this paper is to start covering this lack of
discussion with a simple -almost parameter free- and efficient methodology, which
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can provide pseudo-optimal solutions to difficult problems in reasonable computing
times.

This article is structured as follows: Section 2 reviews some basic concepts re-
lated to non-convex and non-smooth optimization problems. Section 3 provides a
literature review on the use of probabilistic algorithms in non-smooth/non-convex
combinatorial optimization. Section 4 offers an overview of the vehicle routing
problem and discusses why it might be important to consider non-smooth/non-
convex objective functions in some of their practical applications. Section 5 presents
a mathematical model for the problem considered in this paper. Section 6 describes
the algorithm proposed in detail. Section 7 includes some numerical experiments re-
garding the solving of non-smooth vehicle routing problems. Finally, the concluding
section summarizes the main contributions of this work.

2 Basic concepts on non-convex and non-smooth problems

Optimization problems can be categorized, from a high-level perspective, as either
convex or non-convex. In general, convex optimization problems (COPs) have two
parts: a series of constraints that represent convex regions, and an objective func-
tion to be minimized that is also convex. The dual problem, in which the objective
function is concave and the goal is to maximize it, is also often encountered and
for the purpose of this paper it will still be considered a member of the convex-like
class of problems. COPs are worth studying because they have a wide variety of
applications and many problems can be reduced to them via a change of variables.
Linear Programming is one well-known example, since linear functions are triv-
ially convex. Other examples of COPs include Quadratic Programming, Geometric
Programming, Conic Optimization, Least Squares, etc (see [5]). The main idea, in
convex optimization problems, is that every constraint restricts the space of solu-
tions to a certain convex region. By taking the intersection of all these regions we
obtain the set of feasible solutions, which is also convex. Due to the nice structure
of the solution space, every single local optimum is a global optimum too. This is
the key property that permits us to solve COPs exactly and efficiently up to very
large sizes. Several algorithms, such as the Interior Point Method (see [90]), have
been developed to find the optimal solution. However, almost none of them can be
easily extended to the non-convex case.

In non-convex optimization problems (NCOPs) the objective function or even the
feasible region are not convex, which results in a far more complex solution space
than in the case of COPs. Now we may have many disjoint regions, and multiple
locally optimal points within each of them (Figure 1 left). As a result, if a tradi-
tional local search is applied, there is a high risk of ending in the vicinity of a local
optimum that may still be far away from the global optimum. Another drawback is
that it can take exponential time in the size of the input to determine that a NCOP
is infeasible, that the objective function is unbounded, or that one of the solutions
found so far is the actual global optimum.



4 Angel A. Juan, Javier Faulin, Albert Ferrer, Helena R. Lourenço and Barry Barrios

A function is smooth if it is differentiable and its derivative function is continu-
ous. Therefore, a non-smooth function is one that is missing some of these proper-
ties. Non-smooth optimization problems (NSPs) are similar to NCOPs in the sense
that they are much more difficult to solve than traditional smooth and convex prob-
lems. The function for which a global optimum needs to be computed is now non-
smooth and the solution space might contain again multiple disjoint regions and
many locally optimal points within each of them (Figure 1 right). The lack of a nice
structure makes the application of traditional mathematical tools, such as gradient
information, very complicated or even impossible in these cases. The computational
techniques that can be used to solve this type of problems are often fairly com-
plex and depend on the particular structure of the problem. As a result, developing
such techniques is in general time-consuming, and the resulting application range
is very limited. However, most real-life objective functions are either non-convex,
non-smooth or both. Therefore, combinatorial optimization under these complex but
common circumstances is an important field to explore that, as far as we know, has
not been covered enough in the current literature.

Fig. 1 (left) a non-convex objective function; (right) a non-smooth objective function

3 Use of probabilistic algorithms in non-smooth/non-convex
combinatorial optimization

In the context of combinatorial optimization, probabilistic or randomized algorithms
make use of pseudo-random numbers or variants during the constructive or local-
search processes. In addition to the problem’s input data, a probabilistic algorithm
use random bits to do random choices during the execution of the algorithm. An
important property is that for the same input the algorithm can produce different
outputs in different runs. Within these algorithms we can include, among others, the
Genetic and Evolutionary Algorithms ([35], [46], [19], [20], [79]), Simulated An-
nealing ([52], [84], [69]), GRASP ([31], [29], [81]), Variable Neighborhood Search
([43]), Iterated Local Search ([60], [61]), Ant Colony Optimization ([23]), Proba-
bilistic Tabu Search ([59], [34]), or Particle Swarm Optimization ([51]), which is
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similar to Evolutionary Algorithms but inspired by social behavior of bird flocking
or fish schooling. For a detailed review of Randomized Algorithms the reader is
referred to Collet and Rennard ([15]).

Probabilistic algorithms have been widely used to solve many combinatorial op-
timization problems such as, for example: Sequencing and Scheduling Problems
([36], [88], [73]), Vehicle Routing Problems ([55]), Quadratic and Assignment Prob-
lems ([58], [70], [34]), Location and Layout Problems ([24], [64]), Covering, Clus-
tering, Packing and Partitions Problems ([11], [66]). They have also been used to
solve real combinatorial optimization problems that arise in different industrial sec-
tors, e.g.: Transportation, Logistics, Manufacturing, Aeronautics, Telecommunica-
tion, Health, Electrical Power Systems, Biotechnology, etc.

Despite the great success of the application of these methods to the aforemen-
tioned combinatorial optimization problems, there exist only a few documented ap-
plications of these algorithms to NCOPS or NSPs. In a search done in the ISI Web of
Knowledge, we only found a few references regarding the use of probabilistic algo-
rithms to optimize non-convex or non-smooth objective functions. These papers are
reviewed next, since they are -at least to some extent- related to our research. The
main goals of this literature review are twofold: (a) to identify which randomized
algorithms have been applied to NCOPs and NSPs, and (b) to identify the specific
combinatorial optimization problems where these algorithms have been successfully
applied.

Bagirov and Yearwood ([2]) present a formulation of the Minimum Sum-of-
Squares Clustering problem, which is a non-smooth, non-convex optimization prob-
lem. The goal of clustering problems is to separate a large set of objects into groups
or clusters based on certain similarity criteria. There are many possible applications,
especially in fields such as engineering, information and decision sciences or earth
sciences. Information retrieval or image segmentation are some particular cases in
which clustering techniques can be applied. They also emphasize that a large num-
ber of approaches, such as dynamic programming, branch and bound, or K-means
algorithms have been used for the clustering problem. However, the authors point
out that most of these methods are efficient only in certain special settings. For ex-
ample, a dynamic programming approach only works when the number of objects is
small, so it cannot be used for most real-world problems. Branch and bound meth-
ods are effective only if the number of clusters is not too large. The efficiency of K-
means algorithms also decreases as the number of clusters is increased. Moreover,
alternative techniques such as bilinear programming fail as well when they face
non-convex and non-smooth objective functions that have many local optimums.
The authors remark that, in general, better results are generated when metaheuris-
tics are used for the clustering problem. A Tabu Search approach that outperforms
the K-means has been proposed by Al-Sultan ([1]). However, the algorithm requires
three parameters, so an extensive parameter study was necessary to find the best
parameter settings. Similarly, Selim and Al-Sultan ([83]) propose a Simulated An-
nealing approach. However, it also requires rather complex fine-tuning processes,
which is a common drawback of most state-of-the-art metaheuristics.
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The issue of Optimal Routing in Communication Networks has also received
a lot of attention from researchers. The objective here is to find the best path for
data transmission in a short amount of time. The routing strategy can greatly affect
system performance, so there is a high demand for efficient algorithms. As a result,
numerous methods that deal with this challenge have been designed. A method that
combines Genetic Algorithms with Hopfield networks is proposed by Hamdan and
El-Hawary ([42]). Finally, an approach based on Tabu Search is taken by Oonsivilai
et al. ([71]). The main drawbacks for most of these methods are either their inability
to efficiently explore the solution space or very long computation times.

Bagirov et al. ([3]) present a non-smooth formulation for the Location Problem
in Wireless Sensor Networks. In general, a wireless sensor network can be defined
as a distributed collection of nodes (sensors) that have limited resources and operate
autonomously. The goal is to find or accurately estimate the position of the nodes.
This task could be easily accomplished using a Global Positioning System (GPS) for
every node, but the costs would be prohibitive. In addition to this, a lot of research
has been done to study both indoor and outdoor localization systems. However,
most approaches have assumed accurate range measurements, which is unrealistic
for RF (Radio Frequency) signal strength measurements. Ramadurai and Sichitiu
([78]) show that a probabilistic approach can be adopted to deal with range mea-
surements inaccuracy. Their algorithm is“RF” based, robust to range measurement
inaccuracies and can be tailored to varying environmental conditions”. GRASP al-
gorithms ([30]) have been applied to solve the Vehicle Routing Problem (VRP).
Most applications focus on the basic VRP variants, with some exceptions, which in-
clude additional constraints, e.g.: VRP with time-windows or backhauls ([53], [9],
[10]). Other metaheuristics have also been applied to the VRP with realistic con-
straints. For instance, Hashimoto et al. ([44]) describe a Vehicle Routing Problem
with soft constraints and propose an Iterated Local Search algorithm to solve it.
They consider soft time windows and soft traveling-time constraints. It makes sense
to assume that, for most real-world applications, soft constraints are more likely to
occur than hard ones, i.e., it might be possible to violate them to some degree, al-
though constraint violation might imply a specific penalty cost. The same idea can
be applied to traveling time, e.g., sometimes traveling times can be shortened if pay-
ing for a turnpike toll. The relaxation of these constraints might naturally lead to a
problem formulation, which includes a more realistic, non-convex or non-smooth,
objective function. The authors propose an Iterated Local Search based on a cross
exchange, 2-opt and Or-opt neighborhoods that also include a dynamic program-
ming component to compute the optimal service start times. Other extensions of the
VRP consist of including time windows, delivery and pickup operations, split de-
liveries, etc. Some of these problems can be formulated as NCOPs or NSPs ([21],
[22]). In particular, Derigs et al. ([21]) present a local search method to solve the
split delivery vehicle routing problem.

Potvin ([76]) presents a review of the application of Evolutionary Algorithms
to the VRP. According to this work, Evolutionary Algorithms have been applied in
many different ways and mostly to analyze the Capacitated VRP or the VRP with
time-windows. The Quadratic Assignment Problem (QAP) is one of the most in-
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teresting and challenging combinatorial optimization problems in existence. Even
though there are convex formulations for this problem ([8]), it is still a very diffi-
cult problem to solve. Fleurent and Glover ([34]) propose an improved Construc-
tive Multi-start Algorithm to solve this problem. The method is an extension of the
GRASP that includes adaptive memory search principles. These simple principles
consist of a biased selection based on the adaptive probabilities of the new ele-
ment to be included in the partial solution during the constructive method. To obtain
good results they also incorporate several other principles as intensification, candi-
date list strategies and the Proximate Optimality Principles (POPs) that require the
fine-tuning of several parameters. The authors conclude that the proposed strategies
obtain excellent results for most existing problems. Particle Swarm Optimization
(PSO) has been applied frequently to NCOPs and NSPs problems. Hemamalini and
Simon ([45]) present an Artificial Bee Colony Algorithm for the Economic Load
Dispatch Problem with non-smooth cost functions. The Economic Dispatch Prob-
lem is one of the most important problems to be solved in the operation and plan-
ning of power systems. The Artificial Bee Colony (ABC) algorithm proposed is a
similar but alternative approach to the use of PSO and Differential Evolution (DE)
algorithms. ABC uses only common control parameters, such as colony size and
maximum cycle number. Another application of Particle Swarm Optimization to the
economic dispatch problem is done by Neyestani et al. ([68]). Yang and Chou ([91])
describe the application of Particle Swarm optimization to a special manpower as-
signment problem in a consulting engineering firm, which is multi-objective, non-
linear, non-smooth and combinatorial. Still within the operation of power systems,
Vaisakh and Srinivas ([89]) present a method based on Ant Colony Optimization and
an extension of Evolutionary Algorithms to solve an Optimal Power Flow Problem
with non-smooth cost functions. General methods based on probabilistic algorithms
for non-smooth or non-convex problems are less frequent in the literature. Bresina
([6]) proposes a methodology called Heuristic-Biased Stochastic Sampling that is
based on a biased iterative sampling of the search tree according to some heuris-
tic’s criteria. The author applies the method to an observation scheduling problem,
and concludes that this approach outperforms greedy search within a small number
of samples. Schlüter et al. ([82]) present an extended Ant Colony Optimization for
non-convex mixed integer nonlinear programming. The results obtained on MINLP
benchmark problems and on one engineering design problem proved to be com-
petitive with other approaches based on local search. Toscano and Lyonnet ([86])
propose a new heuristic to solve non-convex optimization problems, designated as
Heuristic Kalman algorithm. This method falls in the category of population-based
stochastic methods and considers the optimization problem as a measurement pro-
cess designed to give an estimate of the optimum.
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4 A basic description of the Capacitated Vehicle Routing
Problem

The Vehicle Routing Problem constitutes a well-known family of combinatorial op-
timization problems, which have many applications in real scenarios: goods delivery
optimization, logistic design of manufacturing processes, design of computer com-
ponents, garbage collection, etc. The most popular VRP is called the Capacitated
Vehicle Routing Problem (CVRP) which constraints the routing activities by the ca-
pacity of the distribution vehicles. The CVRP introduces a set of customer demands,
which have to be served with a fleet of vehicles from a depot or central node. Each
vehicle has the same capacity (homogeneous fleet) and each customer has a certain
demand that must be satisfied. Additionally, there is a cost matrix that measures
the costs associated with moving a vehicle from one node to another. These costs
usually represent distances, traveling times, number of vehicles employed or a com-
bination of these factors.

The CVRP is a very natural interpretation of routing problems because the capac-
ity constraint is very common in practical cases. As a result, having a good knowl-
edge of the CVRP facilitates the understanding of some other VRP variants, which
evolve from the CVRP.

The VRP is NP-Hard, which implies a non-polynomial increase of the space of
solutions size when increasing the input size. Although this problem has already
been studied for decades, it is still attracting a great amount of attention from re-
searchers worldwide due to its potential applications ([41]). In fact, different ap-
proaches to the VRP have been explored during the last decades. These approaches
range from the use of exact optimization methods, such as linear programming,
for solving small- to medium-size problems with relatively simple constraints, to
the use of heuristics and metaheuristics that provide quasi-optimal solutions for
medium and large-size problems with more complex constraints ([17]). Neverthe-
less, most of the methods cited before focus on the minimization of an a priori
cost function -which usually models tangible costs- subject to a set of well-defined
constraints. However, real-life problems are much more complex. These include
intangible costs, non-smooth functions, fuzzy constraints and desirable solution
properties that are difficult to model ([75], [50]). In other words, it is not always
straightforward to build a model, which takes into account all possible costs (e.g.,
environmental costs, work risks, etc.), constraints and desirable solution properties
(e.g., time or geographical restrictions, balanced work load among routes, solution
attractiveness, etc.). All in all, as some researchers have pointed out already, there is
a need for simpler and more flexible methods. These methods can be used to handle
the numerous side constraints that arise in practice ([55]).

Concerning the analysis of methods to solve primitive VRPs, we can mention
the first heuristic algorithms especially designed for that purpose: the Clarke and
Wright’s savings algorithm ([14]) and the Gillet and Miller’s procedure ([39]). Both
methods combined simplicity and elegance in the resolution of real routing prob-
lems of small dimension. The following generation of VRP heuristics was based on
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double phase methods with one of them being an exact procedure. The most repre-
sentative algorithm of this family is the Fisher and Jaikumar’s method ([33]). During
the nineties, metaheuristics were born with a long list of new methods based on dif-
ferent methodologies: Iterative Search ([33]), Tabu Search ([37]), GRASP ([28]),
Genetic Algorithms ([40]), Neural Networks ([47]) or Ant Algorithms ([7]). With
the beginning of the new century, those methods developed and mixed producing
hybrid procedures ([29]) or new strategies based on similar ideas ([85], [74]). It
is interesting to highlight that the use of simulation in the development of rout-
ing algorithms is a suitable methodology to tackle routing problems with complex
formulations ([27], [26], [48]). Similarly, Evolutionary Algorithms proved to be a
reliable way to generate solutions to intricate VRPs ([63]).

A plethora of approaches for different VRPs have been explored during the last
decades ([87], [41]). Some of these approaches are based on traditional cost func-
tions (distances, drivers’ salaries, traveling time, etc), and they range from the use
of exact optimization methods -such as linear programming- for solving small-size
problems with relatively simple constraints to the use of heuristics and metaheuris-
tics that provide near-optimal solutions for medium and large-size problems with
more complex constraints. Most of these methods focus on minimizing an a pri-
ori cost function subject to a set of well-defined traditional constraints. However,
real-life problems tend to be complex enough so that not all possible costs -e.g.,
environmental costs, work risks, etc.-, constraints and desirable solution properties
-e.g., time or geographical restrictions, balanced work load among routes, solution
attractiveness, etc.-, can be considered a priori during the mathematical modeling
phase ([75], [50]). For that reason, there is a need for more flexible methods that are
able to provide a large set of alternative near-optimal solutions with different prop-
erties, so that the decision-makers can choose among different alternative solutions
according to their specific requirements and preferences. Furthermore, it is also nec-
essary to describe a new type of costs, which usually are non-convex or non-smooth
because they are based neither on linear (or quasi-linear) structures nor functions
with derivatives. This kind of non-smooth analysis is already common in other en-
gineering fields ([92], [72], [68]) but they have been seldom considered in the VRP
literature. Therefore, one of the main contributions of this paper is to discuss the
incorporation of these complex but more real-life objective functions in the VRP
arena. As examples of how non-smooth and non-convex functions could naturally
appear in VRPs, we can consider the following situations:

i) Minimization of fuel consumptions in surface transportation. Road transporta-
tion is the predominant way of transporting goods in Europe and also in other
parts of the world. Direct costs associated with this type of transportation have
experienced a significant increase since 2000, and more so during these last
years due to the rise of oil prices. These costs are not usually easy to describe
mathematically because of their continuous change (roads slopes or types of
asphalts) or direct dependence to natural conditions (weather or temperature).
A similar analysis of fuel consumption control by minimizing speed in ships
crossing the Atlantic ocean has been done by Fagerholt et al. ([25]).
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ii) Minimization of CO2 emissions related to road transportation. Furthermore,
road transportation is intrinsically associated with a great deal of indirect or
external costs, which are usually easily observable -congestion, contamination,
security- and safety-related costs, mobility, delay time costs, etc.- but are usu-
ally left unaccounted for because of the difficulty to quantify them ([54]). In
addition to these easily observable costs, many others, like environmental costs
due to the production and use of fossil fuel might be considered. In this scenario,
the need for developing new methods to estimate new cost functions related to
noise and environmental issues so that optimal (or quasi-optimal) strategies can
be chosen in road transportation becomes evident. These estimations can be
non-linear and even non-smooth/non-convex, and have been described by dif-
ferent authors ([4], [32]).

To sum up, our point is that non-smooth/non-convex objective functions might also
play an important role in the VRP research area, especially when there is a ne-
cessity of modeling realistic costs functions or decision-makers’ utility functions.
These kind of functions have already been discussed in other related research fields,
e.g. routing problems in Electrical Engineering ([38]) and other combinatorial op-
timization problems not directly linked to routing ([12],[13]). In fact, even when
we have not been able to find VRP references including the terms non-smooth/non-
convex in their titles, it is possible to find works describing vehicle routing problems
that make use of non-smooth/non-convex objective functions, e.g., Lourenço and
Ribeiro ([62]), even when the authors do not make a direct reference to this fact.
In all cases, these non-smooth/non-convex problems are always connected with real
distribution or transportation cases.

5 Mathematical model for the CVRP problem with a
non-smooth objective function

We assume a complete directed graph G = (V, E) with a set of n+ 1 nodes, V =
{0, 1, 2, . . . ,n}, and a set of arcs, E = {(i, j)| i, j ∈V, i 6= j}. The vertex 0 is named
the depot node and the other vertices represent customers. Each customer and each
arc are associated with:

a) a fixed quantity, q j ≥ 0, of goods to be delivered to customer j,
b) a cost, di, j ≥ 0, (distance-based) of traveling from node i to node j,
c) a cost, s j ≥ 0, (time-based) of serving the customer j.

Therefore, given an arc (i, j), the cost ci, j associated with this arc is given by ci, j =
di, j + s j. The matrix cost C := [ci, j] is a square matrix of order n+ 1, that is not
necessarily symmetric.

In graph theory, a finite path, φ , of length r is a sequence of r + 1 vertices,
{α0, α1, . . . , αr}, together with a sequence of r arcs, {φ 1, φ 2, . . . , φ r}, such that

φ
k = (αk−1, αk), k = 1, 2, . . . , r.
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Sometimes we will denote a finite path, φ , in the form:

φ : α0→ α1→ α2→ . . .→ αr−1→ αr.

The vertex α0 is called the start vertex and the vertex αr is called the end vertex of
the path. Both of them are called terminal vertices of the path. The other vertices
in the path are internal vertices. A finite cycle is a path such that the start vertex
and end vertex are the same. Note that the choice of the start vertex in a cycle is
arbitrary. A path with no repeated vertices is called a simple path, and a cycle with
no repeated vertices or arcs aside from the necessary repetition of the start and end
vertex is a simple cycle.

Definition 5.1 In our context, a route, ρ , of order r is a simple finite cycle of length
r+2 in which the start vertex and the end vertex is the depot node 0,

ρ : 0→ α1→ α2→ . . .→ αr−1→ αr→ 0.

We denote, R, the set of all routes of the complete directed graph G. Notice that

the cardinality of R is |R| =
n
∑

k=1
P(n, k), where P(n, k) represents the number of

k-permutations of a set of n elements. Notice that |R|=
n
∑

k=1
P(n, k)≈ n!e, where e

represents the Euler’s number, e = ∑
∞
k=0

1
k! .

Definition 5.2 Two routes are independent when they have no internal vertices in
common, i.e., the only vertex in common is the depot node. A non-empty set of in-
dependents routes, S ⊂ R, is named a complete system of routes when evert
customer belongs to a route of S .

Traditionally the cost of a route, γρ , has been modeled as γρ =
r
∑

k=1
cαk−1, αk . Then the

optimization problem that we want to solve consists of finding a complete system
of routes, S , minimizing the total cost, cT := ∑

ρ∈S
γρ subject to the following two

constraints:

i) the cost of each route, ρ ∈S , does not exceed a maximum route cost, Cmax,

γρ ≤Cmax,

ii) the total demand served in each route ρ ∈S , with internal vertices, α1, . . . , αr−1,
does not exceed a maximum constant demand Qmax,

r−1

∑
k=1

qαk ≤ Qmax.

As mentioned in the Introduction, one of the main goals of this paper is to fill the
gap in the CVRP literature regarding the discussion and solving of non-smooth ob-
jective functions, and to show the efficiency of our approach to deal with these kind
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of functions in the CVRP context. In order to test the effectiveness of our procedure
and its efficiency in relation to other existing approaches, we relaxed the constraints
by violating some conditions, if necessary. We considered soft constraints, which
allow conditions to be violated, by incurring some penalty costs that must be added
to the objective function rather than considering hard constraints, which constrain
the problem to never exceed the maximum route costs (in our model distance and
time based). Following Hashimoto et al. ([44]), ”in real-world situations, time win-
dow and capacity constraints can be often violated to some extent”. Of course, the
same analysis can be applied to constraints associated with maximum route costs.
In practice, if a given route exceeds a threshold cost or length, then some penalty
costs must be added to the total route costs, and these penalty costs are likely to be
defined by a piecewise non-smooth function. Those costs will depend on the size of
the gap between the actual route costs and the threshold. We know that the cost of

a route ρ is given by γρ =
r
∑

k=1
cαk−1, αk . Additionally, we have considered that the

penalty costs, cρ , of any route ρ is given by the following expression:

cρ :=
{

γρ if γρ ≤Cmax,
λ (γρ ,Cmax) otherwise, (1)

where the function λ (γρ ,Cmax) is a penalty cost function, which will be consid-
ered in the soft-constraint scenario whenever actual route costs, γρ , exceed a given
threshold or the maximum cost per route, Cmax. In applications expression (1) rep-
resents a piecewise cost function, cρ , for any route, ρ ∈ S , in the soft-constraint
scenario which, in the worst case, could be a non-linear and non-smooth function.
Finally the optimization problem to solve is

minimize cT := ∑
ρ∈S

cρ

subject to:
r j

∑
t=1

q
α

j
t
≤ Qmax, j = 1,2, . . . ,s,

(2)

where S is a complete system of routes, r j is the number of demand vertices in
route j, and s is the number of routes.

6 Multi-start biased Randomization of classical Heuristics with
Adaptive local search (MIRHA)

In this section, our probabilistic algorithm is explained. We named our approach
Multi-start biased Randomization of classical Heuristics with Adaptive local search
(MIRHA) since, as we will explain later, the basic aspects of our proposed algo-
rithm is the use of classical greedy heuristics combined with a biased randomization
and a local search. The algorithm starts with the solution generated by a classical
heuristic and slightly perturbs it by means of a random biased behavior in order



MIRHA: multi-start biased randomization of heuristics 13

to obtain alternative good solutions. It uses random bits to do random choices dur-
ing the execution of the algorithm, but instead of using the uniform distribution (as
most metaheuristics and probabilistic algorithms do) we consider non-uniform and
nonsymmetric (biased) distributions, e.g.: the geometric distribution, the decreas-
ing triangular distribution, etc. The use of these biased distributions guides the local
search process better, since the most promising movements (according to some well-
tested heuristic) are the ones with higher probabilities of being selected at each step
of the MIRHA approach. The local search is an improvement of the adaptive lo-
cal search proposed in [49] that leads to good and robust solutions for the classical
Capacitated Vehicle Routing Problem.

MIRHA is related to other metaheuristics proposed in the literature. The closest
ones are the Hybrid GRASPs or, more accurately, to reactive GRASPs (see [77],
[80] or [29]), the Heuristic Biased Stochastic Sampling (HBSS) of Bresina (1996)
[6] and the Probabilistic Tabu Search by Fleurent and Glover ([34]). The common
aspects of MIRHA with GRASP are the construction of an initial solution using ran-
domization and afterwards the application of a local search. But there are relevant
differences, as the MIRHA does not use a Restrictive Candidate List (RCL), one
main characteristic of the GRASP algorithm, and it uses a biased and adaptive non-
uniform distribution to select the next element to be included in the solution, while
most GRASP implementations only consider uniform distributions. The GRASP
proposed by Prais and Ribeiro (see [77]) uses a different RCL, where its size is ran-
domly selected, but they still use a RCL and the uniform distribution. The HBSS
proposed by Bresima (1996) [6] is similar to the MIRHA since it uses a biased
distribution function combined with a sampling methodology. In fact, the MIRHA
methodology can be seen as a natural extension/enhancement of the HBSS method-
ology. Our approach is similar to the HBSS in the use on non-uniform distributions,
however we incorporate a local search step after each solution obtained by the biased
sampling. In [29], the authors mentioned the HBSS and say that “This methodology
can be directly applied in a GRASP construction phase, by biasing the selection of
RCL elements to favor those with higher greedy function values.” However, as far
as we know, the use of biased non-uniform distribution in the construction phase
was not applied before. Also, the HBSS was only applied to a scheduling problem,
and it was never applied to VRPs. Fleurent and Glover ([34]) describe a Probabilis-
tic Tabu Search applied to the Quadratic Assignment Problem, where they use a
non-uniform biased distribution to construct solution in the Intensification Strategy
Phase based on the history (memory). This tabu search method has in common with
the proposed method the use of a non-uniform biased distribution, but the structure
of the algorithm is quite different and there is the need to set various parameters,
meanwhile MIRHA contains no or very few parameters to set.

We will now describe in detail the three main aspects of the MIRHA: The con-
struction of the initial solution using classical heuristics, the biased randomization
applied to construction of a random solution and the local search method (see Figure
2 for a general pseudocode of the MIRHA).

To construct the random solution we apply a classical greedy heuristic. We have
chosen classical heuristics as our starting point for several reasons. First of all, there
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Fig. 2 MIRHA general framework

Procedure: MIRHA

begin
Initialization:

inputData← Data of the instance considered;
heuristic← Heuristic choosed;
prob.Dist← Distribution probability used to perform the sampling;
bestSolution← get a random solution depending of inputData, heuristic and prob.Dist.;
bestSolution← adaptiveLocalSearch(bestSolution);
stop← false;

while stop = false do
solution← get a random solution depending of inputData, heuristic and prob.Dist.;
solution← adaptiveLocalSearch(solution);
if cT (solution)< cT (bestSolution) then

bestSolution← solution;
end if
stop← evaluation stop rule (true or false);

end while;
return bestSolution;

end

are efficient heuristics for almost every combinatorial optimization problem. They
usually exhibit excellent computing performance, they provide acceptable results in
most cases, and they have been extensively evaluated in different scenarios. In ad-
dition, classical heuristics build the solution incrementally using well-tested strate-
gies instead of directly using the objective function itself. Thus, issues such as non-
convexity or non-smoothness of the objective function are not likely to have a sig-
nificant impact on their efficiency. The main idea of these heuristics is to select the
next step from a list of available movements, usually according to a greedy crite-
rion. For example, the Clarke and Wright heuristic for the VRP selects the arc with
the highest savings, while the NEH heuristic ([67]) for the Flow-Shop Permutation
Problem takes the job with the largest total processing time. As commented before,
our proposal is to introduce a biased random behavior in the selection step, but still
take into account ”common sense” rules enforced by the deterministic heuristics.
More exactly, instead of having a single choice at every step, we will have multiple
choices, each with a decreasing probability of being chosen.

Another relevant aspect of MIRHA is the introduction of biased random be-
havior in the selection step in the construction phase of the algorithm, but still
takes into account the common sense rules enforced by the deterministic heuris-
tics. More exactly, instead of having a single choice at every step, we will have
multiple choices, each with a decreasing probability of being chosen. On the one
hand, MIRHA proposes the use of theoretical (biased) statistical distributions -with
few or no parameters- to perform the stochastic sampling. On the other hand, it
also proposes the introduction of an adaptive intensification or local search phase
which complements each constructive phase inside the multi-start procedure i.e.,
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the multi-start procedure will consist of two phases: (a) a constructive phase, in
which a classical heuristic for the considered problem is selected and then random-
ized using a biased probability distribution, and (b) an improvement phase which is
adaptive in the sense that it will also depend on the particular combinatorial opti-
mization problem being considered -a different local search should be defined for
each problem. In the VRP case with non-smooth objective functions, we propose an
improvement phase based on the combined use of a memory strategy and a splitting
strategy, which has proven to be efficient to solve classical VRP benchmarks ([49]).

Figure 2 shows the commented pseudo-code of the MIRHA general framework.
After initializing the pseudo-random number generator, the multi-start procedure
(while loop) begins. This loop will terminate as soon as a stopping condition (e.g.:
number of iterations or maximum running time) will be satisfied. For each iteration
of this loop, two processes are carried out. First, a new solution is constructed using
a biased randomization version of the selected classical heuristic, which, obviously,
will depend on the type of combinatorial optimization problem at hand (e.g. vehicle
routing, scheduling, arc routing, p-median, etc.). Second, an adaptive local search
is employed in order to improve the randomized solution. This local search will be
different for each type of problem. In this paper, the local search is adapted or tai-
lored for the vehicle routing problem. Then, whenever convenient, the reference to
the best solution found so far is updated. The multi-start process not only guarantees
that the procedure will not get trapped into a local minimum, but also that different
feasible regions in the solution space are sampled and explored, which might be
especially useful when coping with non-smooth/non-convex problems where little
information is obtained from local improvements. Finally, the best found solution is
returned to the decision-maker. Notice that since the described constructive method
will be typically very fast, a top list containing the best solutions found could be
returned instead.

The local search procedure designed for the vehicle routing problem is shown
in Figure 3. It basically consist of two parts: a fast memory-based improvement for
individual routes -best found ways to travel the nodes of a given route are stored
in cache-, and a divide-and-conquer strategy in which each randomized solution is
partitioned into different sub-solutions or regions according to a set of policies, and
then a new multi-start heuristic biased randomization process is applied on each
of these regions to try to improve the sub-solutions. This divide-and-conquer strat-
egy tries to take advantage of the fact that solving smaller problems is much easier
than solving the entire problem and also that the union of all regions’ sub-solutions
will become a global solution for the entire problem. The proposed method is an
extension and improvement of the one proposed in [49]; in this work, a probabilis-
tic algorithm (SR-GCWS-CS) is presented that combines Monte Carlo simulation
with splitting techniques and the Clarke and Wright savings heuristic to find solu-
tions to the Capacitated Vehicle Routing Problem (CVRP). Results show that the
SR-GCWS-CS can be a real alternative to other metaheuristics since it is able to
provide top-quality solutions to most tested benchmarks in reasonable times. The
main differences between these local search approaches reside in the way the split-
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Fig. 3 MIRHA Adaptative Local Search for the CVRP

Procedure: adaptiveLocalSearch

begin
Initialization:

solution← the obtained random solution from MIRHA;
solution← improve solution using solutions in the cache;
bestSolution← solution;
P←{p1, . . . , pN}; (for each i = 1, . . . ,N, pi is a policy to split the solution)

for i = 1 to N do
{subSols1, . . . ,subSolsM}← split solution according pi;
for i = 1 to M do

if cT (subSolsi)< cT (bestSubSoli) then
bestSubSoli← subSolsi;

end if
inputDatai← Data associate with bestSubSoli;
stop← false;
while stop = false do

newSubSoli ← get a random bestSubSoli depending of inputDatai, heuristic and prob.Dist.;
newSubSoli ← improve newSubSoli using solutions in the cache;
if cρi (newSubSoli)< cρi (bestSubSoli) then

bestSubSoli← newSubSoli;
end if
stop← evaluation stop rule (true or false);

end while
end for
newSolution← unify the best subsolutions {bestSubSol1, . . . ,bestSubSolM};
if cT (newSolution)< cT (solution) then

solution← newSolution;
end if

end for
if cT (solution)< cT (bestSolution) then

bestSolution← solution;
end if
return bestSolution;

end

ting is performed, since they differ both in the number and type of policies used as
well as in the number of regions or sub-solutions considered.

The main objective of this work was to develop a general solution approach to
solve in an efficient way realistic vehicle routing problems under more complex sce-
narios dominated by non-smooth/non-convex objective functions and non-convex
regions. As we have seen in this section, one important advantage of the proposed
algorithm is its robustness and simplicity and, in particular, the fact that it employs
very few or no parameters, so there is no need to perform a complex fine-tuning pro-
cess before using it. Also, the MIRHA is simple to design and implement since, for
most combinatorial optimization problems, there exist a classical greedy algorithm
and a local search. In the next section, we will present the computational results and
discuss the accuracy (or effectiveness) and efficiency of the MIRHA approach.
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7 Numerical experiments regarding the solving of non-smooth
vehicle routing problems

In order to test the effectiveness of our approach and its efficiency as compared with
other existing approaches, we used the classical CVRP benchmark instances from
Christofides, Mingozzi and Toth ([18]) which feature the special constraints of the
problem considered here, namely vrpnc6, vrpnc7, vrpnc8, vrpnc9, vrpnc10, vrpnc13
and vrpnc14 (see Table 1).

Table 1 Characteristics of the vehicle routing instances

Vehicle Max. Route Service
Instance Nodes Capacity Costs Cost

vrpnc6 51 160 200 10
vrpnc7 76 140 160 10
vrpnc8 101 200 230 10
vrpnc9 151 200 200 10
vrpnc10 200 200 200 10
vrpnc13 121 200 720 50
vrpnc14 101 200 1040 90
Averages 114 186 393 27

However, instead of considering the maximum route costs (or length) as a hard
constraint we have considered it as a soft constraint that could be eventually violated
if necessary by incurring some penalty costs. Following the penalty costs function
introduced in Section 5, in this example, we have used the specific non-linear and
non-smooth function:

λ (γρ ,Cmax) := γρ +min{θ(γρ ,Cmax),20}, (3)

where

θ(γρ ,Cmax) := 5+5000
(

γρ −Cmax

γρ

)4

. (4)

Table 1 contains the following information for each instance: name of instance,
number of nodes, vehicle capacity, maximum route cost (threshold) and cost per
service, given in the benchmark data. We are interested in comparing results when
threshold is considered as a hard constraint and as a soft one.

The MIRHA algorithm described in the previous section has been implemented
as a Java application. Being an interpreted language, Java-based programs do not
execute as fast as other compiled programs such as those developed in C, but Java al-
lows for rapid development of object-oriented prototypes that can be used to test the
potential of an algorithm. At the core of our Java application, some state-of-the-art
pseudo-random number generators are employed. In particular, we have used some
classes from the SSJ library ([56]), among them, the subclass LFSR113, which im-
plements a very fast generator with a period value approximately equal to 2113. Pre-
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liminary research indicates that using a high-quality pseudo-random number gen-
erator may be especially useful when performing an in-depth random search of the
solution space. Moreover, the use of such a long-period RNG has other important
advantages: splitting the RNG sequence in different streams and using each stream
in different processors or threads can easily parallelize the algorithm. A standard
personal computer, with an Intel R©CoreT M2 Duo CPU processor at 2.4 GHz and a
2 GB RAM, was used to perform all tests. For each instance, a maximum computa-
tional time of 5 minutes was allowed.

Results of these tests are summarized in Tables 2 and 3. For each instance, Ta-
ble 2 contains the following information: name of instance; best-known solution
when considering hard constraints (BKS-H) as published in Lin et al. ([57]); solu-
tion provided by the CWS heuristic Clark and Wright ([14]) when considering hard
constraints (CWS-H); the gap in percentage between the CWS-H and BKS-H solu-
tions; best solution obtained with our approach when considering hard constraints
(MIRHA-H); gap in percentage between the MIRHA-H and BKS-H solutions; best
solution obtained by GRASP using a restricted candidate list considering only k
percent of edges (GRASP-H ), where k has the following values: 10%, 15%, 25%,
50%, 75%, and 100%; and the gap in percentage between (GRASP-H) and BKS-H
solutions.

Table 3 contains the information: name of instance; best-known solution when
considering hard constraints (BKS-H); solution provided by the CWS heuristic
when considering soft constraints (CWS-S); the gap in percentage between the
CWS-S and BKS-H solutions; best solution obtained with our approach when con-
sidering soft constraints (MIRHA-S); the gap in percentage between MIRHA-S and
BKS-H; best solution obtained by GRASP using a restricted candidate list consid-
ering only k percent of edges (GRASP-S) when considering soft constraints, where
k has the following values: 10%, 15%, 25%, 50%, 75%, and 100%; and the gap in
percentage between (GRASP-S) and BKS-H solutions.

In Tables 2 and 3, the gap in percentage between solution value v∆ produced
by a given methodology ∆ and the best known solution value v∗ of the instance is
calculated as

100(v∆ − v∗)/v∗.

From the results in Tables 2 and 3, it follows that the proposed methodology is al-
ready quite efficient in the case of the hard constraint scenario since the average gap
with respect to the best-known solutions is only 0.91%, which makes our approach
competitive with most state-of-the-art metaheuristics. But even more interesting is
the fact that by relaxing somewhat the hard constraint and transforming it into a soft
one -which, as discussed previously, might make sense in most real-life situations-
our approach has been able to cope with a non-smooth objective function and im-
prove the best-known solutions associated with the hard-constraint scenario (aver-
age gap = −6.23%). Of course, the numerical experiment presented in this section
is just an illustrative example. One might argue that the results depend upon the spe-
cific penalty function considered in case a constraint is violated. For example, if the
penalty cost is large enough, then no improvement will be obtained. However, for
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moderated penalty costs, our methodology can provide improvements even when
the routing costs are modeled through non-smooth objective functions.

We can summarize our results as follows. Using the GRASP method without
a restricted candidate list never outperforms CWS. Thus, one needs to restrict the
candidate list, so that it can compete with MIRHA but with a downside. An extra
parameter aimed at setting the size of the restricted candidate list must be added
which requires a time-consuming fine-tuning process. And the results might signifi-
cantly depend on that fine-tuned parameter. We should note that since GRASP uses
our local search, it is actually an optimized version of GRASP. But, it is still not able
to compete against our algorithm, MIRHA. When we use a restrictive candidate list,
then GRASP improves and is able to beat the CWS. However, the best values ob-
tained with GRASP are worse over all instances when compared to our best values,
even when different restricted candidate list sizes are tried. Moreover, as the size of
the problem increases, the gap between our approach and GRASP increases.

8 Conclusions

In this paper, the multi-start biased randomization of classical heuristics with adap-
tive local search (MIRHA) algorithm is proposed as a method for solving non-
smooth/non-convex vehicle routing problems. The key idea in our approach is to
employ probability distributions such as the geometric one to add a random biased
behavior to classical heuristics, e.g. the savings method. In this way we obtain a
large set of alternative good solutions that outperform the initial solution produced
by the heuristic. After that, an adaptive local search phase is incorporated to the
multi-start process in order to further improve the randomized solution. An overview
of non-convex and non-smooth optimization problems has been given to introduce
the reader to the topic. We have also discussed how different approaches have been
used for solving this type of problems. Among others, Genetic and Evolutionary
Algorithms, Tabu Search, or Simulated Annealing. As it has been pointed out, our
methodology has similarities with some methods already reported in the literature
but, at the same time, it maintains significant differences, as previously discussed.
Computational results show the efficiency of our approach when dealing with VRP
with non-smooth objective functions, a topic rarely discussed in the VRP literature
so far but which, in our opinion, might attract a lot of interest from VRP researchers
in the future.
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